朱桓吾 鄧煒 鄧金奇 羅坤
摘要:雜草對(duì)農(nóng)業(yè)生產(chǎn)構(gòu)成了巨大的威脅,對(duì)農(nóng)業(yè)經(jīng)濟(jì)帶來(lái)了深遠(yuǎn)的影響。過(guò)度依賴化學(xué)除草劑的現(xiàn)象引發(fā)了大量的抗藥性雜草種群出現(xiàn),這不僅增加了除草劑的使用頻率和用量,還會(huì)引發(fā)惡性循環(huán)。通過(guò)對(duì)現(xiàn)有文獻(xiàn)和研究數(shù)據(jù)的分析,闡述了微生物除草劑的分類及其對(duì)目標(biāo)雜草物種的生物除草活性和特異性。微生物除草劑憑借其延緩雜草產(chǎn)生耐藥性、對(duì)生態(tài)環(huán)境影響較小、安全性高和資源充足等獨(dú)特優(yōu)勢(shì),有望滿足可持續(xù)農(nóng)業(yè)發(fā)展的需求。本文進(jìn)一步分析了國(guó)內(nèi)外微生物除草劑的發(fā)展現(xiàn)狀及面臨的限制因素,并展望其未來(lái)的發(fā)展方向和利用趨勢(shì)。
關(guān)鍵詞:微生物除草劑;植物病原菌;生物防治
中圖分類號(hào):S482.4 文獻(xiàn)標(biāo)志碼:A
Research Status and Prospect of Microbial
Herbicides
Abstract: Weeds posed a great threat to agricultural production and had far-reaching consequences for the agricultural production. Overreliance on chemical herbicides had resulted in large populations of resistant weed population, which not only increased the frequency and dosage of herbicides, but also triggered a vicious cycle. By analyzing current literature and research, this paper outlined the classification of microbial herbicides, and described their bioherbicidal activity and specificity against target weed species. Microbial herbicides were expected to fulfill the needs of sustainable agriculture development due to their unique advantages such as delaying the development of resistance in weeds, less ecological impact, high safety and sufficient resources. This paper further analyzed the current development status of microbial herbicides at home and abroad and the constraints they were facing and anticipated their future development direction and utilization trends.
Keywords: Microbial herbicides; phytopathogen; biological control
