国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

種內(nèi)競(jìng)爭(zhēng)模型的最優(yōu)控制問(wèn)題

2024-05-15 17:43:18那楊王宏越杜潤(rùn)梅
關(guān)鍵詞:最優(yōu)控制

那楊 王宏越 杜潤(rùn)梅

摘要: 考慮一類(lèi)在Neumann邊界條件下具有拋物系統(tǒng)種內(nèi)競(jìng)爭(zhēng)的最優(yōu)控制問(wèn)題. 首先在該系統(tǒng)中討論種群內(nèi)部的競(jìng)爭(zhēng)關(guān)系和種群間的交互作用, 將目標(biāo)泛函定義為捕撈得到的利潤(rùn); 其次證明該系統(tǒng)最優(yōu)控制存在的必要條件, 并給出最優(yōu)控制的表達(dá)式.

關(guān)鍵詞: 拋物系統(tǒng); 最優(yōu)控制; Neumann邊界條件; 競(jìng)爭(zhēng)模型

中圖分類(lèi)號(hào): O175.26文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1671-5489(2024)02-0243-06

Optimal Control Problem of Intraspecific Competition Model

NA Yang, WANG Hongyue, DU Runmei

(School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China)

Abstract: We considered the optimal control problem for a class of intraspecific competition with parabolic systems under Neumann boundary conditions. Firstly, we discussed? the competition relationships within the population and the interactions between the populations in the system, and defined the objective functional as the? profit obtained from harvesting. Secondly, we proved? the necessary condition for the existence of the optimal control in the system, and gave an expression for? the optimal contorl.

Keywords: parabolic system;? optimal control; Neumann boundary condition; competition model

0 引 言

參考文獻(xiàn)

[1]梁浩健, 李輝來(lái). 含移流項(xiàng)兩物種競(jìng)爭(zhēng)模型關(guān)于資源的最優(yōu)控制 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2019, 57(3): 500-504. (LIANG H J, LI H L. Optimal Control of Resource in Two Competing Species Model with Advection Terms [J]. Journal of Jilin University (Science Edition), 2019, 57(3): 500-504.)

[2]武海輝. 一類(lèi)帶收獲和毒素項(xiàng)種群競(jìng)爭(zhēng)模型的擴(kuò)散性質(zhì) [J].甘肅科學(xué)學(xué)報(bào), 2022, 34(5): 1-4. (WU H H. A Diffusivel Behavior of a Competitive Model with Gain Items and Toxin [J]. Journal of Gansu Sciences, 2022, 34(5): 1-4.)

[3]何澤榮, 周楠. 具有年齡等級(jí)結(jié)構(gòu)的種群競(jìng)爭(zhēng)系統(tǒng)的最優(yōu)收獲控制 [J]. 數(shù)學(xué)物理學(xué)報(bào), 2022, 42A(1): 228-244. (HE Z R, ZHOU N. Optimal Harvesting in a Competiting System of Hierarchical Age-Structured Populations [J]. Journal of Mathematical Physics, 2022, 42A(1): 228-244.)

[4]MATHEW S M, DILIP D S. Dynamics of Interspecific k Species Competition Model [J]. Journal of Interdisciplinary Mathematics, 2022, 25(3): 629-638.

[5]LENHART S, MONTERO J A. Optimal Control of Harvesting in a Parabolic System Modeling Two Subpopulations [J]. Mathematical Models & Methods in Applied Sciences, 2001, 11(7): 1129-1141.

[6]LENHART S, WORKMAN J T. Optimal Control Applied to Biological Models [M]. New York: Chapman and Hau/CRC, 2007: 216-220.

[7]ZHAO C, WANG M, ZHAO P. Optimal Harvesting Problems for Age-Dependent Interacting Species with Diffusion [J]. Applied Mathematics & Computation, 2005, 163(1): 117-129.

[8]TRLTZSCH F. Optimal Control of Partial Differential Equations: Theory, Methods and Applications [M]. Providence, RI: American Mathematical Society, 2010: 161-162.

(責(zé)任編輯: 李 琦)

收稿日期: 2023-08-20.

第一作者簡(jiǎn)介: 那 楊(1989—), 男, 滿(mǎn)族, 博士, 講師, 從事偏微分方程的研究, E-mail:ny_118@163.com.

通信作者簡(jiǎn)介: 杜潤(rùn)梅(1985—), 女, 漢族, 博士, 教授, 從事應(yīng)用數(shù)學(xué)的研究, E-mail: durm_dudu@163.com.

基金項(xiàng)目: 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 12071067; 12161045; 12026219)和吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 20220101033JC).

猜你喜歡
最優(yōu)控制
一類(lèi)帶指數(shù)權(quán)最優(yōu)控制問(wèn)題的Turnpike性質(zhì)
基于增益調(diào)度與光滑切換的傾轉(zhuǎn)旋翼機(jī)最優(yōu)控制
條件平均場(chǎng)隨機(jī)微分方程的最優(yōu)控制問(wèn)題
具有延遲休假和Min(N,D,V)-策略的M/G/1排隊(duì)的最優(yōu)控制策略
帶跳躍平均場(chǎng)倒向隨機(jī)微分方程的線(xiàn)性二次最優(yōu)控制
隨機(jī)線(xiàn)性二次最優(yōu)控制:從離散到連續(xù)時(shí)間模型
基于CPSO-RBF神經(jīng)網(wǎng)絡(luò)噴氨量的最優(yōu)控制
Timoshenko梁的邊界最優(yōu)控制
四輪獨(dú)立轉(zhuǎn)向車(chē)輛穩(wěn)定性的模糊最優(yōu)控制方法
采用最優(yōu)控制無(wú)功STATCOM 功率流的解決方案
阜城县| 宁陕县| 隆安县| 遂川县| 陈巴尔虎旗| 天峨县| 凉城县| 丰都县| 肇州县| 桂阳县| 夏河县| 福安市| 皮山县| 临猗县| 台州市| 新乡市| 固始县| 鹰潭市| 谷城县| 宜春市| 丰镇市| 甘孜| 九龙城区| 黑河市| 黑山县| 兰州市| 个旧市| 南宁市| 溧水县| 广宗县| 凤冈县| 东乌珠穆沁旗| 阿拉善盟| 荥经县| 淳安县| 四川省| 岳普湖县| 开江县| 高台县| 和政县| 酒泉市|