張力鈺 陳代釗 劉康
摘 要 【目的】晚泥盆世弗拉—法門(Frasnian-Famennian,F(xiàn)-F)轉(zhuǎn)折期是地質(zhì)歷史的一個(gè)關(guān)鍵時(shí)期,海洋生態(tài)系統(tǒng)發(fā)生了重大變化并造成了低緯度地區(qū)淺海底棲生物的大量滅絕。關(guān)于該時(shí)期的古氣候、古海洋環(huán)境變化以及生物滅絕的成因機(jī)制研究目前已取得一定的進(jìn)展,但仍然存在爭(zhēng)議且各環(huán)境要素之間的相互作用尚不明確。【方法】在系統(tǒng)梳理F-F轉(zhuǎn)折期古氣候、古海洋環(huán)境變化研究現(xiàn)狀的基礎(chǔ)上,結(jié)合華南的研究實(shí)例探討了F-F轉(zhuǎn)折期的古海洋缺氧模式?!窘Y(jié)果與結(jié)論】F-F轉(zhuǎn)折期,氣候在變冷的趨勢(shì)下出現(xiàn)多次快速的暖—冷交替;缺氧范圍和程度各地表現(xiàn)不一,但主要集中在低緯度淺海地區(qū)上Kellwasser層附近。因此,F(xiàn)-F生物危機(jī)并不是單一因素造成的。頻繁、短暫的火山活動(dòng)引起大陸風(fēng)化作用增強(qiáng),一方面導(dǎo)致了氣候快速的暖—冷交替,另一方面促進(jìn)了陸地向海洋中輸入營(yíng)養(yǎng)物質(zhì)造成淺海的富營(yíng)養(yǎng)化和缺氧。各個(gè)環(huán)境因素相互制約/影響對(duì)低緯度淺海地區(qū)生命造成極大的環(huán)境壓力,最終導(dǎo)致了F-F生物危機(jī)。
關(guān)鍵詞 弗拉—法門轉(zhuǎn)折期;古氣候;古海洋氧化還原狀態(tài);生物危機(jī)
第一作者簡(jiǎn)介 張力鈺,女,1992年出生,博士,助理研究員,沉積學(xué)與沉積地球化學(xué),E-mail: zhangliyu.syky@sinopec.com
中圖分類號(hào) P512.2 文獻(xiàn)標(biāo)志碼 A
0 引言
泥盆紀(jì)晚期是地質(zhì)歷史關(guān)鍵時(shí)期,地球表生系統(tǒng)發(fā)生了顯著變化,期間發(fā)生了諸如維管束植物登陸[1]、大陸風(fēng)化作用增強(qiáng)[2?3]、全球氣候由溫室轉(zhuǎn)變?yōu)楸襕4?6]、火山活動(dòng)[7?9]、生物滅絕等重大地質(zhì)事件[10?14]。其中,以晚泥盆世弗拉—法門(Frasnian-Famennian,F(xiàn)-F)轉(zhuǎn)折期的生物滅絕事件最為顯著,被稱為F-F事件或者Kellwasser事件(可細(xì)分為上Kellwasser事件和下Kellwasser 事件,分別位于牙形刺Palmatolepisrhenana 帶下部和Palmatolepis linguiformis 帶頂部),也被認(rèn)定為顯生宙五大生物集群滅絕事件之一[15?18]。