雜草對(duì)農(nóng)作物的生產(chǎn)構(gòu)成了極大的威脅,并對(duì)農(nóng)業(yè)經(jīng)濟(jì)造成了重大的損失。據(jù)文獻(xiàn)記載,我國(guó)田園雜草種類有1400多種,其中嚴(yán)重危害的雜草種類高達(dá)130多種,包括37種惡性雜草和96種區(qū)域性惡性雜草,每年由雜草而造成的糧食損失達(dá)300萬(wàn)t[1]。近年來(lái),化學(xué)除草劑在有效控制各類雜草的同時(shí),也極大地降低了工人的勞動(dòng)強(qiáng)度。然而,隨著化學(xué)除草劑的廣泛使用,其缺點(diǎn)也越來(lái)越明顯,如造成環(huán)境污染、易致人畜中毒等[2]。大量使用化學(xué)除草劑也導(dǎo)致雜草抗藥性的出現(xiàn),進(jìn)一步導(dǎo)致使用化學(xué)除草劑的頻率和使用次數(shù)增加,從而陷入惡性循環(huán)。尋找更加安全、高效的除草劑和施用方式,是目前我國(guó)除草劑發(fā)展的主要趨勢(shì)。微生物除草劑具有延緩雜草產(chǎn)生耐藥性,對(duì)生態(tài)環(huán)境負(fù)效應(yīng)較低,安全性較高,資源豐富等特點(diǎn),能滿足農(nóng)業(yè)可持續(xù)發(fā)展的需要[3,4]。
1 微生物除草劑的類型及其研究利用現(xiàn)狀
人們嘗試?yán)梦⑸铮貏e是利用植物病原菌和它所產(chǎn)生的天然生物活性物質(zhì)來(lái)研制新型除草劑。微生物來(lái)源的除草劑分為兩大類[5],一類是直接利用活體微生物感染雜草,導(dǎo)致雜草發(fā)病和死亡;第二類是通過(guò)微生物發(fā)酵產(chǎn)生的次生代謝物和毒素控制雜草的生長(zhǎng)。
1.1 活體微生物除草劑
活體微生物除草劑具有很多化學(xué)除草劑無(wú)法比擬的優(yōu)勢(shì),如微生物資源的種類繁多,生產(chǎn)周期短,生長(zhǎng)迅速,對(duì)人、畜、天敵等非標(biāo)靶生物安全性較高,對(duì)環(huán)境無(wú)污染,從寄主雜草中分離出的病原菌通常對(duì)宿主植物有較高的種間特異性和較高的選擇性。活體微生物除草劑在國(guó)內(nèi)外已成為一個(gè)熱門(mén)的研究領(lǐng)域。據(jù)報(bào)道,目前發(fā)現(xiàn)的具有除草潛力的微生物種類有真菌、細(xì)菌、病毒等。
1.1.1 真菌微生物除草劑
迄今為止,已有40個(gè)屬80余種真菌具有被開(kāi)發(fā)為微生物除草劑的潛力[6]。主要集中在以下幾個(gè)屬中:鐮孢菌屬(Fusarium)[7]、鏈格孢菌屬(Alternaria)[8]、尾孢霉屬( Cercospora)[9]、炭疽菌屬(Coletotrichum)[10]、疫霉屬(Phytophthora)[11]、柄銹菌屬(Puccinia)[12]、殼單孢菌屬(Ascochyta)[13] 、核盤(pán)菌屬(Sclerotinia)[14] 和彎孢霉屬(Curvularia)[15]等。文獻(xiàn)表明,炭疽菌屬的真菌在微生物除草劑中使用最多,并生產(chǎn)了幾種除草劑:BioMal?(C. gloeosporioides f. sp. malvae)[16–18],Collego?/LockDown?(C. gloeosporioides f. sp. aeschynomene)[16],魯保1號(hào)和魯保2號(hào)(C. gloeosporioides)[10],Velgo?(C. coccodes)[19]。
國(guó)內(nèi)最早用于雜草防治的微生物制劑研發(fā)于1963年,名為“魯保一號(hào)”。這種制劑可以有效的防控菟絲子(Cuscuta chinensis Lam.),是我國(guó)首個(gè)被大規(guī)模應(yīng)用的微生物除草劑[20]。近年來(lái),隨著國(guó)家各有關(guān)部門(mén)和科研單位的高度關(guān)注,我國(guó)微生物除草劑研發(fā)取得了一系列的成果(表1)。
1.1.2 細(xì)菌微生物除草劑
研究表明,多數(shù)用于開(kāi)發(fā)微生物除草劑的細(xì)菌菌株能產(chǎn)生毒素,它們主要是革蘭氏陽(yáng)性菌,如假單胞菌屬、歐文氏菌屬、黃單胞菌屬,但也有少數(shù)革蘭氏陰性菌如鏈霉菌屬、棒狀桿菌屬,還有一些是非熒光假單胞菌屬[43]。美國(guó)的科學(xué)家從7種雜草的根際土壤中分離出了來(lái)自9個(gè)屬的細(xì)菌,研究發(fā)現(xiàn),其中非熒光假單胞菌(Non-fluorescent Pseudomonas)和草生歐文氏菌(Erwinia herbicola)在除草方面表現(xiàn)出了較強(qiáng)的能力[44];加拿大的研究人員從草原土壤中分離出上千種的根際病原細(xì)菌,并將其用于防治雜草[45];日本研究人員分離出的一種可引起早熟禾枯萎病的黑腐病菌(Xanthomonas campestris pv. poae)在日本已被開(kāi)發(fā)成微生物除草劑,名稱為 Camperico?