楊武霖 易可欣 袁夏雨 黃興俊 倪金元 胡君杰 王麗君 劉盛
摘要:過氧化氫(H2O2)是一種高效的氧化劑,被廣泛應(yīng)用于化學(xué)合成、消毒殺菌和廢水處理.通過二電子氧還原反應(yīng)(2e- ORR)原位電合成H2O2的方法具有高性能和環(huán)保性,可作為傳統(tǒng)蒽醌工藝的替代策略.氣體擴(kuò)散電極(GDEs)可作為陰極,通過電催化生產(chǎn)H2O2,具有更低的成本、更低的能耗和更高的氧氣利用效率等優(yōu)點(diǎn).探討GDEs作為陰極時(shí)通過2e- ORR產(chǎn)H2O2的機(jī)制;討論GDEs的基本構(gòu)型、原理及優(yōu)化方法;分析GDEs催化劑的種類及優(yōu)勢(shì);展望了GDEs作為陰極原位制備H2O2時(shí)存在的挑戰(zhàn),為推動(dòng)2e- ORR原位電合成H2O2邁向市場(chǎng)化提供借鑒.
關(guān)鍵詞:氣體擴(kuò)散電極; 過氧化氫; 碳材料催化劑; 二電子氧還原
中圖分類號(hào):O643.36; TM911.3?? 文獻(xiàn)標(biāo)志碼:A?? 文章編號(hào):1001-8395(2024)05-0596-15
doi:10.3969/j.issn.1001-8395.2024.
過氧化氫(H2O2)是一種重要的化工原料,并且廣泛地應(yīng)用于有機(jī)合成[1]、漂白[2]、廢水處理[3]、能源轉(zhuǎn)化[4]、醫(yī)療消毒[5]等方面.1930 年,德國(guó)巴斯夫公司開發(fā)了一種使用金屬催化劑和氧氣生產(chǎn) H2O2的方法,為大規(guī)模蒽醌氧化工藝奠定了基礎(chǔ)[6].1939年,Riedl和Pfleiderer開發(fā)了蒽醌法制備H2O2,是工業(yè)合成H2O2的主要方法,其反應(yīng)主要涉及以下步驟,分別為:蒽醌在Pd或Pt催化劑上發(fā)生H2加氫、O2氧化,隨后將H2O2進(jìn)行提取,最后對(duì)工作液進(jìn)行處理[7].蒽醌法制備H2O2工藝存在著明顯的缺點(diǎn),例如反應(yīng)會(huì)產(chǎn)生大量的廢液及廢氣,不利于環(huán)境友好;生成的H2O2需要凈化,增加操作和人工成本;已完成的H2O2產(chǎn)品需要儲(chǔ)存和運(yùn)輸,具有一定的安全風(fēng)險(xiǎn)[8-9].因此需要開發(fā)更綠色、經(jīng)濟(jì)、高效、安全的替代方法,以實(shí)現(xiàn)環(huán)境友好的H2O2制備方法.
近年來,越來越多的學(xué)者通過電化學(xué)氧還原法合成H2O2,該方法不僅高效,而且安全[10-11].電化學(xué)氧還原法通過氧氣在陰極發(fā)生雙電子氧還原反應(yīng)(2e- ORR)合成H2O2,與傳統(tǒng)的蒽醌工藝相比具有許多優(yōu)點(diǎn),如合成路線綠色安全、不產(chǎn)生有機(jī)副產(chǎn)物、可以原位生產(chǎn)、操作簡(jiǎn)便,是一種理想的工業(yè)制備H2O2方法.電催化方法合成H2O2最早追溯到20世紀(jì)30年代[12].到了20世紀(jì)80年代,陶氏和休倫科學(xué)技術(shù)有限公司采用這種方法現(xiàn)場(chǎng)生產(chǎn)稀堿性H2O2,被稱作Huron-Dow工藝.該方法生成的稀堿性H2O2被用于紙漿和紙張漂白過程,既不需要中和也不需要蒸餾,因此在工業(yè)上被廣泛應(yīng)用[13].由于氧氣可分別通過四電子或二電子途徑還原為水或H2O2,因此為了提高H2O2的生成效率,應(yīng)提高2e- ORR的能力.近年來,也有許多學(xué)者為提高2e- ORR能力做出了努力[14-18].其中最便捷的手段就是對(duì)電極進(jìn)行改良,如對(duì)電極構(gòu)型進(jìn)行設(shè)計(jì)改進(jìn),或者選擇合適的催化劑并提高催化劑的性能.目前2e- ORR研究的催化劑主要有貴金屬基催化劑、單原子催化劑和碳基催化劑[19].也有學(xué)者對(duì)電極進(jìn)行設(shè)計(jì),如采用氣體擴(kuò)散電極,使得H2O2的產(chǎn)量達(dá)到了前所未有的水平[16].
基于此,本文全面回顧GDEs原位電合成H2O2技術(shù)的進(jìn)展,探討GDEs作為陰極時(shí)通過2e- ORR產(chǎn)H2O2的微觀機(jī)制,詳細(xì)討論GDEs的基本原理,探究GDEs反應(yīng)裝置、電極構(gòu)型和實(shí)驗(yàn)條件對(duì)H2O2的生成效率的影響;還分析了GDEs電極催化劑的種類及性能;最后總結(jié)GDEs作為陰極原位制備H2O2時(shí)面臨的挑戰(zhàn)和前景.
1 二電子氧還原產(chǎn)H2O2機(jī)制
O2可以通過兩種途徑進(jìn)行電化學(xué)還原:1) 生成H2O的四電子過程((1)式);2) 形成H2O2的二電子過程((6)式).為了使催化劑高效生成H2O2,提高材料的選擇性,是抑制氧還原的四電子途徑,并最大限度地提高二電子反應(yīng)的途徑[20].圖1展示了2e- ORR和4e- ORR過程以及H2O2進(jìn)一步還原或分解的詳細(xì)途徑[21].(1)~(8)式展示了氧還原的主要反應(yīng)機(jī)制.
4e- ORR的作用機(jī)制(*表示未占據(jù)的活性位點(diǎn)或吸附在活性位點(diǎn)表面上的物種):O2+4H++4e-→2H2O, E0=1.23 V vs.RHE, (1)
*+O2+(H++e-)→HOO*,(2)
HOO*+(H++e-)→H2O+O*,(3)
O*+(H++e-)→OH*,(4)
HO*+(H++e-)→H2O+*.(5)
2e- ORR的作用機(jī)制:
O2+2H++2e-→H2O2, E0=0.70V vs.RHE,(6)
*+O2+(H++e-)→HOO*,(7)
HOO*+(H++e-)→H2O2.(8)
由于4e- ORR與2e- ORR存在競(jìng)爭(zhēng),催化劑對(duì)二電子產(chǎn)物的選擇性是合成H2O2的關(guān)鍵.因此,ORR的最終產(chǎn)物很大程度上取決于所選擇的催化劑材料[19].根據(jù)圖1及(2)和(7)式可以看出,HOO*是兩種ORR途徑之間的共同中間體,決定了反應(yīng)產(chǎn)物的最終形態(tài).保護(hù)好HOO*中間體的O—O鍵是使ORR反應(yīng)傾向于二電子過程形成H2O2的關(guān)鍵.而具有較強(qiáng)氧結(jié)合能的催化劑容易分解O—O鍵,發(fā)生4e- ORR生成水為主要產(chǎn)物.因此,想要使2e- ORR發(fā)生并生成H2O2,應(yīng)選擇那些結(jié)合氧不太強(qiáng)烈的催化劑.