F-F生物滅絕事件實(shí)際上是一次循序的、漸進(jìn)式生物滅亡的結(jié)果,從中泥盆世拉開(kāi)序幕,在F-F界線附近達(dá)到頂峰(主幕)[19]。此次事件造成約21%科,50%屬和80%種發(fā)生了滅絕[10,20],其中低緯度淺海底棲生物受到的影響最大,高緯度、深海生物和陸地生物所受影響甚微[18,21]。泥盆紀(jì)典型的珊瑚—層孔蟲礁幾乎全部消亡,世界范圍內(nèi),47個(gè)淺水型四射珊瑚屬僅2~3個(gè)屬殘存下來(lái),而151個(gè)種的珊瑚幾乎全部滅絕[19,22?23]。層孔蟲屬的數(shù)量急劇減少,35個(gè)屬中24個(gè)屬滅絕,滅絕率高達(dá)68%[24?25];腕足動(dòng)物也受到重創(chuàng),五房貝目和無(wú)洞貝目滅絕,正形貝目和扭月貝目受到重創(chuàng),71個(gè)弗拉期的屬僅10屬存活下來(lái),損失率約為86%,繼之以法門期長(zhǎng)身貝目、石燕貝目和小嘴貝目繁盛為特征[25];三葉蟲5個(gè)目中3個(gè)目消失,6個(gè)科的分子消失,目一級(jí)滅絕率達(dá)60%[25];淺海底棲介形類世界各地滅絕強(qiáng)度有所差異,種一級(jí)的滅絕率介于65%~80%[26],深水介形類受影響較弱;大量弗拉期典型牙形刺分子消亡,全球范圍內(nèi)弗拉階頂部的Palmatolepid 生物相、Palmatolepid?Polygnathid 生物相轉(zhuǎn)變?yōu)榉ㄩT階底部的Palmatolepid?Icriodid 生物相[27]。竹節(jié)石幾乎全部滅絕,25個(gè)屬僅有3個(gè)屬的個(gè)別分子延續(xù)至法門期早期[28];菊石約67%的屬,88%的種滅絕[29]。深水放射蟲影響很小,并在滅絕事件之后有上升的趨勢(shì)[21]。
關(guān)于此次生物危機(jī)的成因機(jī)制,大量學(xué)者通過(guò)沉積學(xué)、地球化學(xué)等手段進(jìn)行了探討,主要包括海平面變化[30?31]、海洋缺氧及富營(yíng)養(yǎng)化[32?36]、氣候變化[27,37?38]、火山(熱液)活動(dòng)[8?9]以及地外事件[12,39]等。通過(guò)Web of Science以Late Devonian mass extinction(晚泥盆生物滅絕)和Frasnian-Famennian(弗拉—法門轉(zhuǎn)折期)為關(guān)鍵詞檢索了2000—2023年文獻(xiàn),顯示氣候變化和海洋缺氧是目前認(rèn)可度和討論度(被引率)最高的假說(shuō),且越來(lái)越多的證據(jù)表明各環(huán)境要素之間相互影響與制約。在F-F轉(zhuǎn)折期,古氣候與古海洋環(huán)境具備怎樣的特征,不同環(huán)境要素之間如何協(xié)同變化,以及導(dǎo)致F-F生物危機(jī)的最核心因素是什么,都是值得總結(jié)和探討的科學(xué)問(wèn)題,也對(duì)理解這一時(shí)期地球環(huán)境—生命協(xié)同演化規(guī)律具有重要意義。
擬通過(guò)對(duì)F-F轉(zhuǎn)折期氣候、古海洋環(huán)境變化的研究現(xiàn)狀進(jìn)行系統(tǒng)梳理,并結(jié)合華南的最新研究成果,詳細(xì)論述F-F轉(zhuǎn)折期的古氣候演化規(guī)律、古海洋氧化還原結(jié)構(gòu)以及最可能的生物滅絕機(jī)制,以期為下一步的研究提供思路。
1 晚泥盆世全球古地理與F?F 事件主要研究區(qū)
