国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

雙鏈RNA依賴的蛋白激酶與阿爾茨海默病相關(guān)性研究進(jìn)展

2024-07-08 08:57龔奕肖星洋胡有生謝義煒伍知輝
關(guān)鍵詞:磷酸化神經(jīng)元誘導(dǎo)

龔奕 肖星洋 胡有生 謝義煒 伍知輝

摘要:阿爾茨海默?。ˋD)是一種嚴(yán)重威脅人類健康的疾病,也是引起人類死亡的三大因素之一。雙鏈RNA依賴的蛋白激酶(PKR)又稱為前炎癥細(xì)胞因子,是人類先天免疫干擾素刺激因子之一。在AD發(fā)生和發(fā)展中,PKR表達(dá)上調(diào)并持續(xù)激活,一方面引發(fā)腦組織細(xì)胞發(fā)生整合應(yīng)激反應(yīng),另一方面間接上調(diào)β位淀粉樣前體蛋白裂解酶1的表達(dá),促進(jìn)β淀粉樣蛋白(Aβ)的積累,而Aβ的積累又可以激活PKR,進(jìn)一步促進(jìn)Aβ的積累,形成一個(gè)Aβ持續(xù)積累的循環(huán)。PKR還可以促進(jìn)Tau蛋白磷酸化,降低神經(jīng)細(xì)胞微管穩(wěn)定性。腦組織炎癥反應(yīng)、Aβ的積累所引起神經(jīng)毒性和微管穩(wěn)定性的破壞會(huì)導(dǎo)致AD發(fā)生發(fā)展,引起患者記憶和認(rèn)知的下降,因此PKR是AD發(fā)生發(fā)展中的關(guān)鍵分子。有效進(jìn)行PKR檢測(cè)可以預(yù)測(cè)AD進(jìn)展,為臨床治療AD提供先機(jī)。目前PKR已成為研發(fā)治療AD藥物的靶點(diǎn),因此靶向PKR的抑制劑有望控制PKR的活性,從而有效控制AD發(fā)生發(fā)展。

關(guān)鍵詞:阿爾茨海默病;雙鏈RNA依賴的蛋白激酶;β淀粉樣蛋白;Tau蛋白

中圖分類號(hào): R34? 文獻(xiàn)標(biāo)識(shí)碼: A? 文章編號(hào):1000-503X(2024)03-0425-10

DOI:10.3881/j.issn.1000-503X.15792

Research Advances in the Association Between Alzheimers Disease and Double-Stranded RNA-Dependent Protein Kinase

GONG Yi XIAO Xingyang HU Yousheng 2,XIE Yiwei3,WU Zhihui3

1Fuzhou Medical College,Nanchang University,F(xiàn)uzhou,Jiangxi 344000,China

2Key Laboratory of Chronic Diseases of Fuzhou Medical College,Nanchang University,F(xiàn)uzhou,Jiangxi 344000,China

3Health Science Center,Jinggangshan University,Jian,Jiangxi 343009,China

Corresponding author:HU Yousheng Tel:0794-825168 E-mail:huyousheng68@163.com

ABSTRACT:Alzheimers disease (AD) is a severe threat to human health and one of the three major causes of human death.Double-stranded RNA-dependent protein kinase (PKR) is an interferon-induced protein kinase involved in innate immunity.In the occurrence and development of AD,PKR is upregulated and continuously activated.On the one hand,the activation of PKR triggers an integrated stress response in brain cells.On the other hand,it indirectly upregulates the expression of β-site amyloid precursor protein cleaving enzyme 1 and facilitates the accumulation of amyloid-β protein (Aβ),which could activate PKR activator to further activate PKR,thus forming a sustained accumulation cycle of Aβ.In addition,PKR can promote Tau phosphorylation,thereby reducing microtubule stability in nerve cells.Inflammation in brain tissue,neurotoxicity resulted from Aβ accumulation,and disruption of microtubule stability led to the progression of AD and the declines of memory and cognitive function.Therefore,PKR is a key molecule in the development and progression of AD.Effective PKR detection can aid in the diagnosis and prediction of AD progression and provide opportunities for clinical treatment.The inhibitors targeting PKR are expected to control the activity of PKR,thereby controlling the progression of AD.Therefore,PKR could be a target for the development of therapeutic drugs for AD.

Key words:Alzheimers disease;double-stranded RNA-dependent protein kinase;amyloid-beta;Tau

Acta Acad Med Sin,2024,46(3):425-434

阿爾茨海默?。ˋlzheimers disease,AD)是一種慢性神經(jīng)退行性病變引起的疾病。輕度AD患者首先表現(xiàn)為輕度認(rèn)知障礙,約15%的輕度患者在兩年后病情會(huì)發(fā)展成中重度癡呆[1]。中度AD患者在記憶和語言方面會(huì)產(chǎn)生障礙,且難以完成洗澡和穿衣等日常事務(wù)。重度AD患者大腦中參與運(yùn)動(dòng)調(diào)節(jié)和控制吞咽的區(qū)域會(huì)受損,出現(xiàn)臥床不起、進(jìn)食和飲水困難等癥狀[2]。有研究認(rèn)為AD是一種復(fù)雜的疾病,由遺傳和環(huán)境因素及其他復(fù)雜的原因(如性別、年齡和不良生活習(xí)慣等)導(dǎo)致[3]。

AD引起老年癡呆的特征表現(xiàn)為思維和個(gè)人日常活動(dòng)獨(dú)立性的下降,也是全球第五大死亡原因。目前全球約有5000萬AD患者,預(yù)測(cè)每5年會(huì)增長1倍,到2050年全球AD患者將可能增至1.52億。AD造成的經(jīng)濟(jì)負(fù)擔(dān)不僅影響個(gè)人、家庭,同時(shí)預(yù)計(jì)還會(huì)造成全球社會(huì)經(jīng)濟(jì)每年損失達(dá)1萬億美元[3]。目前尚未發(fā)現(xiàn)完全治愈AD的方法,現(xiàn)有的治療方案也只能改善患者癥狀,但AD的預(yù)防、早期診斷和早期干預(yù)卻可及時(shí)有效地延緩AD的發(fā)生發(fā)展。

目前研究者普遍認(rèn)為影響AD發(fā)生發(fā)展關(guān)鍵因素是患者腦內(nèi)出現(xiàn)的β淀粉樣蛋白(amyloid-β protein,Aβ)斑塊和Tau蛋白過度磷酸化[4-11]。研究發(fā)現(xiàn),雙鏈RNA依賴的蛋白激酶(double-stranded RNA-dependent protein kinase,PKR)異常表達(dá)和激活不僅會(huì)使中樞神經(jīng)系統(tǒng)中炎癥因子的表達(dá)增加,還會(huì)促進(jìn)Aβ積累和Tau蛋白過度磷酸化,PKR在AD發(fā)生發(fā)展過程中的作用不僅體現(xiàn)在mRNA水平的調(diào)節(jié)上,還表現(xiàn)在對(duì)AD關(guān)鍵致病蛋白的翻譯調(diào)控上,因此PKR與AD的發(fā)生發(fā)展密切相關(guān)[12-18]。通過對(duì)AD患者腦組織中PKR及其作用機(jī)制的研究可以幫助我們更好地了解AD發(fā)病機(jī)制,有針對(duì)性地制訂AD的治療方案[15-18]。本文將AD與PKR關(guān)系的研究進(jìn)展進(jìn)行綜述。

