那楊 王宏越 杜潤(rùn)梅
摘要: 考慮一類(lèi)在Neumann邊界條件下具有拋物系統(tǒng)種內(nèi)競(jìng)爭(zhēng)的最優(yōu)控制問(wèn)題. 首先在該系統(tǒng)中討論種群內(nèi)部的競(jìng)爭(zhēng)關(guān)系和種群間的交互作用, 將目標(biāo)泛函定義為捕撈得到的利潤(rùn); 其次證明該系統(tǒng)最優(yōu)控制存在的必要條件, 并給出最優(yōu)控制的表達(dá)式.
關(guān)鍵詞: 拋物系統(tǒng); 最優(yōu)控制; Neumann邊界條件; 競(jìng)爭(zhēng)模型
中圖分類(lèi)號(hào): O175.26文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1671-5489(2024)02-0243-06
Optimal Control Problem of Intraspecific Competition Model
NA Yang, WANG Hongyue, DU Runmei
(School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China)
Abstract: We considered the optimal control problem for a class of intraspecific competition with parabolic systems under Neumann boundary conditions. Firstly, we discussed? the competition relationships within the population and the interactions between the populations in the system, and defined the objective functional as the? profit obtained from harvesting. Secondly, we proved? the necessary condition for the existence of the optimal control in the system, and gave an expression for? the optimal contorl.
Keywords: parabolic system;? optimal control; Neumann boundary condition; competition model
0 引 言
參考文獻(xiàn)
[1]梁浩健, 李輝來(lái). 含移流項(xiàng)兩物種競(jìng)爭(zhēng)模型關(guān)于資源的最優(yōu)控制 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2019, 57(3): 500-504. (LIANG H J, LI H L. Optimal Control of Resource in Two Competing Species Model with Advection Terms [J]. Journal of Jilin University (Science Edition), 2019, 57(3): 500-504.)
[2]武海輝. 一類(lèi)帶收獲和毒素項(xiàng)種群競(jìng)爭(zhēng)模型的擴(kuò)散性質(zhì) [J].甘肅科學(xué)學(xué)報(bào), 2022, 34(5): 1-4. (WU H H. A Diffusivel Behavior of a Competitive Model with Gain Items and Toxin [J]. Journal of Gansu Sciences, 2022, 34(5): 1-4.)
[3]何澤榮, 周楠. 具有年齡等級(jí)結(jié)構(gòu)的種群競(jìng)爭(zhēng)系統(tǒng)的最優(yōu)收獲控制 [J]. 數(shù)學(xué)物理學(xué)報(bào), 2022, 42A(1): 228-244. (HE Z R, ZHOU N. Optimal Harvesting in a Competiting System of Hierarchical Age-Structured Populations [J]. Journal of Mathematical Physics, 2022, 42A(1): 228-244.)
[4]MATHEW S M, DILIP D S. Dynamics of Interspecific k Species Competition Model [J]. Journal of Interdisciplinary Mathematics, 2022, 25(3): 629-638.
[5]LENHART S, MONTERO J A. Optimal Control of Harvesting in a Parabolic System Modeling Two Subpopulations [J]. Mathematical Models & Methods in Applied Sciences, 2001, 11(7): 1129-1141.
[6]LENHART S, WORKMAN J T. Optimal Control Applied to Biological Models [M]. New York: Chapman and Hau/CRC, 2007: 216-220.
[7]ZHAO C, WANG M, ZHAO P. Optimal Harvesting Problems for Age-Dependent Interacting Species with Diffusion [J]. Applied Mathematics & Computation, 2005, 163(1): 117-129.
[8]TRLTZSCH F. Optimal Control of Partial Differential Equations: Theory, Methods and Applications [M]. Providence, RI: American Mathematical Society, 2010: 161-162.
(責(zé)任編輯: 李 琦)
收稿日期: 2023-08-20.
第一作者簡(jiǎn)介: 那 楊(1989—), 男, 滿(mǎn)族, 博士, 講師, 從事偏微分方程的研究, E-mail:ny_118@163.com.
通信作者簡(jiǎn)介: 杜潤(rùn)梅(1985—), 女, 漢族, 博士, 教授, 從事應(yīng)用數(shù)學(xué)的研究, E-mail: durm_dudu@163.com.
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 12071067; 12161045; 12026219)和吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 20220101033JC).