楊武霖,等:氣體擴(kuò)散電極電合成過氧化氫技術(shù)研究進(jìn)展
同樣,O2在電極表面的吸附強(qiáng)度也可以解釋2e- ORR與4e- ORR之間的選擇性.對(duì)氧結(jié)合能力強(qiáng)的催化劑表面與O2分子O—O鍵平行,而對(duì)氧吸附能力較弱的催化劑表面與O—O鍵垂直[22].有研究表明,最低的反應(yīng)勢(shì)壘對(duì)應(yīng)于O—O鍵的垂直方向,更有利于解離反應(yīng)的進(jìn)行[23];而隨著催化劑表面反應(yīng)活性的增加,氧更有可能平行于催化劑表面,導(dǎo)致O—O鍵的斷裂,使反應(yīng)向4e- ORR路徑進(jìn)行.
上述所描述的2e- ORR的機(jī)制是基于酸性條件的,由兩個(gè)質(zhì)子和電子耦合轉(zhuǎn)移到O2分子上,形成OOH*和H2O2.下面將討論堿性條件下2e- ORR的機(jī)制:
O2+H2O+2e-→HO-2+OH-,(9)
*+O2+H2O+e-→HOO*+OH-,(10)
HOO*+e-→HO-2+*.(11)
與酸性機(jī)制相似,體系中唯一參與反應(yīng)的中間體是HOO*.不同之處在于,酸性環(huán)境中的質(zhì)子源是水合氫離子,而堿性環(huán)境中的質(zhì)子源是水.但也有研究報(bào)道,吸附能是一種表面性質(zhì),不受質(zhì)子源的影響[19].因此,無論在酸性或是堿性條件下,2e- ORR活性都可以通過HOO*的吸附能進(jìn)行表征.
2 氣體擴(kuò)散電極制備H2O2研究進(jìn)展
2.1 氣體擴(kuò)散電極
氣體擴(kuò)散電極(GDEs)是一種多孔膜電極,其中固體催化劑同時(shí)與液相(電解液)和氣相(空氣或氧氣)接觸,這種結(jié)構(gòu)可以組成一種穩(wěn)定的固、液、氣三相界面(TPI)[24].如圖2所示,GDEs主要由氣體擴(kuò)散層(GDL)、催化層(CL)以及集流體層(CC)組成.其中,GDL的主要作用是讓反應(yīng)氣體順利地通過,并且為催化層輸送其所需要的氣體.同時(shí),GDL必須要防止因電解液的遷移導(dǎo)致氣體擴(kuò)散通道被掩沒的狀況.因此,GDL一般需要既要具有透氣性,又要具有疏水性.CL是氧氣發(fā)生還原反應(yīng)的場(chǎng)所,通常由含或不含金屬摻雜的碳基材料和黏結(jié)劑(如:疏水聚四氟乙烯(PTFE))組成.由于從GDL輸送過來的氣體應(yīng)與該層中的催化劑、電解液一起形成電化學(xué)反應(yīng)活性位點(diǎn),進(jìn)而將反應(yīng)氣體還原,所以CL應(yīng)該具有一定的親水性.CC主要由多孔碳纖維、碳布、碳紙或金屬網(wǎng)構(gòu)成,主要作用是讓電流更均勻地分布在電極,并提供通向外部電路的導(dǎo)電路徑,同時(shí)還起到支撐催化層的作用[25].因此,CC應(yīng)該具備導(dǎo)電性優(yōu)良、化學(xué)穩(wěn)定性高、機(jī)械強(qiáng)度高、成本低的特點(diǎn)[26].
有研究表明,GDEs能直接原位制備H2O2.因?yàn)镚DEs能提高二電子氧還原反應(yīng)(2e- ORR)效率,具有更高的原位H2O2生成率.由于CL面向電解質(zhì)溶液,GDL面向氧氣或空氣,O2從GDL表面擴(kuò)散,使陰極上的氧還原反應(yīng)成為可能,同時(shí)也為氣體擴(kuò)散電極產(chǎn)H2O2提供了基礎(chǔ)[11].GDEs作為陰極產(chǎn)H2O2反應(yīng)如圖3所示.另外,由于氣體擴(kuò)散電極具有優(yōu)良的導(dǎo)電性和高表面積,能加速O2還原成H2O2;它的多孔結(jié)構(gòu)及疏水通道,允許O2無限地傳遞到電極和電解液表面,在這種條件下,O2傳遞限制被消除,二電子氧還原效率和H2O2生成率增加.有研究表明,采用GDEs制備H2O2效率比采用普通溶解氧的高0.9~1.2倍[27].因此,GDEs是一種很好的原位制備H2O2的陰極材料[25].
2.2 氣體擴(kuò)散電極的優(yōu)化
為了提高氣體擴(kuò)散電極制備H2O2的產(chǎn)量,需對(duì)其進(jìn)行優(yōu)化改性,其中包括:1) 對(duì)反應(yīng)裝置進(jìn)行設(shè)計(jì);2) 對(duì)電極進(jìn)行改良,如對(duì)電極構(gòu)型進(jìn)行設(shè)計(jì)改進(jìn);3) 選擇合適的催化劑,提高電極二電子氧還原的能力;4) 優(yōu)化反應(yīng)參數(shù).
2.2.1 設(shè)計(jì)氣體擴(kuò)散電極反應(yīng)裝置 設(shè)計(jì)低能耗高性能的氣體擴(kuò)散電極反應(yīng)裝置,對(duì)于電化學(xué)制備H2O2的規(guī)?;瘧?yīng)用具有重要意義.對(duì)于空氣陰極而言,如何將氧氣快速輸送到陰極附近是設(shè)計(jì)反應(yīng)器時(shí)要考慮關(guān)鍵因素[28].氣體擴(kuò)散電極反應(yīng)器構(gòu)型主要分為2種,分別為浸沒式和氣體擴(kuò)散式反應(yīng)器(圖4).
傳統(tǒng)的浸沒式反應(yīng)器如圖4(a)所示,主要是將電極浸入溶液中,并在陰極周圍通過空氣/氧氣泵加壓,以提高陰極周圍溶解氧的濃度,從而增加H2O2生成效率.但該方式由于外部曝氣需要通過壓縮機(jī)對(duì)反應(yīng)器進(jìn)行加壓,可能會(huì)增加反應(yīng)能耗和運(yùn)營(yíng)維護(hù)成本.基于此,研究人員進(jìn)一步優(yōu)化了一些浸沒式反應(yīng)器,如圖4(b)所示的文丘里射流曝氣反應(yīng)器.文丘里射流曝氣反應(yīng)器是一種有效的液流曝氣供氧裝置,它可以通過高速流體的引射作用
將被攜帶的氣體打成微小氣泡,并隨著液體流動(dòng)進(jìn)入反應(yīng)器,向電極提供連續(xù)充足的氧氣的同時(shí),減少能量消耗[29].Pérez等[30]采用碳?xì)肿鳛殛帢O的文丘里射流曝氣反應(yīng)器,在180 min可獲得960 mg·L-1的H2O2.但浸沒式反應(yīng)器由于直接將電極浸入電解液,一方面水中溶解氧濃度有限,另一方面,電極輸氣通道易被水淹,氧氣傳質(zhì)效率受限,從而導(dǎo)致H2O2合成效率低.