1 AD的發(fā)病機(jī)制

目前,研究人員普遍認(rèn)為AD發(fā)病的主要機(jī)制如下:(1)Aβ積累形成的Aβ斑塊會(huì)引起炎癥等一系列反應(yīng),促使神經(jīng)元細(xì)胞變性,從而誘導(dǎo)癡呆發(fā)生;(2)Tau蛋白變性導(dǎo)致神經(jīng)原纖維變性,進(jìn)一步引起神經(jīng)元細(xì)胞變性,從而誘導(dǎo)癡呆發(fā)生[4]。Aβ是通過淀粉樣前體蛋白(amyloid precursor protein,APP)被β位淀粉樣前體蛋白裂解酶1(β-site amyloid precursor protein cleaving enzyme? BACE1)和γ-分泌酶依次作用后裂解釋放出Aβ[5]。Cline等[6]提出Aβ形成的級(jí)聯(lián)反應(yīng)假說:Aβ及其寡聚形式的積累可能導(dǎo)致許多有害的后果,如出現(xiàn)大量炎癥反應(yīng)、神經(jīng)元壞死和突觸功能障礙等,從而誘導(dǎo)癡呆的發(fā)生。Tau蛋白又稱微管相關(guān)蛋白Tau,具有微管結(jié)合結(jié)構(gòu)域,參與微管裝配和穩(wěn)定,以維持細(xì)胞骨架的完整性[7-8]。Tau蛋白過度磷酸化降低其對(duì)微管的親和力,造成易形成神經(jīng)原纖維纏結(jié),并沉積在胞質(zhì)溶膠中,導(dǎo)致不能執(zhí)行維持細(xì)胞結(jié)構(gòu)的功能,且這種沉積還會(huì)嚴(yán)重影響正常的細(xì)胞功能,如突觸傳遞、軸突運(yùn)輸、信號(hào)轉(zhuǎn)導(dǎo),導(dǎo)致神經(jīng)細(xì)胞逐漸退化,從而誘導(dǎo)癡呆發(fā)生[9]。Tau蛋白磷酸化對(duì)Aβ積累會(huì)起到一定抑制作用,可能的機(jī)制是通過Tau蛋白磷酸化誘導(dǎo)小膠質(zhì)細(xì)胞活化狀態(tài)改變,增加小膠質(zhì)細(xì)胞吞噬能力,從而增強(qiáng)了不溶性Aβ的清除[10]。磷酸化的Tau蛋白從突觸后位點(diǎn)解離,成為其他激酶的底物,導(dǎo)致不同位點(diǎn)的過度磷酸化,這種過度磷酸化的Tau蛋白還可以通過軸突內(nèi)連接從軸突擴(kuò)散到其他健康神經(jīng)元內(nèi),該過程常會(huì)引起突觸功能障礙,導(dǎo)致神經(jīng)變性和癡呆癥狀[11](圖1)。

PKR是一種廣泛表達(dá)的蛋白激酶,在AD的發(fā)生發(fā)展過程中發(fā)揮了重要作用[12-18]。PKR通過多途徑參與AD的發(fā)生發(fā)展,PKR活化后能夠磷酸化真核翻譯起始因子2α(eukaryotic translation initiation factor 2α,eIF2α),從而抑制蛋白翻譯,引起神經(jīng)細(xì)胞凋亡[12]。活化的PKR也可以通過核因子κB(nuclear factor κB,NF-κB)途徑激活轉(zhuǎn)錄,上調(diào)在中樞神經(jīng)系統(tǒng)中表達(dá)的多種炎癥因子,從而引起癡呆發(fā)生[13]。PKR還可以通過控制如BACE1和γ-分泌酶等蛋白質(zhì)的合成,促進(jìn)Aβ積累和Tau蛋白過度磷酸化,從而影響突觸的信號(hào)傳遞和記憶認(rèn)知的功能,使AD進(jìn)一步惡化[14-18](圖2)。

2 PKR與AD的神經(jīng)炎癥及整合應(yīng)激反應(yīng)

2.1 AD與整合應(yīng)激反應(yīng)

AD患者的主要癥狀是神經(jīng)膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥。大腦中的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞在中樞神經(jīng)系統(tǒng)中有著先天性免疫功能,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞可以介導(dǎo)促炎癥因子的釋放,誘導(dǎo)細(xì)胞發(fā)生整合應(yīng)激反應(yīng),從而調(diào)節(jié)突觸產(chǎn)生和重組,以及還可通過非?;钴S的吞噬作用和巨胞飲作用,清除死亡的神經(jīng)元、細(xì)胞碎片和錯(cuò)誤折疊的蛋白質(zhì),對(duì)突觸功能造成損害來影響學(xué)習(xí)和記憶[19-22]。

有研究發(fā)現(xiàn),在Aβ誘導(dǎo)的AD模型小鼠的腦組織中,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞均被激活,促炎癥細(xì)胞因子表達(dá)增加,并釋放大量炎癥細(xì)胞因子;另有研究者在對(duì)死后AD樣本的組織學(xué)分析發(fā)現(xiàn)了腦部炎癥-老年斑周圍經(jīng)常能檢測(cè)到星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的炎癥反應(yīng);還有研究者對(duì)AD患者腦內(nèi)表達(dá)的炎癥相關(guān)基因進(jìn)行統(tǒng)計(jì)學(xué)分析后發(fā)現(xiàn),AD患者腦內(nèi)的炎癥基因表達(dá)也顯著增強(qiáng);這些研究結(jié)果表明炎癥可增加AD期間突觸完整性喪失和神經(jīng)元變性的風(fēng)險(xiǎn)[23-27]。根據(jù)淀粉樣蛋白假說,Aβ的積累是導(dǎo)致AD神經(jīng)退行性病變事件發(fā)生的觸發(fā)事件,在這個(gè)前提下BACE1水平升高也參與了AD的發(fā)病或進(jìn)展[28-29]。當(dāng)Aβ積累時(shí),神經(jīng)元凋亡并伴隨炎性細(xì)胞因子和其他蛋白表達(dá)的增加,這些