[46]。近年來(lái),國(guó)內(nèi)的科研人員也將細(xì)菌作為一種重要的微生物除草劑的來(lái)源。但漢斌等[47]從馬唐和稗草的根中分離出792株假單孢菌和515株歐文氏菌,其中歐文氏菌(Erwinia sp.)S7菌株對(duì)狗尾草的種子萌發(fā)具有明顯的抑制作用。史延茂等[48]從馬唐病原菌中分離出一株色桿菌(Chromobacerium)S-4,該菌可產(chǎn)生紅色素,對(duì)馬唐種子萌發(fā)和根生長(zhǎng)分別有93%和85%的抑制率。
1.1.3 病毒微生物除草劑
病毒微生物除草劑最成功和最有前途的來(lái)源之一是煙草輕綠花葉病毒(Tobacco mild green mosaic virus)[49]。這種病毒在防控毛果茄(Solanum viarum Dunal)方面顯示出很高的成功率。這是因?yàn)樗芤鹬参锞植繅乃篮瓦^(guò)敏性反應(yīng),使植物在20~50 d內(nèi)死亡[49,50]。此外,阿魯藤花葉病毒(Araujia mosaic virus)也被認(rèn)為是一種潛在的微生物除草劑,可引起飛蛾草(Passiflora cupiformis Mast.)葉片扭曲,導(dǎo)致植物死亡[51]。
1.2 微生物的代謝產(chǎn)物除草劑
在利用微生物代謝物研制除草劑方面,日本的研究人員將微生物產(chǎn)物雙丙氨膦(Bilanafos)成功轉(zhuǎn)化為商品除草劑,其是從土壤中分離的鏈霉菌所產(chǎn)生的代謝產(chǎn)物合成。AAL毒素(AAL-toxin)是由ABBAS等發(fā)現(xiàn)的一種感染番茄植株的鏈格孢(Altemaria altemata)代謝產(chǎn)物,其被證實(shí)為一種高效的植物毒素[52]。此外,研究人員還發(fā)現(xiàn)一些具有除草活性微生物的代謝產(chǎn)物,包括草菌素(Herbicidin)、綠僵菌素(Destruxin E)、桿孢菌素(Roridins)、疣孢菌素(Verucarins)等[53,54]。
在我國(guó),南京農(nóng)業(yè)大學(xué)雜草研究室的萬(wàn)佐璽等通過(guò)對(duì)紫莖澤蘭病害的研究,成功地分離并篩選出了一種紫莖澤蘭天然致病的鏈格孢菌菌株(Alternaria alternata(Fr.)Keissler),研究中發(fā)現(xiàn)水花生、鴨跖草、火柴頭、酢漿草等難以防除的雜草對(duì)該菌產(chǎn)生的毒素極敏感[55]。張金林等[56]發(fā)現(xiàn),蔥葉枯病菌毒素對(duì)禾本科雜草的種子萌發(fā)有很強(qiáng)的抑制作用,對(duì)馬唐的防效也與百草枯相近。姜述君等[57]從狹卵鏈孢桿菌AAEC0523中提取了一種淡黃色的油性毒液,該毒液能有效地抑制稗草的種子發(fā)芽和幼苗的生長(zhǎng),是一種極具發(fā)展前景的微生物源除草劑。上述研究工作,拓寬了國(guó)內(nèi)微生物代謝產(chǎn)物的研究領(lǐng)域范圍,開(kāi)拓了新的應(yīng)用方向。
2 微生物除草劑的作用機(jī)制
活體微生物除草劑利用菌絲侵入寄主組織,產(chǎn)生毒素致使雜草病變,進(jìn)而影響雜草的正常生理狀態(tài),實(shí)現(xiàn)控制雜草種群的目標(biāo)?;铙w微生物除草劑主要作用于植物體內(nèi)的敏感分子靶標(biāo),而這些靶標(biāo)與微生物代謝產(chǎn)物除草劑的分子靶點(diǎn)基本不相同。微生物代謝產(chǎn)物除草劑一般利用植物病原菌作為制作除草劑的材料并人為利用以產(chǎn)生大量的發(fā)酵產(chǎn)物。這些物質(zhì)通常通過(guò)液體噴霧或固體顆粒接種到目標(biāo)寄主上,然后滲透到植物中[11,58]。研究顯示,當(dāng)微生物的代謝產(chǎn)物除草劑進(jìn)入植物體內(nèi),會(huì)產(chǎn)生淀粉酶、纖維素酶、木質(zhì)素酶、果膠酶、肽酶、磷脂酶或蛋白酶等,這些酶有助于降解細(xì)胞壁、脂膜和蛋白質(zhì),使得毒素更容易進(jìn)入雜草體內(nèi)[59]。
