黃嘉譯 孫祥凱
摘要: 考慮一類目標(biāo)函數(shù)和約束函數(shù)均具有譜面不確定數(shù)據(jù)的平方和(SOS)凸多項(xiàng)式優(yōu)化問題. 首先, 借助SOS條件建立帶有不確定數(shù)據(jù)的SOS凸多項(xiàng)式系統(tǒng)的擇一性定理; 其次, 引入該SOS多項(xiàng)式優(yōu)化問題的SOS松弛對偶問題, 并刻畫它們之間的魯棒弱對偶性與強(qiáng)對偶性質(zhì); 最后, 借助數(shù)值算例說明該SOS松弛對偶問題可以重構(gòu)為半定規(guī)劃問題.
關(guān)鍵詞: SOS凸多項(xiàng)式; 魯棒對偶性; 擇一性定理
中圖分類號: O221.6; O224
文獻(xiàn)標(biāo)志碼: A文章編號: 1671-5489(2024)02-0285-08
SOS Relaxation Dual Problem for a Class of Uncertain Convex Polynomial Optimization
HUANG Jiayi, SUN Xiangkai
(College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China)
Abstract: We considered a class of sum of squares (SOS) convex polynomial optimization problems with spectrahedral uncertainty data in both objective and constraint functions. Firstly, an alternative theorem for SOS-convex polynomial system with uncertain data was established in terms of SOS conditions. Secondly, we introduced a SOS relaxation dual problem for this SOS polynomial optimization problem and characterized the robust weak and strong duality properties between them. Finally, a numerical example was used to demonstrate that the SOS relaxation dual problem could be reformulated as a semidefinite? programming problem.
Keywords: SOS-convex polynomial; robust duality; alternative theorem
SOS凸多項(xiàng)式在機(jī)器學(xué)習(xí)、 信號處理、 自動控制和最優(yōu)電力流等領(lǐng)域應(yīng)用廣泛. 但多項(xiàng)式的凸性檢驗(yàn)十分困難, 而多項(xiàng)式的SOS凸性可借助求解相應(yīng)的半定規(guī)劃(SDP)問題進(jìn)行檢驗(yàn). 進(jìn)一步, SOS凸多項(xiàng)式不僅涵蓋了凸二次函數(shù)和凸可分離多項(xiàng)式等經(jīng)典的凸多項(xiàng)式[1-2], 而且也可以是非二次和非分離的多項(xiàng)式. 文獻(xiàn)[2-9]給出了SOS凸多項(xiàng)式的理論及實(shí)際應(yīng)用的相關(guān)成果.
近年來, 關(guān)于SOS凸多項(xiàng)式結(jié)構(gòu)的不確定性優(yōu)化問題的魯棒對偶性研究已得到廣泛關(guān)注. 借助標(biāo)量化方法和SOS條件, Sun等[10]研究了目標(biāo)函數(shù)和約束函數(shù)均具有譜面不確定數(shù)據(jù)的多目標(biāo)SOS凸多項(xiàng)式問題的精確SDP對偶問題; Jeyakumar等[11]首先給出了SOS凸不等式系統(tǒng)的擇一性定理, 并借助SOS條件研究了SOS凸多項(xiàng)式結(jié)構(gòu)的極大極小優(yōu)化問題的對偶理論; Jeyakumar等[12]借助凸集強(qiáng)分離定理, 刻畫了SOS凸不等式系統(tǒng)的擇一性定理, 并研究了目標(biāo)函數(shù)帶有不確定數(shù)據(jù)的SOS凸多項(xiàng)式優(yōu)化問題與其對應(yīng)的SDP松弛對偶問題之間的零對偶間隙性質(zhì); Jeyakumar等[13]借助經(jīng)典的法錐條件, 給出了魯棒SOS凸多項(xiàng)式優(yōu)化問題的最優(yōu)性條件, 并分別在不確定數(shù)據(jù)屬于多面體不確定集和橢球不確定集的情形下, 刻畫了該優(yōu)化問題的精確SDP松弛; Chuong[14]借助SOS條件和線性矩陣不等式, 建立了SOS凸多項(xiàng)式結(jié)構(gòu)的不確定性優(yōu)化問題的魯棒對偶定理, 并將該不確定性優(yōu)化問題的SOS對偶問題重構(gòu)為SDP問題; Chuong等[15]借助魯棒松弛型條件, 研究了一類SOS凸多項(xiàng)式結(jié)構(gòu)的兩階段自適應(yīng)優(yōu)化問題的精確SDP對偶問題.
受文獻(xiàn)[10-12]工作的啟發(fā), 本文研究一類目標(biāo)函數(shù)和約束函數(shù)均具有譜面不確定數(shù)據(jù)的多目標(biāo)SOS凸多項(xiàng)式優(yōu)化問題. 先建立一類不確定SOS凸多項(xiàng)式系統(tǒng)的魯棒擇一性定理, 再引入該SOS凸多項(xiàng)式優(yōu)化問題的SOS松弛對偶問題, 并刻畫它們之間的魯棒弱對偶與強(qiáng)對偶性質(zhì).
參考文獻(xiàn)
[1]HELTON J W, NIE J. Semidefinite Representation of Convex Sets [J]. Mathematical Programming, 2010, 122(1): 21-64.
[2]AHMADI A A, PARRILO P A. A Convex Polynomial That Is Not SOS-Convex [J]. Mathematical Programming, 2012, 135(1): 275-292.
[3]LASSERRE J B. Moments, Positive Polynomials and Their Applications [M]. London: Imperial College Press, 2009: 43-239.