晚泥盆世古地理的基本格局主要由岡瓦納古陸、勞倫西亞大陸及其間的古特提斯洋、泛大洋組成。勞倫西亞大陸以東由一些分散的大型陸塊或小型至微型陸地群組成,其中,以西伯利亞、哈薩克斯坦、中國(guó)華北和華南古陸較大。岡瓦納大陸主體位于30° S以南,勞倫西亞大陸、華南板塊、華北板塊、塔里木板塊和哈薩克斯坦板塊主體位于赤道附近(南北緯30°之間)(圖1)。勞倫西亞大陸中央為南北向的加里東造山帶隆起區(qū),東西兩側(cè)發(fā)育廣闊陸表海。岡瓦納古陸為廣大隆起區(qū),北緣發(fā)育寬闊陸表海。勞倫西亞大陸東南緣與岡瓦納大陸西北緣之間以狹窄的瑞亞克洋相隔。華南板塊由華夏和揚(yáng)子地塊拼合而成,主體為隆升剝蝕區(qū),周緣主要為陸表海[40]。
全球范圍內(nèi),F(xiàn)-F事件的研究區(qū)主要集中在瑞亞克洋周緣水體受限的構(gòu)造盆地、華力西—阿巴拉契亞一帶的陸表盆地、陸緣盆地和華南的沉積盆地中,主要包括當(dāng)時(shí)低緯度地區(qū)的歐洲各地、北美東部和華南地區(qū),研究?jī)?nèi)容包括古生物、沉積學(xué)、地層學(xué)、地球化學(xué)等方面[25](圖1)。
拉利剖面位于廣西壯族自治區(qū)宜州市,上泥盆統(tǒng)由老至新可劃分為老爺墳組、香田組和五指山組。老爺墳組以灰色中厚層生屑灰?guī)r、砂屑灰?guī)r為主,香田組以淺灰—深灰中薄層泥晶灰?guī)r,泥質(zhì)條帶灰?guī)r和扁豆?fàn)罨規(guī)r為主,五指山組主要為深灰色薄層—中層瘤狀灰?guī)r、扁豆?fàn)罨規(guī)r。針對(duì)不同巖性系統(tǒng)采集了拉利F-F界線剖面新鮮巖樣,對(duì)其中55件樣品進(jìn)行了碳氧同位素分析,19件樣品進(jìn)行了稀土元素分析。碳氧同位素與稀土元素分析分別在中國(guó)科學(xué)院地質(zhì)與地球物理研究所(IGGCAS)穩(wěn)定同位素地球化學(xué)實(shí)驗(yàn)室和成礦年代學(xué)實(shí)驗(yàn)室完成。碳同位素和氧同位素的精度分別高于0.20‰和0.15‰。稀土元素測(cè)試誤差小于10%。
2 弗拉—法門轉(zhuǎn)折期氣候變化
每種生物都有其最適宜的生存溫度區(qū)間,小幅度的氣溫變化也可能對(duì)F-F事件中受影響最甚的低緯度(南北緯30°之間)淺海底棲生物種群產(chǎn)生致命的打擊。F-F轉(zhuǎn)折期,氣候變暖和變冷的假說(shuō)都有支持者。早期有學(xué)者提出F-F 之交的海水溫度可達(dá)40 ℃,溫度的升高可能造成F-F生物危機(jī)[41]。然而更多證據(jù)表明弗拉晚期溫度較高,存在一個(gè)“溫室”氣候,F(xiàn)-F轉(zhuǎn)折期,氣候變冷,逐漸向“冰室”轉(zhuǎn)化[4,37,42]。
Streel et al.[4]根據(jù)孢粉組合的分類多樣性研究,認(rèn)為吉維特期和弗拉期溫度較高并在弗拉末期達(dá)到最高;法門早期,孢粉多樣性下降,表明F-F轉(zhuǎn)折期氣候變冷。北美(加拿大)、華南(廣西)在F-F界線之下發(fā)育的因海平面下降造成的碳酸鹽臺(tái)地暴露/巖溶作用[4,33,43]亦被認(rèn)為是F-F轉(zhuǎn)折期氣候變冷的重要證據(jù)。此外,氧、碳、鍶等同位素更為精細(xì)地刻畫了F-F轉(zhuǎn)折期的氣候變化。