寄主雜草被微生物除草劑作用后可引起幾種生理代謝上的變化:降低細(xì)胞活性、酶和激素的功能,從而導(dǎo)致?tīng)I(yíng)養(yǎng)吸收減少;光合作用和膜滲透性失調(diào);抑制種子發(fā)芽和發(fā)育[59–61]。減少養(yǎng)分的吸收會(huì)影響葉綠體的發(fā)育并導(dǎo)致萎縮,而植物激素的變化會(huì)導(dǎo)致抑制赤霉素途徑的酚類化合物合成,增加赤霉酸、茉莉酸和水楊酸的積累[59,61]。這些化合物的積累可以改變植物的光合速率,增加氧化應(yīng)激,影響氣孔的關(guān)閉,降低植物的生長(zhǎng)。
3 微生物除草劑應(yīng)用的限制因素
對(duì)微生物除草劑的評(píng)價(jià),主要從有效性和專一性兩個(gè)角度來(lái)進(jìn)行。有效性指的是微生物除草劑的防治效果,主要是對(duì)雜草的控制水平、控制速度、操作難易程度[6]等,其防治效果同時(shí)與周圍的環(huán)境因素有著很大的聯(lián)系。專一性指的是對(duì)寄主的選擇性。一般情況下,微生物除草劑的選擇性更高,對(duì)同類植物的毒性也不同,具體應(yīng)用時(shí)要根據(jù)不同的作物需要來(lái)選擇,保障其安全性[62]。
據(jù)報(bào)道,僅在2016年,全球微生物除草劑市場(chǎng)份額為12.8億美元,隨著該領(lǐng)域的持續(xù)發(fā)展,預(yù)計(jì)到2024年其市場(chǎng)份額將進(jìn)一步增加到41.4億美元[63],盡管這一領(lǐng)域的進(jìn)步是顯而易見(jiàn)的,但仍有一些在應(yīng)用上的挑戰(zhàn),這些問(wèn)題可能會(huì)阻礙其取得廣泛的成功[64,65]。環(huán)境條件是限制微生物除草劑開(kāi)發(fā)應(yīng)用的諸多因素之一。據(jù)相關(guān)研究報(bào)道,這些因素包括濕度、土壤類型、溫度和紫外線以及水供應(yīng)量[66]。由于不同地區(qū)存在氣候變化,雜草將不可避免地出現(xiàn)結(jié)構(gòu)和生理上的變化和進(jìn)化適應(yīng)性。另外,困擾微生物除草劑的發(fā)展還有以下問(wèn)題:目前還沒(méi)有一個(gè)關(guān)于微生物除草劑生產(chǎn)工藝的統(tǒng)一標(biāo)準(zhǔn);許多微生物除草劑靶標(biāo)單一、推廣和規(guī)?;瘧?yīng)用受限;活性物質(zhì)不穩(wěn)定、菌株易發(fā)生突變、致病力下降、制劑處理難度大等[67,68]。這些都表明了微生物除草劑的開(kāi)發(fā)需要多學(xué)科交叉運(yùn)用,以滿足未來(lái)微生物除草劑的生產(chǎn)利用的需要。
4 展望
隨著社會(huì)對(duì)綠色農(nóng)業(yè)認(rèn)識(shí)的深入,公眾對(duì)控草策略的期望和需求發(fā)生了一定的變化。以往,控草工作主要側(cè)重于防除雜草以確保農(nóng)作物的產(chǎn)量;而現(xiàn)今,關(guān)注焦點(diǎn)已轉(zhuǎn)向更綜合、協(xié)調(diào)且可持續(xù)的管理方式。這種方式強(qiáng)調(diào)通過(guò)管理雜草生長(zhǎng)動(dòng)態(tài),來(lái)維持整體的經(jīng)濟(jì)閾值在一個(gè)可接受的水平,從而推動(dòng)農(nóng)業(yè)的可持續(xù)發(fā)展。在這其中,微生物除草劑展現(xiàn)出作為有效的雜草生物防治劑的巨大潛力。相較于傳統(tǒng)除草劑,微生物除草劑在控制雜草方面展現(xiàn)出多項(xiàng)優(yōu)勢(shì):微生物除草劑能夠應(yīng)用于對(duì)傳統(tǒng)除草劑產(chǎn)生抗性的雜草種類,微生物除草劑在特定環(huán)境中展示出高度的宿主特異性;相比傳統(tǒng)化學(xué)合成除草劑,微生物除草劑更加環(huán)保,具有更低的毒性。但微生物除草劑的開(kāi)發(fā)應(yīng)用及商業(yè)化過(guò)程通常漫長(zhǎng)且復(fù)雜,涉及病理學(xué)、生態(tài)學(xué)、遺傳學(xué)、經(jīng)濟(jì)學(xué)及供應(yīng)鏈管理等領(lǐng)域。為了有效推進(jìn)這一過(guò)程,可能需要持續(xù)的研究和關(guān)注以下幾個(gè)方面:優(yōu)化商品化流程;在真菌、細(xì)菌或病毒中尋找更適宜的控草生物源,用以開(kāi)發(fā)新產(chǎn)品;深入研究不同微生物除草劑的作用機(jī)制;評(píng)估不同環(huán)境條件對(duì)其控草活性的影響。