[4]JEYAKUMAR V, LI G. Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems [J]. Operations Research Letters, 2012, 40(6): 529-536.
[5]AHMADI A A, PARRILO P A. A Complete Characterization of the Gap between Convexity and SOS-Convexity [J]. SIAM Journal on Optimization, 2013, 23(2): 811-833.
[6]CHUONG T D, JEYAKUMAR V. Tight SDP Relaxations for a Class of Robust SOS-Convex Polynomial Programs without the Slater Condition [J]. Journal of Convex Analysis, 2018, 25(4): 1159-1182.
[7]JIAO L, LEE J H. Finding Efficient Solutions in Robust Multiple Objective Optimization with SOS-Convex Polynomial Data [J]. Annals of Operations Research, 2021, 296(1): 803-820.
[8]WANG M, LI X B, CHEN J, et al. On Radius of Robust Feasibility for Convex Conic Programs with Data Uncertainty [J]. Numerical Functional Analysis and Optimization, 2021, 42(16): 1896-1924.
[9]譚玟, 孫祥凱. 不確定平方和凸多項(xiàng)式優(yōu)化的SDP松弛與魯棒鞍點(diǎn)刻畫 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2023, 61(3): 525-530. (TAN W, SUN X K. Characterizations of SDP Relaxation and Robust Saddle Points for Uncertain Sum of Squares Convex Polynomial Optimization [J]. Journal of Jilin University (Science Edition), 2023, 61(3): 525-530.)
[10]SUN X K, TAN W, TEO K L. Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions [J]. Journal of Optimization Theory and Applications, 2023, 197(2): 737-764.
[11]JEYAKUMAR V, VICENTE-PREZ J. Dual Semidefinite Programs without Duality Gaps for a Class of Convex Minimax Programs [J]. Journal of Optimization Theory and Applications, 2014, 162(3): 735-753.
[12]JEYAKUMAR V, LI G. A New Class of Alternative Theorems for SOS-Convex Inequalities and Robust Optimization [J]. Applicable Analysis, 2015, 94(1): 56-74.
[13]JEYAKUMAR V, LI G, VICENTE-PREZ J. Robust SOS-Convex Polynomial Optimization Problems: Exact SDP Relaxations [J]. Optimization Letters, 2015, 9(1): 1-18.
[14]CHUONG T D. Linear Matrix Inequality Conditions and Duality for a Class of Robust Multiobjective Convex Polynomial Programs [J]. SIAM Journal on Optimization, 2018, 28(3): 2466-2488.
[15]CHUONG T D, JEYAKUMAR V, LI G, et al. Exact Dual Semi-definite Programs for Affinely Adjustable Robust SOS-Convex Polynomial Optimization Problems [J]. Optimization, 2022, 71(12): 3539-3569.
[16]RAMANA M, GOLDMAN A J. Some Geometric Results in Semidefinite Programming [J]. Journal of Global Optimization, 1995, 7(1): 33-50.
[17]VINZANT C. What Is Aspectrahedron? [J]. Notices of the American Mathematical Society, 2014, 61(5): 492-494.
[18]BEN-TAL A, EL GHAOUI L, NEMIROVSKI A. Robust Optimization [M]. Princeton: Princeton University Press, 2009: 3-25.
[19]葉冬平, 方東輝. 魯棒復(fù)合優(yōu)化問題的Lagrange對偶 [J]. 數(shù)學(xué)物理學(xué)報(bào), 2020, 40(4): 1095-1107. (YE D P, FANG D H. Lagrange Dualities for Robust Composite Optimization Problems [J]. Acta Mathematica Scientia, 2020, 40(4): 1095-1107.)
[20]劉娟, 龍憲軍. 非光滑多目標(biāo)半無限規(guī)劃問題的混合型對偶 [J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2021, 42(6): 595-601. (LIU J, LONG X J. Mixed Type Duality for Nonsmooth Multiobjective Semi-infinite Programming Problems [J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601.)
[21]孫祥凱, 曾靜, 郭曉樂. 一類不確定優(yōu)化問題的魯棒對偶性刻畫 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2016, 54(4): 715-719. (SUN X K, ZENG J, GUO X L. Characterizations of Robust Duality for a Class of Uncertain Optimization Problems [J]. Journal of Jilin University (Science Edition), 2016, 54(4): 715-719.)
[22]EHRGOTT M. Multicriteria Optimization [M]. Berlin: Springer, 2005: 1-248.
[23]SION M. On General Minimax Theorems [J]. Pacific Journal of Mathematics, 1958, 8(1): 171-176.
[24]PARRILO P A. Polynomial Optimization, Sums of Squares, and Applications [M]//BLEKHERMAN G, PARRILO P A, THOMAS R R. Semidefinite Optimization and Convex Algebraic Geometry. Philadelphia PA: SIAM, 2013: 47-157.
(責(zé)任編輯: 李 琦)
收稿日期: 2023-09-06.
第一作者簡介: 黃嘉譯(1998—), 女, 漢族, 碩士研究生, 從事最優(yōu)化理論與算法的研究, E-mail: huangjyzk@163.com.
通信作者簡介: 孫祥凱(1984—), 男, 漢族, 博士, 教授, 從事最優(yōu)化理論與算法的研究, E-mail: sunxk@ctbu.edu.cn.
基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號: 11701057)、 重慶市自然科學(xué)基金面上項(xiàng)目(批準(zhǔn)號: cstc2021jcyj-msxmX1191)、 重慶市教委重點(diǎn)項(xiàng)目(批準(zhǔn)號: KJZD-K202100803)和重慶市研究生科研創(chuàng)新項(xiàng)目(批準(zhǔn)號: CYS23566).