為了改善可被利用的氧氣濃度及傳質(zhì)效率,研究者們提出將電極置于氣液交界面,即電極一側(cè)接觸氣體,另一側(cè)接觸液體.氣體從電極一側(cè)通過疏水通道到達(dá)固液氣三相界面,在氣體高效傳質(zhì)的同時(shí)避免了電解液泄漏,從而高效合成H2O2[31].有研究對(duì)比了以CB/PTFE作為氣體擴(kuò)散層的空氣陰極在20 mL·min-1的O2流速下,氣體擴(kuò)散式反應(yīng)器(圖4(c))與傳統(tǒng)浸沒式反應(yīng)器(圖4(a))下產(chǎn)H2O2濃度.采用傳統(tǒng)浸沒式反應(yīng)器的H2O2產(chǎn)量為220 mg·L-1,氧氣利用效率為0.7%;而氣體擴(kuò)散電極反應(yīng)器可產(chǎn)生1 160 mg·L-1的H2O2,氧氣利用效率為3.5%,是傳統(tǒng)反應(yīng)器的5倍[32].除此之外,研究者們研發(fā)了一種空氣自驅(qū)動(dòng)氣體擴(kuò)散電極的反應(yīng)裝置(圖4(d)),該裝置可直接利用空氣中的氧氣,不需要額外曝氣,在高效產(chǎn)H2O2的同時(shí)降低反應(yīng)能耗[33].Zhao等[34]用CB/PTFE氣體擴(kuò)散電極作為陰極,無需氧氣曝氣,最高可獲得(4 300±160) mg·L-1的H2O2.Zhang等[35]制備了一種可放大漂浮式氣體擴(kuò)散電極反應(yīng)器(圖4(e)),通過在相轉(zhuǎn)化空氣陰極上施加1.8 V vs. Ag/AgCl的電壓,可得到200 mg·L-1的H2O2.總體而言,氣體擴(kuò)散式反應(yīng)器避免了氧氣傳質(zhì)通道被堵塞,增強(qiáng)了O2利用效率,從而提高了H2O2的產(chǎn)率.
2.2.2 改良?xì)怏w擴(kuò)散電極構(gòu)型 在傳統(tǒng)的固-液兩相催化模式中,O2在溶液中溶解度低、擴(kuò)散速率慢,導(dǎo)致O2向電極界面的傳輸受限,極大地限制了H2O2的產(chǎn)率[36].為了減輕氣體輸運(yùn)的限制,研究人員在研究固-液-氣三相催化模式方面做出了努力,開發(fā)了氣體擴(kuò)散電極.通過疏水氣體擴(kuò)散層將O2從氣相導(dǎo)入,直接到達(dá)與電解液面對(duì)的催化層,形成固-液-氣三相催化界面[37].形成的三相界面為反應(yīng)提供了充足的電活性區(qū)域,從而顯著提高了H2O2的生成速率[38].然而,當(dāng)電流增大時(shí),由于電潤(rùn)濕的作用導(dǎo)致催化層疏水性降低,氣體向催化位點(diǎn)傳質(zhì)阻力增大,O2濃度不足,從而造成與氧還原反應(yīng)相關(guān)的H2O2的生成速率較差[39],并且在持續(xù)通電的情況下,電極被電解液浸潤(rùn),導(dǎo)致氣體擴(kuò)散通道堵塞和三相界面被破壞,加劇了H2O2生成速率進(jìn)一步降低[40].因此,改善氣體擴(kuò)散電極構(gòu)型,穩(wěn)定三相界面,在加速O2傳質(zhì)的同時(shí)有效防止水淹,對(duì)于長(zhǎng)時(shí)間穩(wěn)定合成H2O2的電化學(xué)系統(tǒng)是十分必要的.
2.2.3 改性催化層 電極催化材料在產(chǎn)H2O2中起著至關(guān)重要的作用,它與電流效率 (CE)、氧還原選擇性、H2O2的生產(chǎn)息息相關(guān).因此,許多研究人員也通過不同的方法改進(jìn)GDEs[41-42].總體而言,理想的2e- ORR催化劑應(yīng)該具有良好的活性,優(yōu)異的二電子選擇性,長(zhǎng)時(shí)間操作下的穩(wěn)定性,對(duì)環(huán)境友好并且成本低廉.本文后續(xù)會(huì)對(duì)氣體擴(kuò)散電極催化劑進(jìn)行詳細(xì)分析.
2.2.4 GDEs反應(yīng)參數(shù)優(yōu)化 除了優(yōu)化GDEs自身結(jié)構(gòu)及反應(yīng)器會(huì)影響GDEs電產(chǎn)H2O2效率,還有多種參數(shù)如電流密度、電解液的 pH 值、空氣/O2流速、電解時(shí)間、電解質(zhì)溶液的種類和濃度等,均會(huì)對(duì)GDEs電合成H2O2的濃度產(chǎn)生影響[36, 43].表1總結(jié)了多種參數(shù)對(duì)GDEs產(chǎn)H2O2的效率的影響.Luo等[44]將PTFE混合在炭黑和石墨中制備催化層,探究了pH值、電流密度、空氣流速對(duì)H2O2產(chǎn)量的影響.通過優(yōu)化實(shí)驗(yàn)條件,發(fā)現(xiàn)在空氣流速為55 mL·min-1,電流密度為52 mA·cm-2,pH值為4.0的條件下,可得到H2O2產(chǎn)量約為10 500 mg·L-1. Yu 等[42]用7~35 mg·cm-2的炭黑采用涂覆法制備GDEs作為CL.通過優(yōu)化實(shí)驗(yàn)條件,發(fā)現(xiàn)在電流密度為7.1 mA·cm-2,空氣流速為0.5 L·min-1時(shí),3 h后0.15 g炭黑制備的GDEs產(chǎn)H2O2質(zhì)量濃度最高達(dá)到566 mg·L-1.
3 GDEs催化劑的種類
為了解決氧還原反應(yīng)過電勢(shì)較高這一問題[48],通常在陰極表面覆蓋一層催化劑以增加陰極與氧的結(jié)合力或降低ORR反應(yīng)所需的活化能[49].GDEs常用的催化劑可分為以下幾類:貴金屬催化劑、碳基催化劑、雜原子摻雜碳材料催化劑和金屬-氮-碳材料催化劑.表2總結(jié)了近年來報(bào)道的GDEs通過2e- ORR制備H2O2的催化劑[50-63].
3.1 貴金屬基材料
貴金屬材料由于催化效果和化學(xué)穩(wěn)定性好被廣泛應(yīng)用于ORR催化劑.在純貴金屬中,Au(100)和Au(111)晶面在一定的pH值和電勢(shì)范圍下具有2e- ORR催化活性[64-65].而Pt和Pd由于和O2的緊密結(jié)合,O—O容易解離,以催化4e- ORR為主[66].因此,有學(xué)者將Pt、Pd與那些和O2結(jié)合較弱的金屬(如Pd-Au[67-68]、Pt-Hg[69-70])組成合金,從而開發(fā)更高效2e- ORR催化劑.Jirkovsky等[71]制備了不同Pd摻雜比例的Pd-Au材料,結(jié)果顯示當(dāng)Pd摻雜為8%時(shí),H2O2選擇性可接近95%.但當(dāng)摻雜量更高時(shí),H2O2產(chǎn)量降低,反應(yīng)逐漸向4e-過程轉(zhuǎn)變.Siahrostami等[72]使用DFT考察了Pt、Pd、Rh、Ir、Au、Hg等30多種合金,通過計(jì)算得到PtHg4材料同時(shí)具有穩(wěn)定性、較高ORR活性和二電子選擇性.因此他們使用電沉積法制備出的PtHg4催化劑,在0.2~0.4 V的電位下獲得了3 mA·cm-2的H2O2電流和96%的H2O2選擇性.但是,Hg合金高毒性和貴金屬合金的高成本限制了貴金屬材料的實(shí)際使用.近年來,一個(gè)新興的研究方向——單原子催化劑(SAC)為解決這兩個(gè)問題提供了新的思路.