參考文獻(xiàn)
[1] 李香菊. 近年我國(guó)農(nóng)田雜草防控中的突出問(wèn)題與治理對(duì)策[J]. 植物保護(hù), 2018, 44(5): 77-84.
[2] GREEN J M. Current state of herbicides in herbicide-resistant crops[J]. Pest Management Science, 2014, 70(9): 1351-1357.
[3] de SOUZA BARROS V M, PEDROSA J L F, GON?ALVES D R, et al. Herbicides of biological origin: A review[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(3): 288-296.
[4] CAMARGO A F, BONATTO C, SCAPINI T, et al. Fungus-based bioherbicides on circular economy[J]. Bioprocess and Biosystems Engineering, 2023, 46(12): 1729-1754.
[5] PERUZZI A, FONTANELLI M, FRASCONI C. Current trends for a modern, integrated, and sustainable approach to weed management[J]. Agronomy, 2023, 13(9): 2364.
[6] 陳世國(guó), 強(qiáng)勝. 生物除草劑研究與開(kāi)發(fā)的現(xiàn)狀及未來(lái)的發(fā)展趨勢(shì)[J]. 中國(guó)生物防治學(xué)報(bào), 2015, 31(5): 770-779.
[7] DANIEL J J Jr, ZABOT G L, TRES M V, et al. Fusarium fujikuroi: A novel source of metabolites with herbicidal activity[J]. Biocatalysis and Agricultural Biotechnology, 2018, 14: 314-320.
[8] ANEJA K R, KUMAR V, JILOHA P, et al. Potential bioherbicides: Indian perspectives[M]//Salar R, Gahlawat S, Siwach P, et al. Biotechnology: Prospects and Applications. New Delhi: Springer, 2013: 197-215.
[9] KNIGHT N L, VAGHEFI N, KIKKERT J R, et al. Alternative hosts of Cercospora beticola in field surveys and inoculation trials[J]. Plant Disease,2019, 103(8): 1983-1990.
[10] NANDHINI C, GANESH P, YOGANATHAN K, et al. Efficacy of Colletotrichum gloeosporioides, potential fungi for bio control of Echinochloa crus-galli (Barnyard grass)[J]. Journal of Drug Delivery and Therapeutics, 2019, 9(6-s): 72-75.
