吳青云 譚易蘭 夏利猛
摘要: 用構(gòu)造的方法解決量子Loop代數(shù)Uq(L(sl2))具有一個一維權(quán)空間的單權(quán)模的結(jié)構(gòu)問題, 得到了任意一個具有一維權(quán)空間的單權(quán)模必同構(gòu)于Uq(L(sl2))的四類單權(quán)模之一. 此外, 還構(gòu)造了一類權(quán)空間維數(shù)為2的既非最高權(quán)也非最低權(quán)的量子Loop代數(shù)Uq(L(sl2))的單權(quán)模.
關(guān)鍵詞: 量子Loop代數(shù); 權(quán)模; 單模; Dense模
中圖分類號: O152.5文獻標志碼: A文章編號: 1671-5489(2024)02-0256-07
Simple Weight Modules of Quantum Loop Algebra Uq(L(sl2))
WU Qingyun, TAN Yilan, XIA Limeng
(School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China)
Abstract: The structural problem of simple weight modules with a one-dimensional weight space in the quantum Loop algebra Uq(L(sl2)) was solved by using a construction method, and it was obtained that any simple weight module with a one-dimensional weight space must be? isomorphic to one of the four classes of simple weight modules of Uq(L(sl2)). In addition, a class of simple weight modules of? the quantum Loop algebra Uq(L(sl2)) with? weight space dimension of 2, which was neither the highest weight nor the lowest weight, was constructed.
Keywords: quantum Loop algebra; weight module; simple module; Dense module
1 引言與主要結(jié)果
設(shè)g是復(fù)數(shù)域上的有限維單李代數(shù), Yangian代數(shù)Y(g)和量子仿射代數(shù)Uq(g^)組成了兩族重要的仿射型量子群. Uq(g^)是由一族生成元和一系列生成關(guān)系構(gòu)成的具有單位元的結(jié)合代數(shù), Uq(g^)商去由中心元C生成的雙邊理想后得到的商代數(shù)記為Uq(L(g)). 其代數(shù)結(jié)構(gòu)和表示理論在數(shù)學(xué)和物理中都有重要的理論意義和應(yīng)用價值. 例如, Uq(L(g))??捎糜跇?gòu)造量子Yang-Baxter方程的三角解[1].
關(guān)于Uq(L(g))模的研究是量子群表示理論的重要問題之一[2-3]. 目前, Uq(L(g))模的研究主要集中在最高權(quán)模, 包括有限維不可約模、 局部Weyl模、 KR(Kirillow-Reshetikhin)模和素表示(Prime representations)[4-8]. 而Uq(L(sl2))的表示理論在Uq(L(g))的研究中具有重要作用.
本文目標是分類Uq(L(sl2))的一類單權(quán)模. 從Uq(sl2)的Dense模出發(fā)[9], 構(gòu)造一類既不是最高權(quán)也不是最低權(quán)的無限維Uq(L(sl2))單權(quán)模, 然后分類具有一個一維權(quán)空間的Uq(L(sl2))單權(quán)模. 本文主要結(jié)果如下:
參考文獻
[HJ*2/3][1]JIMBO M. A q-Difference Analogue of U(g) and the Yang-Baxter Equation [J]. Letters in Mathematical Physics, 1985, 10(1): 63-69.
[2]CHARI V, PRESSLEY A. A Guide to Quantum Groups [M]. Cambridge: Cambridge University Press, 1994: 392-403.
[3]DRINFELD V G. A New Realization of Yangians and of Quantized Affine Algebras [J]. Doklady Akademii Nauk SSSR, 1987, 296(1): 13-17.
[4]CHARI V, PRESSLEY A. Weyl Modules for Classical and Quantum Affine Algebras [J]. Representation Theory of the American Mathematical Society, 2001, 5(9): 191-223.
[5]HERNANDEZ D. The Kirillov-Reshetikhin Conjecture and Solutions of T-Systems [J]. Journal Fürdie Refine und Angewanclte Mathematik, 2006, 181(8): 63-87.
[6]BRITO M, CHARI V, MOURA A. Demazure Modules of Level Two and Prime Representations of Quantum Affine sln+1? [J]. Journal of the Institute of Mathematics of Jussieu, 2018, 17(1): 75-105.
[7]BRITO M, CHARI V, VENKATESH R. Quantum Affine Algebras, Graded Limits and Flags [J]. Journal of the Indian Institute of Science, 2022, 102(3): 1001-1031.
[8]LECLERC B. Quantum Loop Algebras, Quiver Varieties, and Cluster Algebras [R]//SKOWRONSKI A, YAMAGATA K. Representations of Algebras and Related Topics, EMS Series of Congress Reports. Tokyo: EMS Press, 2010: 117-152.
[9]楊冬梅. 無限維不可分解的Uq(sl2)-模的分類 [D]. 北京: 北京工業(yè)大學(xué), 2005. (YANG D M. Classification of Infinitely Dimensional in Decomposable Uq(sl2) Modules [D]. Beijing: Beijing University of Technology, 2005.)
[10]CHARI V, PRESSLEY A. Quantum Affine Algebras [J]. Communications in Mathematical Physics, 1991, 142(2): 261-283.
[11]BRITTEN D, LAU M, LEMIRE F. Weight Modules for Current Algebras [J]. Journal of Algebra, 2005, 440(1): 245-263.
(責(zé)任編輯: 李 琦)
收稿日期: 2023-08-20.
第一作者簡介: 吳青云(1999—), 女, 漢族, 碩士研究生, 從事李理論的研究, E-mail: 2212102047@stmail.ujs.edu.cn.
通信作者簡介: 譚易蘭(1981—), 男, 漢族, 博士, 副教授, 從事李理論的研究, E-mail: tanyanlan@ujs.edu.cn.
基金項目: 國家自然科學(xué)基金(批準號: 12171155).