SAC指的是催化的活性金屬僅以單原子形式分散[73-74].首先,SAC的構(gòu)建為在原子水平上理解特定反應(yīng)的催化機(jī)制和途徑提供了一個(gè)簡(jiǎn)單的模型;其次,SAC作為催化劑,使原子利用效率最大化,從而提高了特定反應(yīng)的反應(yīng)活性,同時(shí)降低了原材料成本[75].如圖5所示,在貴金屬單原子材料中,活性位點(diǎn)分散,O2在活性位點(diǎn)表面以O(shè)—O鍵不容易斷裂的Pauling模型吸附,有利于發(fā)生2e- ORR;而在非單原子材料中,由于活性位點(diǎn)的集中,O2可能以O(shè)—O鍵更容易斷裂的Yeager模式吸附,更容易發(fā)生4e-過程[76-78].因此,通過將貴金屬單原子負(fù)載到價(jià)格低廉、導(dǎo)電性好的碳基底材料上,合成了很多性能優(yōu)異的2e- ORR催化劑.Chio等[76]制備了一種負(fù)載在硫摻雜沸石模板碳上的Pt單原子材料,選擇性高達(dá)96%,在H池反應(yīng)器中獲得了97.5 μmol·h-1·cm-2的H2O2產(chǎn)量.Yang等[77]制備出的單原子分散的Pt/TiC選擇性達(dá)到68.0%,顯著高于未原子分散的Pt/TiC(24.8%).Wang等[50]制備出單原子分散的Pd-N-C材料在0.1~0.8 V的寬電位范圍內(nèi)均對(duì)H2O2生產(chǎn)具有較高的選擇性(>87.5%).
3.2 碳基催化劑
碳材料由于其成本低、無毒、對(duì)環(huán)境友好,具有良好的熱穩(wěn)定性和化學(xué)穩(wěn)定性,且具有較高的比表面積和優(yōu)異的導(dǎo)電性能,能將O2通過2e- ORR還原為H2O2,而被廣泛應(yīng)用于氣體擴(kuò)散電極的陰極催化劑[79].此外,碳基催化劑作為陰極催化劑時(shí)析氫過電位高,對(duì)H2O2分解能力弱,有利于 H2O2生成[80].很多研究發(fā)現(xiàn)多種碳基材料均可作為GDE陰極產(chǎn)H2O2的高效催化材料,包括炭黑[44,81]、石墨烯[54,82]、碳納米管[83-85]、碳?xì)旨笆珰諿86-87]、碳基海綿[88-89]、網(wǎng)狀玻璃碳(RVC)[90]和活性炭纖維(ACF)[91-92].這些碳質(zhì)陰極也可以進(jìn)行修飾和改性,促進(jìn)H2O2生成[93-95].此外,碳基材料的性能也可以通過摻雜雜原子或單金屬 [96-97],或是增加缺陷和氧官能團(tuán)來進(jìn)一步優(yōu)化產(chǎn)H2O2效率[98].
據(jù)觀察,GDEs碳基催化劑的電催化性能會(huì)受到多孔結(jié)構(gòu)的影響,高度多孔結(jié)構(gòu)能促進(jìn)反應(yīng)物和生成物的擴(kuò)散從而改善GDEs的整體性能[99].Li等[100]根據(jù)2e- ORR過程研究了GDEs的多孔結(jié)構(gòu)與H2O2活性之間的關(guān)系.他們用20%的硝酸預(yù)處理石墨陰極從而提高微孔表面積,并將H2O2產(chǎn)率提高至46.9%.值得注意的是,不僅比表面積和活性位點(diǎn)對(duì)H2O2的生成十分重要,O2的高效擴(kuò)散對(duì)H2O2的生成也很重要[101].在另一項(xiàng)研究中,Zhang等[38]采用孔隙率高達(dá)90%的改性碳?xì)肿鳛镚DL,并在不使用氣泵的情況下,直接利用空氣中的氧氣使其主動(dòng)擴(kuò)散至CL中,促進(jìn)H2O2的生成,得到H2O2產(chǎn)出速率高達(dá)101.67 mg·h-1·cm-2.
3.3 雜原子摻雜碳材料
原始碳材料雖然表現(xiàn)出較高的2e- ORR選擇性,但由于原始碳材料中的中性碳原子對(duì)于O2和ORR反應(yīng)中間體的吸附/活化是惰性的,導(dǎo)致氧還原活性較低[2,102-103].如圖6所示,適當(dāng)引入雜原子(O、N、B、F等),利用雜原子和碳原子電負(fù)性差異來改變碳材料的電荷分布,從而提高碳材料氧還原反應(yīng)活性.
3.3.1 O摻雜
O摻雜是利用各種氧化手段將氧官能團(tuán)如羥基(—OH)、醚鍵(C—O—C)、羰基(—CO)、羧基(—COOH)引入碳材料,包括化學(xué)氧化[56-57]、電化學(xué)氧化[104]、等離子體處理[105]等.許多研究應(yīng)用O摻雜碳材料作為氣體擴(kuò)散陰極催化劑,獲得了較高H2O2產(chǎn)量.He等[56]使用硝酸氧化石墨烯在氣體擴(kuò)散電極中生產(chǎn)H2O2,H2O2生成量是原始石墨烯的3倍.Zhang等[57]通過在馬弗爐中加熱來氧化炭黑,并使用搭載氧化炭黑的浮動(dòng)空氣陰極測(cè)試H2O2的生產(chǎn)性能,在-1.0 V vs.Ag/AgCl的電位下反應(yīng)30 min,獲得(517.7 ± 2.4) mg·L-1的H2O2,顯著高于原始炭黑(65.3 ± 5.6) mg·L-1.他們指出,氧化炭黑的性能提升主要來自于氧官能團(tuán)的貢獻(xiàn),一方面,在引入的—COOH上O2更傾向于發(fā)生2e-過程的Pauling吸附;另一方面,引入的C—O—C和—COOH由于和ORR反應(yīng)中間體的吸附強(qiáng)度適中,二電子選擇性較高.關(guān)于氧官能團(tuán)對(duì)于2e- ORR的影響,Lu等[18]較為系統(tǒng)地審查了位于邊緣/基面的氧官能團(tuán)(—COOM、—OH、C—O—C)對(duì)于ORR反應(yīng)中間體吸附強(qiáng)度的影響,結(jié)果顯示邊緣的—COOH和石墨烯基面上的C—O—C是具有較高ORR活性和二電子選擇性的氧官能團(tuán).