[11] CORDEAU S, TRIOLET M, WAYMAN S, et al. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management[J]. Crop Protection, 2016, 87: 44-49.
[12] BEAN D W, GLADEM K, ROSEN K, et al. Scaling use of the rust fungus Puccinia punctiformis for biological control of Canada thistle (Cirsium arvense (L.) Scop.): First report on a U.S. statewide effort[J]. Biological Control, 2024, 192: 105481.
[13] PENG Y, LI S J, YAN J, et al. Research progress on phytopathogenic fungi and their role as biocontrol agents[J]. Frontiers in Microbiology, 2021, 12: 670135.
[14] ABU-DIEYEH M H, WATSON A K. Grass overseeding and a fungus combine to control Taraxacum officinale[J]. Journal of Applied Ecology, 2007, 44(1): 115-124.
[15] KRUPSKA J, WATSON A K. Curvularia eragrostidisisolates (Dematiaceae) for biocontrol of crabgrass (Digitaria spp.) in Canada[J]. Biocontrol Science and Technology, 2021, 31(9): 924-950.
[16] BOWERS R C. Commercialization of collego?–an industrialist's view[J]. Weed Science, 1986, 34(S1): 24-25.
[17] VIEIRA B S, DIAS L V S A, LANGONI V D, et al. Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick[J]. Australasian Plant Pathology, 2018, 47(3): 277-283.
[18] MORTENSEN K. The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti)[J]. Weed Science, 1988, 36(4): 473-478.
[19] ANDERSEN R N, WALKER H L. Colletotrichum coccodes: A pathogen of eastern black nightshade (Solanum ptycanthum)[J]. Weed Science,1985,33(6): 902-905.
[20] 高昭遠(yuǎn), 干靜娥. 菟絲子的生物防除: “魯保一號(hào)” 的研究進(jìn)展[J]. 生物防治通報(bào), 1992, 8(4): 173-175.
[21] BOYETTE C D. Biocontrol of three leguminous weed species with Alternaria cassiae[J]. Weed Technology, 1988, 2(4): 414-417.
[22] WEAVER M A, HOAGLAND R E, BOYETTE C D, et al. Taxonomic evaluation of a bioherbicidal isolate of Albifimbria verrucaria, formerly Myrothecium verrucaria[J]. Journal of Fungi, 2021, 7(9): 694.
[23] BAILEY K L, BOYETCHKO S M, L?NGLE T. Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides[J]. Biological Control, 2010, 52(3): 221-229.
[24] BUTT T M, COPPING L G. Fungal biological control agents[J]. Pesticide Outlook, 2000, 11(5): 186-191.
[25] HODGSON R H, WYMORE L A, WATSON A K, et al. Efficacy of Colletotrichum coccodes and thidiazuron for velvetleaf (Abutilon theophrasti) control in soybean (Glycine max)[J]. Weed Technology, 1988, 2(4): 473-480.
[26] BOYETTE C D, HOAGLAND R E, STETINA K C. Extending the host range of the bioherbicidal fungus Colletotrichum gloeosporioides f.sp.aeschynomene[J]. Biocontrol Science and Technology, 2019, 29(7): 720-726.
[27] 朱秦. 膠孢炭疽菌作為防除波斯婆婆納的生物除草劑產(chǎn)業(yè)化相關(guān)技術(shù)的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2003.
[28] ZHU Y Z, QIANG S. Isolation, pathogenicity and safety of Curvularia eragrostidis Isolate QZ-2000 as a bioherbicide agent for large crabgrass(Digitaria sanguinalis)[J]. Biocontrol Science and Technology, 2004, 14(8): 769-782.
[29] 韋韜, 李靜, 倪漢文. 稗草生防菌新月彎孢菌Culvularia lunata菌株J15(2)的安全性和致病力[J]. 植物保護(hù)學(xué)報(bào), 2011, 38(1): 81-85.
[30] 鐘加日, 劉璐, 曾穎, 等. 稗草生防菌NX2A的鑒定、安全性及對(duì)稗草的致病條件[J]. 南方農(nóng)業(yè)學(xué)報(bào), 2022, 53(2): 469-476.