蛋白質(zhì)包括白細(xì)胞介素(interleukin,IL)-1β、IL-6、IL-8和腫瘤壞死因子(tumor necrosis factor,TNF)-α等[30](圖2)。神經(jīng)系統(tǒng)在大量的炎癥細(xì)胞因子刺激下產(chǎn)生慢性神經(jīng)炎癥,誘導(dǎo)細(xì)胞發(fā)生適應(yīng)性自救反應(yīng),稱為整合應(yīng)激反應(yīng),該反應(yīng)可以促進(jìn)Aβ積累,造成神經(jīng)元變性,損害突觸功能,從而影響記憶和認(rèn)知能力,也是導(dǎo)致AD發(fā)生發(fā)展的關(guān)鍵反應(yīng)之一[24-31]。

2.2 整合應(yīng)激反應(yīng)中的PKR及其與AD的關(guān)系

整合應(yīng)激反應(yīng)是指細(xì)胞在接收到應(yīng)激信號(hào)后,迅速減少整體的蛋白質(zhì)合成,同時(shí)增加特定蛋白翻譯以維持細(xì)胞穩(wěn)態(tài)的一系列反應(yīng),該反應(yīng)通過調(diào)控神經(jīng)系統(tǒng)中重要蛋白質(zhì)參與神經(jīng)退行性疾病的發(fā)生發(fā)展[31]。整合應(yīng)激反應(yīng)的主要分子事件是激活PKR-eIF2α途徑,進(jìn)而PKR又被稱為前炎癥細(xì)胞因子[31-32]。PKR在先天免疫中是一個(gè)活躍的參與者,可通過絲裂原活化蛋白激酶、干擾素調(diào)節(jié)因子3 (interferon regulatory factor 3,IRF3)和NF-κB參與炎癥反應(yīng)途徑,增強(qiáng)炎癥反應(yīng),從而誘導(dǎo)AD發(fā)生發(fā)展[33]。有研究表明在AD早期,PKR可通過NF-κB和絲裂原活化蛋白激酶途徑來促進(jìn)炎癥反應(yīng),誘導(dǎo)炎癥細(xì)胞因子釋放、增強(qiáng)NF-κB活性,從而增強(qiáng)炎癥反應(yīng)[34]。

目前,有實(shí)驗(yàn)用天麻素、肝豆湯改良方等制劑可以抑制PKR/eIF2α通路,從而實(shí)現(xiàn)了改善認(rèn)知功能障礙小鼠模型中的小鼠記憶認(rèn)知功能[35-36]。隨著AD患者病情進(jìn)一步的發(fā)展惡化,AD晚期患者腦中的炎癥信號(hào)顯著增強(qiáng),從而增加了小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞活化,使小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞在清除更多Aβ的同時(shí),也通過吞噬作用清除了大量突觸,導(dǎo)致突觸功能減退,使大腦記憶認(rèn)知功能進(jìn)一步減退[24-37]。在AD晚期,Aβ又會(huì)反過來促進(jìn)小膠質(zhì)細(xì)胞活化,并誘導(dǎo)促炎癥細(xì)胞因子如IL-1β、IL-6和TNF-α等的釋放,這些炎癥因子加速神經(jīng)元細(xì)胞壞死,進(jìn)一步導(dǎo)致記憶認(rèn)知功能障礙,使AD晚期患者病情加重[38-41](圖1)。

PKR對(duì)神經(jīng)炎癥的調(diào)節(jié)是AD神經(jīng)炎癥產(chǎn)生機(jī)制的重要組成部分,抑制 PKR活性可導(dǎo)致神經(jīng)炎癥減弱,神經(jīng)元的修復(fù)能力增強(qiáng)。有研究通過使用PKR抑制劑,發(fā)現(xiàn)對(duì)Aβ積累和神經(jīng)炎癥均有一定的抑制作用,這一實(shí)驗(yàn)支持Aβ積累會(huì)導(dǎo)致神經(jīng)元凋亡的假設(shè),且有研究者在動(dòng)物模型中也找到Aβ積累引起神經(jīng)炎性反應(yīng)的證據(jù)[42]。在小膠質(zhì)細(xì)胞中,抑制PKR活性也可降低Aβ引起的神經(jīng)炎癥反應(yīng)[42]。在最近PKR抑制劑與神經(jīng)炎癥反應(yīng)的相關(guān)研究中發(fā)現(xiàn):(1)利福平能抑制PKR活化,減輕神經(jīng)炎癥反應(yīng),從而發(fā)揮神經(jīng)保護(hù)作用[43]。(2)選擇性PKR抑制劑抑制PKR活性時(shí),AD實(shí)驗(yàn)小鼠認(rèn)知缺陷得到顯著改善,促炎癥細(xì)胞因子的積累和神經(jīng)元變性顯著減少[42]。(3)當(dāng)使用基因沉默技術(shù)降低PKR活性時(shí),實(shí)驗(yàn)小鼠的記憶和大腦的神經(jīng)病理學(xué)變化表現(xiàn)出顯著的改善[15,18]。

3 PKR與AD的神經(jīng)毒性及Aβ代謝

3.1 AD的Aβ神經(jīng)毒性

Aβ的來源是APP正常切割的改變而發(fā)生的一種病理現(xiàn)象。APP是一種集中在神經(jīng)元突觸中的單跨膜蛋白,在腦組織細(xì)胞中高度表達(dá)[44]。APP可以通過兩種不同的途徑進(jìn)行加工:(1)在非淀粉樣蛋白生成途徑中,APP可以首先被α-分泌酶切割,然后被γ-分泌酶切割,產(chǎn)生較短的可溶性細(xì)胞外片段(非淀粉樣的);(2)在Aβ生成途徑中,APP首先被BACE1在其N-末端β域切割,而不是被α-分泌酶切割,之后被γ-C末端的分泌酶裂解,最后生成Aβ[45](圖1)。Aβ的形成過程也被稱作淀粉樣變性,是一種蛋白質(zhì)的錯(cuò)誤折疊,具有穩(wěn)定的交叉β超二級(jí)結(jié)構(gòu)、纖維狀和不溶于水等特征,也不能被蛋白水解酶降解。Aβ的積累會(huì)改變神經(jīng)元細(xì)胞的正常功能,引發(fā)一系列病理事件,使神經(jīng)元細(xì)胞功能障礙和死亡,最終導(dǎo)致突觸缺陷和記憶功能障礙[46]。Aβ早在1984年就被鑒定,其積累在AD患者腦組織的神經(jīng)元細(xì)胞外,可導(dǎo)致AD腦組織中神經(jīng)炎性斑塊的形成,神經(jīng)炎性斑塊也稱為老年斑或淀粉樣斑塊,這種斑塊過度積累會(huì)嚴(yán)重影響神經(jīng)元之間的信號(hào)傳遞,從而影響到患者的記憶和認(rèn)知能力,導(dǎo)致AD發(fā)生發(fā)展[46-48]。