Joachimski et al. [37] 對(duì)德國(guó)Rheinische Schiefergebirge地區(qū)的兩條F-F界線剖面進(jìn)行了牙形刺氧同位素(δ18OPO4)分析,結(jié)果顯示上、下Kellwasser層(Upper/Lower Kellwasser Horizons,即UKH 和LKH)δ18OPO4 值出現(xiàn)了+1‰~+1.5‰(VSMOW)的正偏移,由此計(jì)算出F-F 轉(zhuǎn)折期海水溫度大致下降了5 ℃~7 ℃。之后,他又分析了歐洲、北美、澳大利亞的多條泥盆紀(jì)剖面的牙形刺氧同位素,結(jié)果表明,從早泥盆世的布拉格期(Pragian)到中泥盆世的吉維特(Givetian)中期,溫度逐漸從30 ℃ 下降至22 ℃ ;從吉維特(Givetian)中期到晚泥盆世的弗拉(Frasnian)晚期,溫度又逐漸上升至30 ℃;在弗拉期和法門期之交,溫度小幅降低[6]。類似地,Le Houedec et al.[44]使用牙形刺氧同位素溫度計(jì)在法國(guó)和摩洛哥的F-F界線剖面中也識(shí)別到弗拉期和法門期之交的小幅降溫事件。由于歐洲、北美等地很多深水F-F界線剖面高度凝縮[45?46],高分辨率的地球化學(xué)和環(huán)境信號(hào)可能存在缺失或疊加,華南F-F剖面一般是歐洲同期剖面厚度的2~5倍,沉積速率適中,能更好地保存當(dāng)時(shí)的海洋環(huán)境信息。Huang et al.[27]和Zhang et al.[47]對(duì)華南的付合(楊堤)和拉利F-F界線剖面進(jìn)行了高精度的牙形刺氧同位素分析,結(jié)果顯示F-F之交海水溫度變化范圍為27 ℃~36 ℃,與歐美地區(qū)接近,LKH-UKH存在明顯的快速降溫事件。特別地,付合(楊堤)剖面海水溫度在F-F轉(zhuǎn)折期有多次短周期的暖—冷交替波動(dòng),而非單調(diào)下降。
除氧同位素外,碳(δ13C)和鍶同位素(87Sr/86Sr)也是極好的古氣候指標(biāo)。F-F事件中,δ13C值在UKHLKH出現(xiàn)了全球性的碳同位素正偏移,幅度+2‰~+4‰[48?49],此次正偏移一般被認(rèn)為是有機(jī)碳快速埋藏的結(jié)果,伴隨著全球大氣CO2分壓(pCO2)的下降和氣候的變冷[19,48?50]。此外,有研究認(rèn)為碳酸鹽巖的無(wú)機(jī)碳(Ccarb)和有機(jī)碳(Corg)同位素差值δ13Ccarb-org不僅僅代表了不同碳庫(kù)中初始同位素組成,更代表了固定CO2過(guò)程中初級(jí)生產(chǎn)者(浮游植物)與海水溶解的CO2以及pCO2之間的碳同位素分餾效應(yīng)(εp)。當(dāng)pCO2升高時(shí)(氣溫升高)時(shí),分餾作用增強(qiáng),δ13Ccarb-org值升高,反之亦然[48,51?54]。華南付合(楊堤)剖面碳同位素結(jié)果顯示F-F之交δ13Ccarb-org整體下降,且中間存在3次明顯的波動(dòng)旋回[8],波動(dòng)趨勢(shì)與該剖面的δ18OPO4結(jié)果剛好相反[38](圖2),進(jìn)一步證實(shí)了F-F轉(zhuǎn)折期的氣候在整體變冷的趨勢(shì)下存在多期暖—冷交替。因此,氣候的整體變冷與風(fēng)化作用的長(zhǎng)期效應(yīng)和有機(jī)碳快速埋藏有關(guān)。