[31] GREEN S. A review of the potential for the use of bioherbicides to control forest weeds in the UK[J]. Forestry, 2003, 76(3): 285-298.
[32] 李新, 謝明, 譚萬(wàn)忠, 等. 雜草生防真菌的研究進(jìn)展[J]. 中國(guó)生物防治, 2009, 25(1): 83-88.
[33] NAZER KAKHAKI S H, MONTAZERI M, NASERI B. Biocontrol of broomrape using Fusarium oxysporum f.sp. orthoceras in tomato crops under field conditions[J]. Biocontrol Science and Technology, 2017, 27(12): 1435-1444.
[34] F?LIX-GAST?LUM R, VALDEZ-LEYVA A B, FIERRO-CORONADO R A, et al. First report of stem blight and leaf spot in horse purslane caused by Gibbago trianthemae in Sinaloa, Mexico[J]. Canadian Journal of Plant Pathology, 2021, 43(3): 431-438.
[35] 聶亞鋒, 劉長(zhǎng)河, 李慶輝, 等. 蓮子草假隔鏈格孢SF-193固體發(fā)酵培養(yǎng)基的篩選及其對(duì)空心蓮子草的控制效果[J]. 生物安全學(xué)報(bào), 2011, 20(4): 337-343.
[36] CIMMINO A, ANDOLFI A, ZONNO M C, et al. Chenopodolin: A phytotoxic unrearranged ent-pimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol[J]. Journal of Natural Products, 2013, 76(7): 1291-1297.
[37] TODERO I, CONFORTIN T C, LUFT L, et al. Formulation of a bioherbicide with metabolites from Phoma sp[J]. Scientia Horticulturae, 2018, 241: 285-292.
[38] KOTZ? L J D, WOOD A R, LENNOX C L. Risk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in South African strandveld and limestone fynbos[J]. Biological Control, 2015, 82: 52-60.
[39] PHATAK S C, SUMNER D R, WELLS H D, et al. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata[J]. Science, 1983, 219(4591): 1446-1447.
[40] BAILEY K L. The bioherbicide approach to weed control using plant pathogens[G] // ABROL D P. Integrated Pest Management: Current Concepts and Ecological Perspective. San Diego: Academic Press, 2014: 245-266.
[41] REICHERT J?NIOR F W, SCARIOT M A, FORTE C T, et al. New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential[J]. Heliyon, 2019, 5(5): e01676.
[42] ZHU H X, MA Y Q, GUO Q Y, et al. Biological weed control using Trichoderma polysporum strain HZ-31[J]. Crop Protection, 2020, 134: 105161.
[43] KREMER R J, BEGONIA M F, STANLEY L, et al. Characterization of rhizobacteria associated with weed seedlings[J]. Applied and Environmental Microbiology, 1990, 56(6): 1649-1655.
[44] 冀營(yíng)光, 邱健, 李承光, 等. 細(xì)菌除草劑的發(fā)展現(xiàn)狀與展望[J]. 生物技術(shù), 2006, 16(1): 88-90.
[45] BOYETCHKO S M. Principles of biological weed control with microorganisms[J]. HortScience, 1997, 32(2): 201-205.
[46] BOYETTE C D, HOAGLAND R E. Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis[J]. Biocontrol Science and Technology, 2015, 25(2): 229-237.
[47] 但漢斌, 陳永強(qiáng), 魏雪生, 等. 從雜草DRB中篩選微生物除草劑的研究[J]. 微生物學(xué)通報(bào), 2002, 29(4): 5-9.
[48] 史延茂, 黃亞麗, 董超, 等. 細(xì)菌除草劑色桿菌屬S-4馬唐致病菌除草活性評(píng)估[J]. 農(nóng)藥, 2006, 45(11): 782-784.
[49] DIAZ R, MANRIQUE V, HIBBARD K, et al. Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: A review of key program components[J]. Florida Entomologist, 2014, 97(1): 179-190.