3.2 PKR與Aβ積累

Aβ形成的關(guān)鍵酶是BACE 由于BACE1的mRNA的5非翻譯區(qū)中含有3個(gè)上游開放閱讀框,正常情況下其表達(dá)會(huì)受到抑制,而無法翻譯出BACE1蛋白,Aβ也不會(huì)產(chǎn)生和積累[49]。有實(shí)驗(yàn)證明BACE1的表達(dá)可被PKR的磷酸化激活,這是通過逆轉(zhuǎn)了BACE1 中mRNA的5非翻譯區(qū)對(duì)BACE1翻譯的抑制作用,從而導(dǎo)致了Aβ的產(chǎn)生與積累[18]。Tible等[18]通過蛋白質(zhì)印跡法和酶聯(lián)免疫吸附測(cè)定法證實(shí),PKR激活可解除對(duì)BACE1表達(dá)的抑制,同時(shí)激活BACE1的翻譯,進(jìn)而導(dǎo)致Aβ的積累(圖2)。有研究者在暴露于氧化應(yīng)激條件下的人神經(jīng)母細(xì)胞瘤細(xì)胞中發(fā)現(xiàn)PKR還可以上調(diào)BACE1蛋白的水平,這表明PKR激活可以促進(jìn)Aβ的產(chǎn)生和積累[50]。這些實(shí)驗(yàn)都證實(shí)了PKR的過度活化會(huì)導(dǎo)致Aβ水平的增加,且與患者出現(xiàn)認(rèn)知功能下降和記憶障礙有關(guān)[28-29,51]。

將PKR基因敲除后,AD小鼠表現(xiàn)出Aβ的積累水平降低,Aβ的神經(jīng)毒性作用減弱,Aβ誘導(dǎo)的神經(jīng)元細(xì)胞壞死數(shù)目明顯減少[52]。在野生型和PKR基因敲除小鼠的原代神經(jīng)元中顯示,PKR的抑制劑可以明顯減少Aβ的產(chǎn)生和積累,這表明PKR的抑制可能對(duì)增強(qiáng)神經(jīng)保護(hù)有效[52]。在多種實(shí)驗(yàn)動(dòng)物模型中,如在猴子腦室內(nèi)注射Aβ寡聚體與TNF-α,可以誘導(dǎo)PKR和eIF2α磷酸化和認(rèn)知障礙發(fā)生。在PKR和TNF-α基因敲除小鼠中,小鼠的認(rèn)知功能下降和記憶障礙等癥狀可減輕,這表明TNF-α介導(dǎo)了PKR激活,從而誘導(dǎo)形成大量的Aβ寡聚體,由此所引起的神經(jīng)元功能損傷和神經(jīng)毒性作用[53-54]。研究者通過注射脂多糖誘導(dǎo)實(shí)驗(yàn)小鼠產(chǎn)生炎癥反應(yīng)和氧化應(yīng)激,發(fā)現(xiàn)炎癥反應(yīng)和氧化應(yīng)激的產(chǎn)生,增加小鼠腦中PKR的磷酸化,而PKR的磷酸化又會(huì)使Aβ的產(chǎn)生和積累,引起記憶與運(yùn)動(dòng)功能的障礙。通過對(duì)實(shí)驗(yàn)小鼠進(jìn)行PKR基因的敲除/抑制后,Aβ水平會(huì)降低,記憶與運(yùn)動(dòng)功能的障礙也可改善[33,55-56]。

有研究通過對(duì)AD患者、APP/PS1 KI轉(zhuǎn)基因小鼠和暴露于氧化應(yīng)激的培養(yǎng)細(xì)胞進(jìn)行免疫熒光檢測(cè)來評(píng)估PKR激活蛋白(PKR associated protein activator,PACT)和PKR的表達(dá)水平,實(shí)驗(yàn)結(jié)果表明,AD患者的大腦中Aβ可誘導(dǎo)PACT的表達(dá),使PKR激活,這說明Aβ的積累會(huì)反向激活PKR[57]。理論上,減少Aβ可減少PKR激活,所以通過抑制PKR激活,同時(shí)聯(lián)合使用藥物降低Aβ可以用來治療AD。

總的來說,PKR在被炎癥刺激的神經(jīng)元細(xì)胞中表達(dá)增加,PKR激活后可通過誘導(dǎo)BACE1表達(dá)來上調(diào)Aβ的表達(dá),反過來Aβ的積累可以通過活化PACT來激活PKR,又進(jìn)一步促進(jìn)Aβ的積累,形成了一個(gè)惡性循環(huán),使AD進(jìn)一步發(fā)展惡化(圖2)。

4 PKR與AD突觸傳導(dǎo)及Tau蛋白磷酸化

4.1 Tau蛋白磷酸化對(duì)AD突觸傳導(dǎo)的影響

Tau蛋白由1個(gè)微管相關(guān)蛋白Tau基因編碼,存在6種亞型[58]。Tau蛋白是一種主要在神經(jīng)元軸突中表達(dá)的微管相關(guān)蛋白,其主要功能是促進(jìn)微管的組裝和穩(wěn)定性[59]。在AD和其他Tau蛋白病的發(fā)生發(fā)展過程中,Tau蛋白的過度磷酸化是最早發(fā)生和持續(xù)病變事件之一[60]。磷酸化Tau蛋白可破壞突觸組成和結(jié)構(gòu),導(dǎo)致突觸功能障礙或突觸功能的完全喪失[1 61]。當(dāng)磷酸化Tau蛋白不斷聚集后,可通過突觸向未出現(xiàn)磷酸化Tau的正常神經(jīng)元擴(kuò)散,進(jìn)一步使AD的病情惡化[62-63]。

4.2 PKR與Tau蛋白磷酸化

PKR參與了Tau蛋白的磷酸化,在對(duì)AD患者腦組織切片的檢測(cè)中證實(shí),磷酸化的PKR可以與磷酸化的Tau蛋白在受影響的神經(jīng)元中共定位[64-65]。最近研究發(fā)現(xiàn),PKR過表達(dá)會(huì)增加HEK-293T細(xì)胞中Tau蛋白及其mRNA的水平[62]。PKR沉默可降低SH-SY5Y細(xì)胞中Tau蛋白及其mRNA水平,在腦組織急性炎癥中PKR可以不依賴其他激酶直接磷酸化Tau蛋白的多個(gè)和疾病相關(guān)的殘基,觸發(fā)Tau蛋白的病理轉(zhuǎn)變,這說明PKR可以直接調(diào)控Tau蛋白的表達(dá)和Tau蛋白的磷酸化[62,66]。