3.3.2 N摻雜 N摻雜一般通過熱解含N前驅(qū)體實(shí)現(xiàn).Hu等[58]直接熱解有聚多巴胺涂層聚苯乙烯球得到了具有豐富微孔的中空結(jié)構(gòu) N 摻雜碳球,獲得了高達(dá)91.9%的H2O2選擇性和85.1%的法拉第效率.Sun等[106]通過熱解HNO3預(yù)氧化的有序介孔碳和富氮離子液體制備出N摻雜碳材料,發(fā)現(xiàn)在較低摻雜條件下,H2O2選擇性提高;而隨著氮含量進(jìn)一步增加,選擇性降低,可能是過量的N促進(jìn)了H2O2分解.除了受N含量的影響,N的種類也影響著ORR活性和選擇性.吡啶N一般被認(rèn)為4e- ORR活性中心[107-109],吡咯N[110-112]和石墨N[109,113]被視為具有二電子活性.Lu等[114]通過熱解三聚氰胺和CB的混合物來制備NCB材料和CNT一同作為氣體擴(kuò)散陰極的催化劑,結(jié)果顯示氣體擴(kuò)散電極的疏水三相邊界、NCB中的吡啶和吡咯N活性位點(diǎn),以及CNT在電子轉(zhuǎn)移中的橋接作用和高電活性表面積共同促進(jìn)了H2O2的產(chǎn)生.此外,N官能團(tuán)的選擇性還受到pH值、N的位置、碳基底材料的影響.例如,Sun等[66]發(fā)現(xiàn)吡啶N在酸性環(huán)境中起重要作用.Duan等[115]發(fā)現(xiàn)吡啶N摻雜的碳邊緣在堿性介質(zhì)中對(duì)ORR具有高度活性.因此,需要優(yōu)化制備方法,精確調(diào)控氮摻雜種類和含量,從而獲得具有高活性和選擇性的2e- ORR催化劑.
3.3.3 B摻雜 硼(B)只比碳少一個(gè)電子,并且它們的尺寸相似,B摻雜碳材料后將產(chǎn)生較小的晶格畸變,因此,B也是碳材料中的理想摻雜劑[116].2011年,Yang等[117]制備了含不同量B摻雜的碳納米管作為ORR反應(yīng)催化劑,發(fā)現(xiàn)ORR活性隨著B的含量增加而提升.這主要是由于B摻雜后產(chǎn)生正電荷,帶正電的B摻雜劑誘導(dǎo)O2在化學(xué)吸附;共軛體系中的一些π*電子在B摻雜碳上積累,然后轉(zhuǎn)移到O2分子上,促進(jìn)O2還原.Wu等[118]通過冷凍干燥法制備B摻雜水凝膠作為氣體擴(kuò)散陰極催化劑,發(fā)現(xiàn)B摻雜后H2O2產(chǎn)量從58.42 mg·L–1提高到75.03 mg·L–1.除此之外,B摻雜的碳材料在大電流密度下體現(xiàn)出更優(yōu)越的性能.2021年,Xia等[59]制備的B摻雜碳材料在工業(yè)電流下(高達(dá)300 mA·cm–2)也能保持高H2O2生產(chǎn)的選擇性(85%~90%).Ri等[119]通過制備熱解B摻雜水凝膠來制備B摻雜的rGO氣體擴(kuò)散陰極催化劑,發(fā)現(xiàn)H2O2的累積量隨著B含量增加而增高,在60 mA·cm–2的條件下電流效率增加了49.5%.這些研究進(jìn)一步驗(yàn)證了B摻雜碳材料在氣體擴(kuò)散電極制備H2O2方面的巨大潛力.
3.3.4 F摻雜 F的高電負(fù)性可以誘導(dǎo)相鄰的碳極化以產(chǎn)生活性位點(diǎn).F摻雜碳材料制備可以通過和HF直接反應(yīng)得到[120-121].Wang等[121]通過與HF反應(yīng)制備的F-CNT材料作為氣體擴(kuò)散陰極,隨著F的引入,H2O2選擇性從69%~77%提高到82%~95%.Zhao等[60]通過熱解MIL-53 (Al)與HF反應(yīng)制備了F 摻雜的多孔碳材料,在-0.1 V vs. RHE和pH= 1的條件下反應(yīng)3 h,得到了241.5 mmol·L-1的H2O2,是未摻雜F的碳材料在同等條件下的4倍.這些結(jié)果說明 F摻雜碳材料也是一種有效的H2O2催化劑[121].
3.3.5 共摻雜 多種雜原子的有效結(jié)合可能會(huì)產(chǎn)生協(xié)同效應(yīng),增加催化劑表面的活性位點(diǎn)和2e– ORR選擇性,從而比單原子摻雜起到更好的產(chǎn)H2O2效果.目前研究人員已經(jīng)開發(fā)出眾多具有較高二電子催化活性的共摻雜碳基催化劑,例如:O/F[61];B/N[122-123]、N/P[124]催化劑.2022年,Gu等[61]成功通過硫酸、氫氟酸和CNT反應(yīng)制備出O/F共摻雜的CNT作為氣體擴(kuò)散陰極,在pH值為1~9的條件下H2O2產(chǎn)量為196.5~232.2 mg·L–1,是未摻雜CNT產(chǎn)量的2倍.其催化性能的提升來自—COOH和CF2、CF3的協(xié)同作用,一方面—COOH能夠促進(jìn)O2的Pauling吸附,傾向于發(fā)生2e–ORR;另一方面F具有較高的電負(fù)性,可以促進(jìn)O2的化學(xué)吸附,而CF2、CF3已經(jīng)被證明具有合適的HOO*吸附能.兩種元素協(xié)同作用,共同增強(qiáng)H2O2的產(chǎn)量[61].
3.4 金屬-氮-碳材料(M-N-C)
多種氮摻雜碳材料已經(jīng)被報(bào)道為2e– ORR催化劑,但它們的過電勢(shì)通常較高,引入金屬是一種解決該問題的有效策略[125].2013年Lanza團(tuán)隊(duì)[126]將5% CoPc和CB混合制成空氣陰極,發(fā)現(xiàn)H2O2產(chǎn)量從176 mg·L–1增加到331 mg·L–1.次年,Lanza團(tuán)隊(duì)[127]發(fā)現(xiàn)5%的FePc和CB混合后,H2O2產(chǎn)量從175 mg·L–1增加到240 mg·L–1.該實(shí)驗(yàn)證明了過渡金屬摻雜在氣體擴(kuò)散電極體現(xiàn)中產(chǎn)H2O2的可行性.
受到這類過渡金屬大環(huán)配合物能提高H2O2產(chǎn)量的啟發(fā),M-N-C單原子材料被廣泛研究.M-N-C材料是利用N將單原子分散的過渡金屬原子錨定在碳材料中[128-130].目前已有多種方法合成的性能優(yōu)異的M-N-C材料,如Jung等[14]通過在NH3氣氛下熱解Co2+浸漬過的碳材料合成Co-N-C,發(fā)現(xiàn)該材料在起始電位、ORR動(dòng)力學(xué)、H2O2產(chǎn)量方面都顯著優(yōu)于N-C,在H池測(cè)試中表現(xiàn)出高達(dá)(420±20) mmol·g-1·h-1的產(chǎn)出速率.Zhang等[63]通過熱解ZIF-67前驅(qū)體成功合成單原子Co-N-C,發(fā)現(xiàn)該材料在酸性介質(zhì)中表現(xiàn)出>90%的H2O2選擇性,并獲得了2 500 mg·L-1·h-1的H2O2產(chǎn)出速率.Du等[62]使用炭黑吸附Co2+再熱解的方法合成了負(fù)載在CB上的Co-N-C單原子催化劑,使用氣體擴(kuò)散電極在酸性條件下產(chǎn)生5.04 mol·h-1·g-1的高濃度H2O2產(chǎn)量.此外他們發(fā)現(xiàn),若提高催化劑負(fù)載量,H2O2產(chǎn)量下降.這是因?yàn)楫?dāng)催化劑負(fù)載較高時(shí),H2O2可能不能及時(shí)擴(kuò)散到電解質(zhì)中,而是在陰極表面繼續(xù)被還原[131].除了負(fù)載量,M-N-C材料選擇性還受到pH值的影響.一方面pH值可以通過改變電極表面基團(tuán)的質(zhì)子化程度、電解質(zhì)和反應(yīng)中間體形成相互作用來影響反應(yīng)的選擇性[62,132];另一方面,pH值影響著界面水排布的方式,從而影響著材料表面電荷分布,進(jìn)一步影響了ORR活性[133].因此,在開發(fā)氣體擴(kuò)散電極產(chǎn)H2O2的M-N-C催化劑時(shí),除了要考慮前驅(qū)體的選擇,還要慎重確定負(fù)載量、介質(zhì)pH值等因素.