[50] CHARUDATTAN R, HIEBERT E, CURREY W, et al. Design and testing of field application tools for a bioherbicide with a plant virus as active ingredient[J]. Weeds, 2020, 5(2): 34-45.
[51] ELLIOTT M S, MASSEY B, CUI X, et al. Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand[J]. Australasian Plant Pathology, 2009, 38(6): 603-607.
[52] ABBAS H K, TANAKA T, DUKE S O, et al. Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide[J]. Weed Technology, 1995, 9(1): 125-130.
[53] DUKE S O, PAN Z Q, BAJSA-HIRSCHEL J, et al. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops[J]. Advances in Weed Science, 2022, 40(spe1): e020210054
[54] BENDEJACQ-SEYCHELLES A, GIBOT-LECLERC S, GUILLEMIN J P, et al. Phytotoxic fungal secondary metabolites as herbicides[J]. Pest Management Science, 2024, 80(1): 92-102.
[55] 萬(wàn)佐璽, 強(qiáng)勝, 徐尚成, 等. 鏈格孢菌的產(chǎn)毒培養(yǎng)條件及其毒素的致病范圍[J]. 中國(guó)生物防治, 2001, 17(1): 10-15.
[56] 張金林, 董金皋, 樊慕貞, 等. 蔥葉枯病菌Stemphylium botryosum毒素的分離與除草活性研究[J]. 農(nóng)藥學(xué)學(xué)報(bào), 2001, 3(2): 60-66.
[57] 姜述君, 范文艷, 鞠世杰, 等. 狹卵鏈格孢菌株AAEC05-3及其毒素對(duì)稗草的致病性[J]. 植物保護(hù)學(xué)報(bào), 2007, 34(3): 283-288.
[58] HARDING D P, RAIZADA M N. Controlling weeds with fungi, bacteria and viruses: A review[J]. Frontiers in Plant Science, 2015, 6: 659.
[59] XIE C J, WANG C Y, WANG X K, et al. Proteomics-based analysis reveals that Verticillium dahliae toxin induces cell death by modifying the synthesis of host proteins[J]. Journal of General Plant Pathology, 2013, 79(5): 335-345.
[60] TALUKDER M R, ASADUZZAMAN M, TANAKA H, et al. Application of alternating current electro-degradation improves retarded growth and quality in lettuce under autotoxicity in successive cultivation[J]. Scientia Horticulturae, 2019, 252: 324-331.
[61] LEE S M, RADHAKRISHNAN R, KANG S M, et al. Phytotoxic mechanisms of bur cucumber seed extracts on lettuce with special reference to analysis of chloroplast proteins, phytohormones, and nutritional elements[J]. Ecotoxicology and Environmental Safety, 2015, 122: 230-237.
[62] HASAN M, AHMAD-HAMDANI M S, ROSLI A M, et al. Bioherbicides: An eco-friendly tool for sustainable weed management[J]. Plants, 2021, 10(6): 1212.
[63] ROBERTS J, FLORENTINE S, FERNANDO W G D, et al. Achievements, developments and future challenges in the field of bioherbicides for weed control: A global review[J]. Plants, 2022, 11(17): 2242.
[64] HASAN M, MOKHTAR A S, ROSLI A M, et al. Weed control efficacy and crop-weed selectivity of a new bioherbicide WeedLock[J]. Agronomy, 2021, 11(8): 1488.
[65] DiTOMASO J M, van STEENWYK R A, NOWIERSKI R M, et al. Addressing the needs for improving classical biological control programs in the USA[J]. Biological Control, 2017, 106: 35-39.
[66] SINDHU S S, KHANDELWAL A, PHOUR M, et al. Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management [G] //MEENA V S. Role of rhizospheric microbes in soil. Singapore: Springer Singapore, 2018: 331–376.
[67] MORIN L. Progress in biological control of weeds with plant pathogens[J]. Annual Review of Phytopathology, 2020, 58: 201-223.
[68] 葉非, 馮理. 微生物除草劑的研究與應(yīng)用進(jìn)展[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 41(4): 139-143.