PKR的激活與磷酸化的Tau蛋白聚集在AD病理發(fā)展中也扮演了重要角色,研究者通過對(duì)具有AD標(biāo)志病變的淀粉樣蛋白斑塊和Tau磷酸化病變的人類神經(jīng)元細(xì)胞的研究發(fā)現(xiàn):磷酸化Aβ積累會(huì)使糖原合成酶激酶3β激活并導(dǎo)致磷酸化的Tau蛋白聚集,而PKR磷酸化又可以通過激活糖原合成酶激酶3β間接導(dǎo)致磷酸化的Tau蛋白聚集[67](圖2)。

有研究提出在 AD發(fā)病早期,磷酸化的Tau蛋白聚集會(huì)嚴(yán)重影響微管細(xì)胞骨架的穩(wěn)定性,從而使AD病情進(jìn)一步惡化發(fā)展,PKR磷酸化直接和間接誘導(dǎo)Tau蛋白磷酸化,磷酸化Tau蛋白從微管中脫落,破壞了微管細(xì)胞骨架的穩(wěn)定,從而使軸突的信號(hào)傳導(dǎo)障礙,導(dǎo)致AD患者出現(xiàn)記憶認(rèn)知功能的障礙,因?yàn)镻KR激活會(huì)使Tau蛋白磷酸化,同時(shí)促進(jìn)Tau蛋白從微管中移除的病理轉(zhuǎn)變,所以PKR連接了AD神經(jīng)變性中的Aβ積累機(jī)制和Tau蛋白磷酸化機(jī)制[62](圖2)。

5 PKR與AD的診斷和臨床治療

5.1 PKR與AD的診斷

到目前為止,很難在血液或腦脊液中找到一種可靠的生物標(biāo)志物來預(yù)測(cè)AD患者的認(rèn)知衰退程度。AD患者大腦中活化的PKR水平有所增加,且AD患者的外周血淋巴細(xì)胞中的總PKR及磷酸化PKR水平均有所升高[68-69]。研究者通過對(duì)PKR進(jìn)行抑制后來觀察對(duì)患者的記憶、認(rèn)知等的影響,發(fā)現(xiàn)當(dāng)抑制PKR之后,患者明顯減少了神經(jīng)元的損傷和變性,Tau蛋白的磷酸化水平也降低,同時(shí)恢復(fù)了突觸可塑性,又減少神經(jīng)炎癥等,因此PKR有希望成為未來預(yù)測(cè)AD的標(biāo)志物[18,35,43,63]。

大量科研團(tuán)隊(duì)開始進(jìn)行PKR與AD疾病預(yù)測(cè)及后續(xù)發(fā)展的趨勢(shì)相關(guān)性的研究。有研究發(fā)現(xiàn)通過檢測(cè)腦脊液中磷酸化PKR濃度可以預(yù)測(cè)AD患者未來的認(rèn)知功能衰退程度[70]。有研究證明了磷酸化PKR較經(jīng)典生物標(biāo)志物對(duì)AD患者病情發(fā)展的速度預(yù)測(cè)有更好的效果,但是腦脊液抽取存在侵入性、有創(chuàng)性以及成像技術(shù)的高昂費(fèi)用等問題,研究者希望還是尋找血源性生物標(biāo)志物進(jìn)行AD預(yù)測(cè)和診斷[71]。生曉娜等[68]通過臨床研究發(fā)現(xiàn)AD 患者的外周血淋巴細(xì)胞中總PKR及磷酸化PKR的水平均較正常組有明顯升高,同時(shí)對(duì)認(rèn)知水平和PKR水平之間進(jìn)行統(tǒng)計(jì)學(xué)分析發(fā)現(xiàn)AD患者淋巴細(xì)胞中的總PKR與磷酸化PKR水平與認(rèn)知障礙嚴(yán)重程度呈正相關(guān)。Monllor等[69]通過研究證明PKR與Aβ積累相關(guān),PKR的血清濃度反映了患者的淀粉樣病變程度,說明PKR是AD的潛在生物標(biāo)志物。這些研究結(jié)果表明使用PKR檢測(cè)比傳統(tǒng)的檢測(cè)方法更有助于助于AD的早期診斷,同時(shí)還可以更好地檢測(cè)AD的發(fā)展和預(yù)后情況,PKR檢測(cè)在未來或許可以成為 AD病情的早期診斷及評(píng)價(jià)的一種更有效的方法。

5.2 PKR對(duì)AD治療的潛在作用

AD通常以記憶和認(rèn)知能力下降為標(biāo)志,PKR的激活與記憶和認(rèn)知功能障礙有關(guān),PKR的上調(diào)和激活會(huì)加速細(xì)胞外Aβ形成,導(dǎo)致大腦海馬區(qū)神經(jīng)元細(xì)胞凋亡增加,PKR的激活可以通過促進(jìn)Tau蛋白磷酸化而抑制神經(jīng)突觸的形成和發(fā)展,因此PKR是影響記憶和認(rèn)知過程中的關(guān)鍵分子[15,62,72]。

天麻素在AD轉(zhuǎn)基因Tg2576小鼠中作為PKR抑制劑,能降低AD實(shí)驗(yàn)小鼠發(fā)生記憶障礙的水平[36]。在AD轉(zhuǎn)基因模型5xFAD小鼠中PKR基因缺失可以減少5xFAD小鼠的發(fā)生記憶障礙,且部分挽救了在5xFAD小鼠模型中觀察到的空間記憶缺陷[18]。這些實(shí)驗(yàn)均反映出PKR對(duì)AD的發(fā)展和惡化起重要作用,為未來通過抑制PKR來治療或緩解AD提供了思路。

目前已有研究開始探索PKR在AD發(fā)展中的作用的臨床應(yīng)用,但還未開發(fā)出有效臨床治療藥物[73]。默克公司研發(fā)的治療AD候選藥物verubecestat完成了兩項(xiàng)大型Ⅲ期臨床試驗(yàn),一項(xiàng)針對(duì)輕度至中度AD,另一項(xiàng)針對(duì)前驅(qū)期AD,但這兩項(xiàng)試驗(yàn)均因無效而提前終止,其中失敗的因素還需要通過進(jìn)一步的試驗(yàn)來探索論證[73-74]。

6 總結(jié)與展望

綜上,在AD進(jìn)展過程中,PKR起著關(guān)鍵的作用。PKR活化可通過一個(gè)閉環(huán)反復(fù)活化,導(dǎo)致Aβ不斷積累。PKR活化可以通過NF-κB途徑促進(jìn)炎癥細(xì)胞因子的表達(dá),還可以通過PKR-eIF2α途徑抑制蛋白翻譯,引起神經(jīng)細(xì)胞凋亡,從而使AD進(jìn)一步發(fā)展。