4 總結(jié)與展望
近年來,H2O2作為典型的環(huán)境友好型氧化劑,被廣泛應(yīng)用于環(huán)境修復(fù)、化學(xué)合成、醫(yī)療消毒等多個(gè)領(lǐng)域.而電合成H2O2技術(shù)避免了傳統(tǒng)制備H2O2工藝時(shí)復(fù)雜的流程,采用簡(jiǎn)易的電化學(xué)設(shè)備,通過2e- ORR過程原位制備H2O2,避免了H2O2的大規(guī)模運(yùn)輸,具有安全便攜、綠色環(huán)保的特點(diǎn).而將GDEs 作為電合成H2O2的陰極催化劑,不僅有利于H2O2的原位生成,還能降低能源消耗和提高氧氣利用效率等.本文探討了GDEs作為陰極時(shí)通過2e- ORR產(chǎn)H2O2的機(jī)制;詳細(xì)討論了GDEs的基本原理;分析了GDE催化劑的種類及優(yōu)勢(shì),主要探究了貴金屬催化劑、碳基及改性碳材料催化劑作為GDEs的性能和優(yōu)勢(shì).總的來說,GDEs 陰極是電合成H2O2技術(shù)中非常有前途的電催化材料.
雖然GDEs作為陰極具有2e- ORR選擇性,易于合成H2O2且成本低,但該方法合成的H2O2處于堿性條件下,而H2O2在堿性環(huán)境下易分解,這對(duì)系統(tǒng)的長(zhǎng)期運(yùn)行和H2O2的儲(chǔ)存不利.因此,未來的研究應(yīng)側(cè)重于尋找提高催化材料在中性環(huán)境中活性的方法.其次,提高氧氣的傳質(zhì)效率對(duì)GDEs生成H2O2是十分重要的.因此在優(yōu)化催化層的同時(shí)也需要完善電極三相界面,優(yōu)化電極疏水性儲(chǔ)氣層和親水性催化劑層的結(jié)構(gòu).另外,還需要設(shè)計(jì)合理的電極構(gòu)型和反應(yīng)器構(gòu)型,平衡性能與成本之間的關(guān)系,使電合成H2O2能運(yùn)用到更大工程規(guī)模中.最后,還可以將電合成H2O2與可再生能源進(jìn)行耦合聯(lián)用,更環(huán)保高效地產(chǎn)H2O2.
參考文獻(xiàn)
[1] 梁武洋,伏勁松,陳洪林,等. 活性炭負(fù)載Pd催化劑常溫直接合成過氧化氫[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,45(2):232-239.
[2] AN J K, FENG Y J, ZHAO Q, et al. Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: from mechanism, catalyst design to electrode fabrication[J]. Environmental Science and Ecotechnology,2022,11:100170.
[3] 孫英濤,林業(yè)泓,蔡璇英,等. H2O2協(xié)助銅基催化劑激發(fā)新污染物表面裂解性能與供電子機(jī)制[J]. 能源環(huán)境保護(hù),2023,37(2):187-195.
[4] 彭丹,孫芳芳,張明,等. Gd摻雜CeO2改性材料催化性能的理論研究[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,38(3):411-417.
[5] 陳家斌,姚廣磊,紀(jì)睿成,等. 污水處理廠過氧乙酸消毒特性及應(yīng)用進(jìn)展[J]. 能源環(huán)境保護(hù),2023,37(4):38-45.
[6] THIEL W R. New routes to hydrogen peroxide: alternatives for established processes?[J]. Angewandte Chemie International Edition,1999,38(21):3157-3158.
[7] YI Y H, WANG L, LI G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method[J]. Catalysis Science & Technology,2016,6(6):1593-1610.
[8] YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis[J]. ACS Catalysis,2018,8(5):4064-4081.
[9] 朱斯超,蔣若蘭,王軍,等. 電芬頓-膜蒸餾復(fù)合工藝同步脫鹽及去除水中有機(jī)物研究[J]. 能源環(huán)境保護(hù),2023,37(4):20-29.
[10] SHIN H, KIM H I, CHUNG D Y, et al. Scaffold-like titanium nitride nanotubes with a highly conductive porous architecture as a nanoparticle catalyst support for oxygen reduction[J]. ACS Catalysis,2016,6(6):3914-3920.
[11] ZHAO Q, AN J K, WANG S, et al. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2019,11(38):35410-35419.
[12] BERL E. A new cathodic process for the production of H2O2[J]. Transactions of the Electrochemical Society,1939,76(1):359.
[13] HAGE R, LIENKE A. Applications of transition-metal catalysts to textile and wood-pulp bleaching[J]. Angewandte Chemie International Edition,2006,45(2):206-222.
[14] JUNG E, SHIN H, LEE B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials,2020,19(4):436-442.
[15] XIA C, BACK S, RINGE S, et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide[J]. Nature Catalysis,2020,3:125-134.
[16] XIA C, XIA Y, ZHU P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science,2019,366(6462):226-231.
[17] KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis,2018,1:282-290.
[18] LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis,2018,1:156-162.
[19] SIAHROSTAMI S, VILLEGAS S J, BAGHERZADEH MOSTAGHIMI A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J]. ACS Catalysis,2020,10(14):7495-7511.
[20] TAN X, TAHINI H A, SMITH S C. Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide[J]. Materials Horizons,2019,6(7):1409-1415.
[21] ZHANG J Y, ZHANG H C, CHENG M J, et al. Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts[J]. Small,2020,16(15):1902845.
[22] MONTEMORE M M, VAN SPRONSEN M A, MADIX R J, et al. O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts[J]. Chemical Reviews,2018,118(5):2816-2862.
[23] CHENG J, LIBISCH F, CARTER E A. Dissociative adsorption of O2 on Al(111): the role of orientational degrees of freedom[J]. The Journal of Physical Chemistry Letters,2015,6(9):1661-1665.
[24] YANG W L, HE W H, ZHANG F, et al. Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells[J]. Environmental Science & Technology Letters,2014,1(10):416-420.
[25] WANG J, LI C, RAUF M, et al. Gas diffusion electrodes for H2O2 production and their applications for electrochemical degradation of organic pollutants in water: a review[J]. Science of the Total Environment,2021,759:143459.
[26] SHARMA M, BAJRACHARYA S, GILDEMYN S, et al. A critical revisit of the key parameters used to describe microbial electrochemical systems[J]. Electrochimica Acta,2014,140:191-208.
[27] LI N, AN J K, ZHOU L A, et al. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems[J]. Journal of Power Sources,2016,306:495-502.