海水的鍶同位素組成(87Sr/86Srsw)主要由“殼源鍶”和“幔源鍶”的相對(duì)輸入量及其同位素比值決定[55?56]。全球海水87Sr/86Sr值曲線顯示從中泥盆世吉維特晚期到晚泥盆世弗拉早期,海水87Sr/86Sr值呈上升趨勢(shì),這可能是Eovariscan造山運(yùn)動(dòng)引起的地殼抬升和大陸風(fēng)化作用增強(qiáng)導(dǎo)致[2,57]。此外,Algeo et al.[58]提出中泥盆世維管束植物向陸的快速擴(kuò)張可能引起硅酸鹽風(fēng)化作用增強(qiáng)。然而,這種長(zhǎng)周期的風(fēng)化作用增強(qiáng)是無(wú)法解釋F-F轉(zhuǎn)折期的氣候快速變化的。Zhang et al.[38] 對(duì)F-F 轉(zhuǎn)折期華南付合剖面和波蘭Kowala剖面進(jìn)行了高精度的牙形刺87Sr/86Sr值分析,在F-F轉(zhuǎn)折期發(fā)現(xiàn)了三次明顯的87Sr/86Sr值波動(dòng)(特別是付合剖面,圖2中階段I,II,III),每次波動(dòng)(~200kyr)對(duì)應(yīng)著87Sr/86Sr值從?。ㄘ?fù)偏移)到大(正偏移)的變化,且與碳—氧同位素有著極好的對(duì)應(yīng)關(guān)系:87Sr/86Sr值降低(負(fù)偏移)時(shí),δ13Ccarb-org增大(正偏移),δ18OPO4減小(負(fù)偏移),反之亦然(圖2)。對(duì)此,Zhanget al.[38]認(rèn)為小規(guī)模的火山放氣作用會(huì)向大氣中釋放大量溫室氣體,氣候變暖,水循環(huán)加速,δ13Ccarb-org值增大,δ18OPO4值減小,陸地風(fēng)化作用增強(qiáng),引起陸源鍶通過(guò)河流輸入至海洋,87Sr/86Sr值增大;隨著風(fēng)化作用消耗掉大氣CO2,pCO2降低,氣候逐漸變冷,δ13Ccarb-org值變小,δ18OPO4值增大,87Sr/86Sr值減小。因此,間歇性、短周期的火山放氣作用引起的風(fēng)化作用變化和氣候暖—冷交替導(dǎo)致了F-F轉(zhuǎn)折期頻繁的C-O-Sr同位素變化。
綜上所述,中泥盆吉維特晚期—晚泥盆世弗拉晚期,氣候逐漸升溫;弗拉末期,溫度達(dá)到最高;弗拉末期—法門早期(F?F轉(zhuǎn)折期),氣候整體變冷,但中間存在多次暖—冷交替。頻繁、短周期的火山放氣作用引起的風(fēng)化作用變化可能是該時(shí)期氣候暖—冷交替的根本原因。
3 弗拉— 法門轉(zhuǎn)折期古海洋缺氧狀況
氧氣是生物賴以生存的基本條件,從地球出現(xiàn)原始生命后,生物經(jīng)歷了從簡(jiǎn)單到復(fù)雜、從低等到高等、從水生到陸生的演化,這都與大氣和海洋氧含量的增長(zhǎng)密不可分。大多數(shù)F?F界線剖面的UKH,LKH層以特征性的瀝青質(zhì)灰?guī)r和黑色頁(yè)巖沉積為主[33,59?60],因此海洋缺氧導(dǎo)致了F?F 生物危機(jī)的假說(shuō)經(jīng)久不衰。
3.1 全球海水氧化還原狀態(tài)