AD是一個(gè)多因素引發(fā)、發(fā)病機(jī)制復(fù)雜的疾病。目前,AD尚無有效檢測(cè)預(yù)測(cè)和治療手段。PKR參與了AD發(fā)生發(fā)展的多個(gè)病理生理過程,特別是在PKR活化eIF2α磷酸化,整體蛋白翻譯抑制的條件下,APP和炎癥細(xì)胞因子蛋白卻表達(dá)上調(diào),并在AD的發(fā)展中導(dǎo)致Aβ積累和炎癥反應(yīng)增強(qiáng)。因此,對(duì)于AD進(jìn)展過程中,蛋白翻譯表達(dá)調(diào)控機(jī)制仍需要深入地研究,AD患者中PKR表達(dá)譜、突變譜和PKR在AD進(jìn)程中的活性變化也需要進(jìn)一步研究。AD診療需開發(fā)更有效、準(zhǔn)確地檢測(cè)PKR來預(yù)測(cè)AD發(fā)生發(fā)展的試劑盒,并進(jìn)一步開展PKR抑制劑研究,開發(fā)出有效緩解和治療AD的相關(guān)藥物。

利益沖突 所有作者聲明無利益沖突

作者貢獻(xiàn)聲明 龔奕:文獻(xiàn)研究、圖片繪制、文稿撰寫和修改;肖星洋:文獻(xiàn)篩選和整理分類;胡有生:研究思路和撰寫大綱提出;謝義煒:流行病學(xué)和臨床醫(yī)學(xué)數(shù)據(jù)搜集和分析;伍知輝:參與文稿撰寫和校正,并同意対研究工作誠信負(fù)責(zé)

參 考 文 獻(xiàn)

[1]Petersen RC,Lopez O,Armstrong MJ,et al.Practice guideline update summary:mild cognitive impairment:report of the Guideline Development,Dissemination,and Implementation Subcommittee of the American Academy of Neurology[J].Neurology,2018,90(3):126-135.DOI:10.1212/wnl.0000000000004826.

[2]Alzheimers Association.2023 Alzheimers disease facts and figures[J].Alzheimers Dement,2023,19(4):1598-1695.DOI:10.1002/alz.13016.

[3]Livingston G,Huntley J,Sommerlad A,et al.Dementia prevention,intervention,and care:2020 report of the Lancet Commission[J].Lancet (London,England),2020,396(10248):413-446.DOI:10.1016/s0140-6736(20)30367-6.

[4]Kapasi A,Leurgans SE,Arvanitakis Z,et al.Abeta (Amyloid Beta) and Tau tangle pathology modifies the association between small vessel disease and cortical microinfarcts[J].Stroke,202 52(3):1012-1021.DOI:10.1161/STROKEAHA.120.031073.

[5]Behl T,Kaur I,F(xiàn)ratila O,et al.Exploring the potential of therapeutic agents targeted towards mitigating the events associated with Amyloid-β cascade in Alzheimers disease[J].Int J Mol Sci,2020,21(20):7473.DOI:10.3390/ijms21207443.

[6]Cline EN,Bicca MA,Viola KL,et al.The amyloid-β oligomer hypothesis:beginning of the third decade[J].J Alzheimers Dis,2018,64(s1):S567-S610.DOI:10.3233/jad-179941.

[7]Hamano T,Enomoto S,Shirafuji N,et al.Autophagy and Tau protein[J].Int J Mol Sci,202 22(14):7574.DOI:10.3390/ijms22147475.

[8]Otero-Garcia M,Mahajani SU,Wakhloo D,et al.Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimers disease[J].Neuron,2022,110(18):2929-2948.e8.DOI:10.1016/j.neuron.2022.06.021.

[9]Huang F,Wang M,Liu R,et al.CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimers disease[J].Alzheimers Dement,2019,15(2):217-231.DOI:10.1016/j.jalz.2018.08.013.

[10]Wang Q,Xie C.Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimers disease[J].Front Neurosci,2022,16:951128.DOI:10.3389/fnins.2022.951128.

[11]Ittner A,Ittner LM.Dendritic Tau in Alzheimers disease[J].Neuron,2018,99(1):13-27.DOI:10.1016/j.neuron.2018.06.003.

[12]Chukwurah E,F(xiàn)arabaugh KT,Guan BJ,et al.A tale of two proteins:PACT and PKR and their roles in inflammation[J].FEBS J,202 288(22):6365-6391.DOI:10.1111/febs.15691.

[13]Lee S,Jee HY,Lee YG,et al.PKR-Mediated phosphorylation of eIF2a and CHK1 is associated with doxorubicin-mediated apoptosis in hCC1143 triple-negative breast cancer cells[J].Int J Mol Sci,2022,23(24):15872.DOI:10.3390/ijms232415872.

[14]Zhang J,Zhang X,Li L,et al.Activation of double-stranded RNA-activated protein kinase in the dorsal root ganglia and spinal dorsal horn regulates neuropathic pain following peripheral nerve injury in rats[J].Neurotherapeutics,2022,19(4):1381-1400.DOI:10.1007/s13311-022-01255-2.

[15]Lu W,Tang S,Li A,et al.The role of PKC/PKR in aging,Alzheimers disease,and perioperative neurocognitive disorders[J].Front Aging Neurosci,2022,14:973068.DOI:10.3389/fnagi.2022.973068.

[16]Upadhyay A,Chhangani D,Rao NR,et al.Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity[J].Mol Neurodegener,2023,18(1):61.DOI:10.1186/s13024-023-00654-z.

[17]Futamura A,Hieda S,Mori Y,et al.Toxic Amyloid-β42 conformer may accelerate the onset of Alzheimers disease in the preclinical stage[J].J Alzheimers Dis,202 80(2):639-646.DOI:10.3233/jad-201407.

[18]Tible M,Mouton Liger F,Schmitt J,et al.PKR knockout in the 5xFAD model of Alzheimers disease reveals beneficial effects on spatial memory and brain lesions[J].Aging cell,2019,18(3):e12887.DOI:10.1111/acel.12887.

[19]Hasan U,Singh SK.The Astrocyte-Neuron Interface:An overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse[J].Methods Mol Biol,2019,1938:3-18.DOI:10.1007/978-1-4939-9068-9_1.

[20]Ikegami A,Haruwaka K,Wake H.Microglia:lifelong modulator of neural circuits[J].Neuropathology,2019,39(3):173-180.DOI:10.1111/neup.12560.

[21]Konishi H,Kiyama H,Ueno M.Dual functions of microglia in the formation and refinement of neural circuits during development[J].Int J Dev Neurosci,2019,77:18-25.DOI:10.1016/j.ijdevneu.2018.09.009.

[22]Olsen M,Aguilar X,Sehlin D,et al.Astroglial responses to amyloid-beta progression in a mouse model of Alzheimers disease[J].Mol Imaging Biol,2018,20(4):605-614.DOI:10.1007/s11307-017-1153-z.

[23]Litwiniuk A,Juszczak GR,Stankiewicz AM,et al.The role of glial autophagy in Alzheimers disease[J].Mol Psychiatry,2023,28(11):4528-4539.DOI:10.1038/s41380-023-02242-5.