[28] ZHOU W, MENG X X, GAO J H, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: a state-of-the-art review[J]. Chemosphere,2019,225:588-607.
[29] PREZ J F, LLANOS J, SEZ C, et al. The jet aerator as oxygen supplier for the electrochemical generation of H2O2[J]. Electrochimica Acta,2017,246:466-474.
[30] PREZ J, LLANOS J, SEZ C, et al. Electrochemical jet-cell for the in situ generation of hydrogen peroxide[J]. Electrochemistry Communications,2016,71:65-68.
[31] YANG W, HE W, ZHANG F, et al. Single-step fabrication using a phase inversion method of poly(vinylidene fluoride)(PVDF) activated carbon air cathodes for microbial fuel cells[J]. Environmental Science & Technology Letters,2014,1(10):416-420.
[32] DING P P, CUI L L, LI D, et al. Innovative dual-compartment flow reactor coupled with a gas diffusion electrode for in situ generation of H2O2[J]. Industrial & Engineering Chemistry Research,2019,58(16):6925-6932.
[33] YI K X, YANG W L, LOGAN B E. Defect free rolling phase inversion activated carbon air cathodes for scale-up electrochemical applications[J]. Chemical Engineering Journal,2023,454:140411.
[34] ZHAO Q, LI N, LIAO C M, et al. The UV/H2O2 process based on H2O2 in situ generation for water disinfection[J]. Journal of Hazardous Materials Letters,2021,2:100020.
[35] ZHANG H C, LI Y J, LI G H, et al. Scaling up floating air cathodes for energy-efficient H2O2 generation and electrochemical advanced oxidation processes[J]. Electrochimica Acta,2019,299:273-280.
[36] QIANG Z M, CHANG J H, HUANG C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Research,2002,36(1):85-94.
[37] DA POZZO A, DI PALMA L, MERLI C, et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide[J]. Journal of Applied Electrochemistry,2005,35(4):413-419.
[38] ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications,2020,11(1):1731.
[39] BIDAULT F, BRETT D J L, MIDDLETON P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources,2009,187(1):39-48.
[40] YANG K L, KAS R, SMITH W A, et al. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction[J]. ACS Energy Letters,2021,6(1):33-40.
[41] ZHOU L, ZHOU M H, HU Z X, et al. Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation[J]. Electrochimica Acta,2014,140:376-383.
[42] YU X M, ZHOU M H, REN G B, et al. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton[J]. Chemical Engineering Journal,2015,263:92-100.
[43] MORAES A, ASSUMPO M H M T, PAPAI R, et al. Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration[J]. Journal of Electroanalytical Chemistry,2014,719:127-132.
[44] LUO H J, LI C L, WU C Q, et al. In situ electrosynthesis of hydrogen peroxide with an improved gas diffusion cathode by rolling carbon black and PTFE[J]. RSC Advances,2015,5(80):65227-65235.
[45] BOYE B, DIENG M M, BRILLAS E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods[J]. Environmental Science & Technology,2002,36(13):3030-3035.
[46] DE LAAT J, TRUONG LE G, LEGUBE B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2[J]. Chemosphere,2004,55(5):715-723.
[47] MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental,2017,202:217-261.
[48] FREGUIA S, RABAEY K, YUAN Z G, et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochimica Acta,2007,53(2):598-603.
[49] DUTEANU N, ERABLE B, SENTHIL KUMAR S M, et al. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell[J]. Bioresource Technology,2010,101(14):5250-5255.
[50] WANG N, ZHAO X H, ZHANG R, et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst[J]. ACS Catalysis,2022,12(7):4156-4164.
[51] ZHANG C, SHEN W Q, GUO K, et al. A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production[J]. Journal of the American Chemical Society,2023,145(21):11589-11598.
[52] ZHAO J J, FU C H, YE K, et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs[J]. Nature Communications,2022,13(1):685.
[53] LI H, QUISPE-CARDENAS E, YANG S, et al. Electrosynthesis of >20 g/L H2O2 from Air[J]. ACS ES T Eng,2022,2(2):242-250.
[54] DONG H, DONG B B, SUN L, et al. Electro-UV/H2O2 system with RGO-modified air diffusion cathode for simulative antibiotic-manufacture effluent treatment[J]. Chemical Engineering Journal,2020,390:124650.
[55] ZHANG Y Y, DANIEL G, LANZALACO S, et al. H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media[J]. Journal of Hazardous Materials,2022,423:127005.
[56] HE H H, JIANG B, YUAN J J, et al. Cost-effective electrogeneration of H2O2 utilizing HNO3 modified graphite/polytetrafluoroethylene cathode with exterior hydrophobic film[J]. Journal of Colloid and Interface Science,2019,533:471-480.
[57] ZHANG H C, LI Y J, ZHAO Y S, et al. Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation[J]. ACS Applied Materials & Interfaces,2019,11(31):27846-27853.
[58] HU Y Z, ZHANG J J, SHEN T, et al. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores[J]. ACS Applied Materials & Interfaces,2021,13(25):29551-29557.
[59] XIA Y, ZHAO X H, XIA C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications,2021,12(1):4225.
[60] ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis,2018,357:118-126.
[61] GU Y Y, FU H J, HUANG Z W, et al. O/F Co-doped CNTs promoted graphite felt gas diffusion cathode for highly efficient and durable H2O2 evolution without aeration[J]. Journal of Cleaner Production,2022,341:130799.
[62] DU Y X, YANG Q, LU W T, et al. Carbon black-supported single-atom Co-N-C as an efficient oxygen reduction electrocatalyst for H2O2 production in acidic media and microbial fuel cell in neutral media[J]. Advanced Functional Materials,2023,33(27):2300895.
[63] ZHANG J, LIU W, HE F, et al. Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis[J]. Chemical Engineering Journal,2022,438:135619.
[64] MEI D, HE Z D, ZHENG Y L, et al. Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects[J]. Physical Chemistry Chemical Physics:PCCP,2014,16(27):13762-13773.
[65] LU F, ZHANG Y, LIU S Z, et al. Surface proton transfer promotes four-electron oxygen reduction on gold nanocrystal surfaces in alkaline solution[J]. Journal of the American Chemical Society,2017,139(21):7310-7317.
[66] SUN Y Y, LI S, JOVANOV Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production[J]. ChemSusChem,2018,11(19):3388-3395.
[67] JIRKOVSK J S, PANAS I, AHLBERG E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the American Chemical Society,2011,133(48):19432-19441.
[68] ZHAO X, YANG H, XU J, et al. Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids[J]. ACS Materials Letters,2021,3(7):996-1002.
[69] SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143.
[70] VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Letters,2014,14(3):1603-1608.
[71] JIRKOVSK J S, PANAS I, AHLBERG E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the American Chemical Society,2011,133(48):19432-19441.
[72] SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143.
[73] ZHU C Z, FU S F, SHI Q R, et al. Single-atom electrocatalysts[J]. Angewandte Chemie International Edition,2017,56(45):13944-13960.
[74] LIU J Y. Catalysis by supported single metal atoms[J]. ACS Catalysis,2017,7(1):34-59.
[75] YIN P Q, YAO T, WU Y E, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie International Edition,2016,55(36):10800-10805.
[76] CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications,2016,7:10922.
[77] YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis,2017,7(2):1301-1307.
[78] SONG M, LIU W, ZHANG J J, et al. Single-atom catalysts for H2O2 electrosynthesis via two-electron oxygen reduction reaction[J]. Advanced Functional Materials,2023,33(15):2212087.