[24]Liu Q,Contreras A,Afaq MS,et al.Intensity-dependent gamma electrical stimulation regulates microglial activation,reduces beta-amyloid load,and facilitates memory in a mouse model of Alzheimers disease[J].Cell Biosci,2023,13(1):138.DOI:10.1186/s13578-023-01085-5.

[25]Zhang Y,Jia J.Betaine Mitigates Amyloid-β-Associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells[J].J Alzheimers Dis,2023,94(s1):S9-S19.DOI:10.3233/jad-230064.

[26]Liu W,Chen S,Rao X,et al.The inflammatory gene PYCARD of the entorhinal cortex as an early diagnostic target for Alzheimers disease[J].Biomedicines,2023,11(1):194.DOI:10.3390/biomedicines11010194.

[27]panic′ E,Langer Horvat L,Ilic′ K,et al.NLRP1 inflammasome activation in the hippocampal formation in Alzheimers disease:correlation with neuropathological changes and unbiasedly estimated neuronal loss[J].Cells,2022,11(14):2223.DOI:10.3390/cells11142223.

[28]Bouteiller JC,Mergenthal AR,Hu E,et al.Pathogenic processes underlying Alzheimers disease:modeling the effects of Amyloid beta on synaptic transmission[J].Annu Int Conf IEEE Eng Med Biol Soc,2019,2019:1956-1959.DOI:10.1109/embc.2019.8857871.

[29]Castellani RJ,PLASCENCIA-VILLA G,Perry G.The amyloid cascade and Alzheimers disease therapeutics:theory versus observation[J].Lab Invest,2019,99(7):958-970.DOI:10.1038/s41374-019-0231-z.

[30]Ratan Y,Rajput A,Maleysm S,et al.An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimers disease[J].Biomedicines,2023,11(5):1398.DOI:10.3390/biomedicines11051398.

[31]Bond S,Lopez-Lloreda C,Gannon PJ,et al.The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration[J].J Neuropathol Exp Neurol,2020,79(2):123-143.DOI:10.1093/jnen/nlz129.

[32]Qiao H,Jiang T,Mu P,et al.Cell fate determined by the activation balance between PKR and SPHK1[J].Cell Death Differ,202 28(1):401-418.DOI:10.1038/s41418-020-00608-8.

[33]Hugon J,Paquet C.The PKR/P38/RIPK1 signaling pathway as a therapeutic target in Alzheimers disease[J].Int J Mol Sci,202 22(6):3136.DOI:10.3390/ijms22063136.

[34]Chiarini A,Armato U,Hu P,et al.Danger-Sensing/Patten recognition receptors and neuroinflammation in Alzheimers disease[J].Int J Mol Sci,2020,21(23):9036.DOI:10.3390/ijms21239036.

[35]劉松楊,程楠,徐陳陳,等.肝豆湯改良方調(diào)控PKR/eIF2α通路改善Wilson病模型TX小鼠突觸功能障礙的機(jī)制研究[J].安徽中醫(yī)藥大學(xué)學(xué)報(bào),202 40(6):75-81.DOI:10.3969/j.issn.2095-7246.2021.06.017.

[36]Zhang J S,Zhou SF,Wang Q,et al.Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimers disease[J].Neuroscience,2016,325:1-9.DOI:10.1016/j.neuroscience.2016.03.024.

[37]Ries M,Sastre M.Mechanisms of Aβ clearance and degradation by glial cells[J].Front Aging Neurosci,2016,8:160.DOI:10.3389/fnagi.2016.00160.

[38]Khandelwal PJ,Herman AM,Moussa CE.Inflammation in the early stages of neurodegenerative pathology[J].J Neuroimmunol,201 238(1-2):1-11.DOI:10.1016/j.jneuroim.2011.07.002.

[39]Deng Z,Dong Y,Zhou X,et al.Pharmacological modulation of autophagy for Alzheimers disease therapy:opportunities and obstacles[J].Acta Pharm Sin B,2022,12(4):1688-1706.DOI:10.1016/j.apsb.2021.12.009.

[40]Suresh S,Larson J,Jenrow KA.Chronic neuroinflammation impairs waste clearance in the rat brain[J].Front Neuroanat,2022,16:1013808.DOI:10.3389/fnana.2022.1013808.

[41]Doroszkiewicz J,Mroczko P,Kulczyńska-Przybik A.Inflammation in the CNS:understanding various aspects of the pathogenesis of Alzheimers disease[J].Curr Alzheimer Res,2022,19(1):16-31.DOI:10.2174/1567205018666211202143935.

[42]Lopez-Grancha M,Bernardelli P,Moindrot N,et al.A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models[J].J Pharmacol Exp Ther,202 378(3):262-275.DOI:10.1124/jpet.121.000590.

[43]鄧嘉強(qiáng),井秀娜,林淡鈺,等.利福平通過抑制蛋白激酶R活化調(diào)節(jié)魚藤酮誘導(dǎo)的小膠質(zhì)細(xì)胞炎癥而發(fā)揮神經(jīng)保護(hù)作用[J].嶺南急診醫(yī)學(xué)雜志,202 26(2):121-124.DOI:10.3969/j.issn.1671-301X.2021.02.004.

[44]Rice HC,de Malmazet D,Schreurs A,et al.Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission[J].Science,2019,363(6423):eaao4827.DOI:10.1126/science.aao4827.

[45]Maucat-Tan NB,Saadipour K,Wang YJ,et al.Cellular trafficking of amyloid precursor protein in amyloidogenesis physiological and pathological significance[J].Mol Neurobiol,2019,56(2):812-830.DOI:10.1007/s12035-018-1106-9.

[46]Ma C,Hong F,Yang S.Amyloidosis in Alzheimers disease:pathogeny,etiology,and related therapeutic directions[J].Molecules,2022,27(4):1210.DOI:10.3390/molecules27041210.

[47]Glenner GG,Wong CW.Alzheimers disease:initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J].Biochem Biophys Res Commun,1984,120(3):885-890.DOI:10.1016/s0006-291x(84)80190-4.

[48]Yakupova EI,Bobyleva LG,Shumeyko SA,et al.Amyloids:the history of toxicity and functionality[J].Biology,202 10(5):394.DOI:10.3390/biology10050394.

[49]Guix FX,Sartório CL,Ill-Raga G.BACE1 translation:at the crossroads between Alzheimers disease neurodegeneration and memory consolidation[J].J Alzheimers Dis Rep,2019,3(1):113-148.DOI:10.3233/adr-180089.

[50]Syeda T,Cannon JR.Environmental exposures and the etiopathogenesis of Alzheimers disease:the potential role of BACE1 as a critical neurotoxic target[J].J Biochem Mol Toxicol,202 35(4):e22694.DOI:10.1002/jbt.22694.

[51]Volloch V,Rits-Volloch S.The amyloid cascade hypothesis 2.0 for Alzheimers disease and aging-associated cognitive decline:from molecular basis to effective therapy[J].Int J Mol Sci,2023,24(15):12246.DOI:10.3390/ijms241512246.

[52]Gourmaud S,Mouton-Liger F,Abadie C,et al.Dual kinase inhibition affords extended in vitro neuroprotection in Amyloid-β toxicity[J].J Alzheimers Dis,2016,54(4):1659-1670.DOI:10.3233/jad-160509.

[53]Lourenco MV,Clarke JR,F(xiàn)rozza RL,et al.TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimers β-amyloid oligomers in mice and monkeys[J].Cell Metab,2013,18(6):831-843.DOI:10.1016/j.cmet.2013.11.002.

[54]Chan AWS,Cho IK,Li CX,et al.Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey[J].Aging Brain,2022,2:100044.DOI:10.1016/j.nbas.2022.100044.

[55]Mouton-Liger F,Rebillat AS,Gourmaud S,et al.PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model[J].Cell Death Dis,2015,6(1):e1594.DOI:10.1038/cddis.2014.552.

[56]Carret-Rebillat AS,Pace C,GourmauDS,et al.Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation[J].Sci Rep,2015,5:8489.DOI:10.1038/srep08489.

[57]Paquet C,Mouton-Liger F,Meurs EF,et al.The PKR activator PACT is induced by Aβ:involvement in Alzheimers disease[J].Brain Pathol,2012,22(2):219-229.DOI:10.1111/j.1750-3639.2011.00520.x.

[58]Chen Y,Yu Y.Tau and neuroinflammation in Alzheimers disease:interplay mechanisms and clinical translation[J].J Neuroinflammation,2023,20(1):165.DOI:10.1186/s12974-023-02853-3.

[59]el Mammeri N,Duan P,Dregni AJ,et al.Amyloid fibril structures of tau:conformational plasticity of the second microtubule-binding repeat[J].Sci Adv,2023,9(28):eadh4731.DOI:10.1126/sciadv.adh4731.

[60]Congdon EE,Sigurdsson EM.Tau-targeting therapies for Alzheimer disease[J].Nat Rev Neurol,2018,14(7):399-415.DOI:10.1038/s41582-018-0013-z.

[61]Dejanovic B,Huntley MA,de Mazière A,et al.Changes in the synaptic proteome in tauopathy and rescue of Tau-induced synapse loss by c1q antibodies[J].Neuron,2018,100(6):1322-1336.e7.DOI:10.1016/j.neuron.2018.10.014.

[62]Reimer L,Betzer C,Kofoed RH,et al.PKR kinase directly regulates tau expression and Alzheimers disease-related tau phosphorylation[J].Brain Pathol,202 31(1):103-119.DOI:10.1111/bpa.12883.

[63]Dubbelman MA,Mimmack KJ,Sprague EH,et al.Regional cerebral tau predicts decline in everyday functioning across the Alzheimers disease spectrum[J].Alzheimers Res Ther,2023,15(1):120.DOI:10.1186/s13195-023-01267-w.

[64]Moradi Majd R,Mayeli M,Rahmani F.Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases[J].Metab Brain Dis,2020,35(8):1241-1250.DOI:10.1007/s11011-020-00600-8.

[65]Drummond E,Pires G,Macmurray C,et al.Phosphorylated tau interactome in the human Alzheimers disease brain[J].Brain,2020,143(9):2803-2817.DOI:10.1093/brain/awaa223.

[66]Turab Naqvi AA,Hasan GM,Hassan MI.Targeting Tau hyperphosphorylation via kinase inhibition:strategy to address Alzheimers disease[J].Curr Top Med Chem,2020,20(12):1059-1073.DOI:10.2174/1568026620666200106125910.

[67]Amin J,Paquet C,Baker A,et al.Effect of amyloid-β (Aβ) immunization on hyperphosphorylated tau:a potential role for glycogen synthase kinase (GSK)-3β[J].Neuropathol Appl Neurobiol,2015,41(4):445-457.DOI:10.1111/nan.12205.

[68]生曉娜,李瀟瀟,張曉煒,等.阿爾茨海默病患者淋巴細(xì)胞中雙鏈RNA-依賴的蛋白激酶水平與認(rèn)知障礙的相關(guān)性[J].中風(fēng)與神經(jīng)疾病雜志,2017,34(8):692-695.DOI:10.19845/j.cnki.zfysjjbzz.2017.08.005.

[69]Monllor P,Giraldo E,Badia MC,et al.Serum levels of clusterin,PKR,and RAGE correlate with amyloid burden in Alzheimers disease[J].J Alzheimers Dis,202 80(3):1067-1077.DOI:10.3233/jad-201443.

[70]Dumurgier J,Mouton-Liger F,Lapalus P,et al.Cerebrospinal fluid PKR level predicts cognitive decline in Alzheimers disease[J].PLoS One,2013,8(1):e53587.DOI:10.1371/journal.pone.0053587.

[71]Paquet C,Dumurgier J,Hugon J.Pro-apoptotic kinase levels in cerebrospinal fluid as potential future biomarkers in Alzheimers disease[J].Front Neurol,2015,6:168.DOI:10.3389/fneur.2015.00168.

[72]Zeng Y,Wang L,Zhou Y,et al.NMDA receptor antagonists engender neuroprotection against gp120-induced cognitive dysfunction in rats through modulation of PKR activation,oxidative stress,ER stress and IRE1α signal pathway[J].Eur J Neurosci,2022,56(2):3806-3824.DOI:10.1111/ejn.15688.

[73]Egan MF,Kost J,Voss T,et al.Randomized trial of verubecestat for prodromal Alzheimers disease[J].N Engl J Med,2019,380(15):1408-1420.DOI:10.1056/NEJMoa1812840.

[74]Egan MF,Kost J,Tariot PN,et al.Randomized trial of verubecestat for mild-to-moderate Alzheimers disease[J].N Engl J Med,2018,378(18):1691-1703.DOI:10.1056/NEJMoa1706441.

(收稿日期:2023-08-08)

猜你喜歡
磷酸化神經(jīng)元誘導(dǎo)
《從光子到神經(jīng)元》書評(píng)
齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
同角三角函數(shù)關(guān)系及誘導(dǎo)公式
ITSN1蛋白磷酸化的研究進(jìn)展
躍動(dòng)的神經(jīng)元——波蘭Brain Embassy聯(lián)合辦公
續(xù)斷水提液誘導(dǎo)HeLa細(xì)胞的凋亡
磷酸化肽富集新方法研究進(jìn)展
大型誘導(dǎo)標(biāo)在隧道夜間照明中的應(yīng)用
MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
基于二次型單神經(jīng)元PID的MPPT控制