[79] ASSUMPO M H M T, DE SOUZA R F B, RASCIO D C, et al. A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports[J]. Carbon,2011,49(8):2842-2851.
[80] BRILLAS E, SIRS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fentons reaction chemistry[J]. Chemical Reviews,2009,109(12):6570-6631.
[81] ASSUMPO M H M T, DE SOUZA R F B, REIS R M, et al. Low tungsten content of nanostructured material supported on carbon for the degradation of phenol[J]. Applied Catalysis B: Environmental,2013,142/143:479-486.
[82] GARCIA-RODRIGUEZ O, LEE Y Y, OLVERA-VARGAS H, et al. Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode[J]. Electrochimica Acta,2018,276:12-20.
[83] YANG H J, ZHOU M H, YANG W L, et al. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid[J]. Chemosphere,2018,206:439-446.
[84] ZHANG X, FU J, ZHANG Y, et al. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in Electro-Fenton system[J]. Separation and Purification Technology,2008,64(1):116-123.
[85] ZAREI M, NIAEI A, SALARI D, et al. Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube-PTFE cathode[J]. Journal of Hazardous Materials,2010,173(1/2/3):544-551.
[86] OTURAN M A, OTURAN N, EDELAHI M C, et al. Oxidative degradation of herbicide diuron in aqueous medium by Fentons reaction based advanced oxidation processes[J]. Chemical Engineering Journal,2011,171(1):127-135.
[87] LI D, ZHENG T, LIU Y L, et al. A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H2O2 and cycle of Fe3+/Fe2+[J]. Journal of Hazardous Materials,2020,396:122591.
[88] WU Y, WANG Y, LIN Z Q, et al. Three-dimensional α-Fe2O3/amino-functionalization carbon nanotube sponge for adsorption and oxidative removal of tetrabromobisphenol A[J]. Separation and Purification Technology,2019,211:359-367.
[89] ZCAN A,瘙塁AHIN Y, SAVA瘙塁 KOPARAL A, et al. Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium[J]. Journal of Electroanalytical Chemistry,2008,616(1/2):71-78.
[90] TSYGANOK A I, YAMANAKA I, OTSUKA K. Dechlorination of chloroaromatics by electrocatalytic reduction over palladium-loaded carbon felt at room temperature[J]. Chemosphere,1999,39(11):1819-1831.
[91] NI X Y, LIU H, WANG C, et al. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation[J]. Water Research,2020,168:115150.
[92] LIU H, NI X Y, HUO Z Y, et al. Carbon fiber-based flow-through electrode system (FES) for water disinfection via direct oxidation mechanism with a sequential reduction-oxidation process[J]. Environmental Science & Technology,2019,53(6):3238-3249.
[93] LAI W K, XIE G Y, DAI R Z, et al. Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode[J]. Journal of Environmental Management,2020,257:109968.
[94] XIA G S, LU Y H, XU H B. Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode[J]. Electrochimica Acta,2015,158:390-396.
[95] WANG W, LI Y C, LI Y W, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration[J]. Chemosphere,2020,250:126177.
[121] WANG W, LU X Y, SU P, et al. Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine[J]. Chemosphere,2020,259:127423.
[122] LI X Y, WANG X P, XIAO G Z, et al. Identifying active sites of boron, nitrogen Co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide[J]. Journal of Colloid and Interface Science,2021,602:799-809.
[123] LIU Z M, GAO D Z, HU L N, et al. Metal-free boron-rich borocarbonitride catalysts for high-efficient oxygen reduction to produce hydrogen peroxide[J]. ChemistrySelect,2022,7(5):e202104203.
[124] LI K Q, LIU J M, LI J, et al. Effects of N mono- and N/P dual-doping on H2O2, OH generation, and MB electrochemical degradation efficiency of activated carbon fiber electrodes[J]. Chemosphere,2018,193:800-810.
[125] SUN Y Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society,2019,141(31):12372-12381.
[126] BARROS W R P, REIS R M, ROCHA R S, et al. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine[J]. Electrochimica Acta,2013,104:12-18.
[127] SILVA F L, REIS R M, BARROS W R P, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes: application of iron (II) phthalocyanine as a modifier of carbon black[J]. Journal of Electroanalytical Chemistry,2014,722/723:32-37.
[128] ZHAO C X, LI B Q, LIU J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2021,60(9):4448-4463.
[129] LIU J L, XIAO J X, LUO B C, et al. Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: a theoretical investigation[J]. Chemical Engineering Journal,2022,427:132038.
[130] SINGH K, RAZMJOOEI F, YU J S. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review[J]. Journal of Materials Chemistry A,2017,5(38):20095-20119.
[131] BONAKDARPOUR A, LEFEVRE M, YANG R Z, et al. Impact of loading in RRDE experiments on Fe-N-C catalysts: two- or four-electron oxygen reduction?[J]. Electrochemical and Solid-State Letters,2008,11(6):B105.
[132] ROJAS-CARBONELL S, ARTYUSHKOVA K, SEROV A, et al. Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction[J]. ACS Catalysis,2018,8(4):3041-3053.
[133] LI P, JIAO Y Z, RUAN Y E, et al. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts[J]. Nature Communications,2023,14(1):6936.
Research Progress in Electrosynthesis of Hydrogen Peroxide with Gas Diffusion Electrodes
YANG Wulin1, YI Kexin1, YUAN Xiayu1, HUANG Xingjun2,NI Jinyuan2, HU Junjie2, WANG Lijun2, LIU Sheng3
(1. School of Environmental Science and Engineering, Peking University, Beijing 100871;2. Chengdu Sotec Technology Co. Ltd., Chengdu 610000, Sichuan;3. Tianfu Yongxing Laboratory, Chengdu 610213, Sichuan)
Abstract:Hydrogen peroxide (H2O2), a highly effective oxidant, is widely used in chemical synthesis, sterilization and wastewater treatment. Traditional anthraquinone process was replaced by H2O2 electrosynthesis via two-electron oxygen reduction (2e- ORR), because of its high performance and environmentally friendly property. As a high-efficiency H2O2 production cathode, gas diffusion electrodes (GDEs) exhibit lower cost, lower energy consumption and higher oxygen utilization efficiency. In this paper, we investigate the mechanism of H2O2 production by 2e- ORR with GDEs. Besides, the configuration, principle and optimization method of GDEs are discussed. The GDEs catalysts were also analyzed. Finally, some future directions are pointed out, which is beneficial to promote the H2O2 electrosynthesis towards marketization.
Keywords:gas diffusion electrode(GDEs); hydrogen peroxide; carbon catalysts; two-electron oxygen reduction reaction(2e- ORR)(編輯 陶志寧)
基金項(xiàng)目:國(guó)家自然科學(xué)基金(52100021)和2023年中央引導(dǎo)地方科技發(fā)展項(xiàng)目(2023ZYD0278)
第一作者簡(jiǎn)介:楊武霖(1989—),男,研究員,博士生導(dǎo)師,主要從事微生物電化學(xué)、電化學(xué)膜分離、電化學(xué)高級(jí)氧化等及其在能源-資源-環(huán)境問題中的應(yīng)用等方面的研究,E-mail:wulin.yang@pku.edu.cn
引用格式:楊武霖,易可欣,袁夏雨,等. 氣體擴(kuò)散電極電合成過氧化氫技術(shù)研究進(jìn)展[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,47(5):596-610.