歐洲、北美地區(qū)的多條F?F界線剖面在UKH層識(shí)別到粒徑較小且變化范圍狹窄的草莓狀黃鐵礦,指示了UKH 層的缺氧事件,但LKH 層缺氧信號(hào)較弱[33,61]。Mn-Mo-U-V等氧化還原敏感元素在部分歐洲、北美剖面的UKH和LKH層有較明顯的富集,指示了缺氧事件的存在[35,60]。Haddad et al.[62]對(duì)北美Appalachian盆地UKH層的高分辨率微量元素分析認(rèn)為UKH層內(nèi)的缺氧是間歇性存在,并非持續(xù)缺氧。此外,氮同位素(δ15Norg)在Kellwasser層的正偏移[35]、碳酸鹽晶格硫酸鹽和黃鐵礦的硫同位素(SCAS,SPy)在UKH的波動(dòng)[8,63],營(yíng)厭氧光合作用的綠硫細(xì)菌生物標(biāo)志化合物的出現(xiàn)[34,64]均證實(shí)了Kellwasser缺氧事件,特別是在UKH層,有明顯的缺氧甚至硫化。
然而,絕大多數(shù)的研究剖面都出現(xiàn)在特定的環(huán)境中,特別是靠近物源的陸表海、陸緣海盆地[65]。相反,部分離岸的、高緯度地區(qū)的F?F剖面中則缺乏明顯缺氧記錄[66?67]。此外,以上指標(biāo)大多僅代表了局部或者區(qū)域性的缺氧事件,對(duì)全球性海水缺氧的指示意義不強(qiáng)。
近年來(lái),U同位素(δ238U)不斷被用于全球海洋缺氧面積的定量研究[68?70]。學(xué)者對(duì)來(lái)自美國(guó)內(nèi)華達(dá)Devils Gate組[36]和我國(guó)廣西白沙剖面[71]的碳酸鹽巖進(jìn)行了δ238U分析,結(jié)果顯示UKH和LKH層附近(與UKH、LKH層不完全對(duì)應(yīng))均出現(xiàn)了δ238U負(fù)偏移,并由此(根據(jù)質(zhì)量平衡模型)計(jì)算出全球海洋底層水體的缺氧面積增加了5%~15%,且總體海洋缺氧面積小于20%。White et al.[36]同時(shí)指出,缺氧海水主要集中在亞熱帶地區(qū)的陸緣海UKH和LKH層,缺氧面積分別為~45%(LKH)和~79%(UKH);但缺氧事件不僅僅局限于Kellwasser層,延伸范圍可能更廣(例如從牙形刺Hassi 帶到Crepida 帶均出現(xiàn)),且各研究剖面之間的缺氧程度和出現(xiàn)位置差異較大(圖3)。不難看出,F(xiàn)-F轉(zhuǎn)折期的海洋缺氧事件在一定程度上是“局限”的,主要集中在低緯度靠近陸源的陸表海/陸緣海,深海則不缺氧。缺氧事件在UKH層達(dá)到頂峰,但在UKH層內(nèi)仍然是間歇性缺氧;LKH層缺氧信號(hào)較弱,以次氧—氧化為主。
3.2 華南地區(qū)海水氧化還原狀態(tài)和缺氧模式
針對(duì)Kellwasser 缺氧事件,目前有兩種模型:(1)“由下至上型”,即深層缺氧水體的上涌引起缺氧;(2)“由上至下型”,即大陸風(fēng)化作用增強(qiáng)向海洋輸入大量營(yíng)養(yǎng)物質(zhì),導(dǎo)致富營(yíng)養(yǎng)化和缺氧[33,35,65,73]。
3.2.1 拉利剖面氧化還原狀態(tài)
拉利剖面的碳酸鹽巖碳氧同位素(δ13Ccarb,δ18Ocarb)和稀土元素分析結(jié)果詳見(jiàn)表1和表2。δ13Ccarb值介于+0.99‰~ +3.53‰(VPDB)。δ18Ocarb 值介于-1.45‰~-6.37‰(VPDB),平均值為-4.19‰VPDB(n=55)。垂向上,碳同位素發(fā)生了兩次明顯的正偏移。第一次正偏移發(fā)生在香田組底部,LKH層附近,δ13Ccarb 值由1.06‰(LL-41)增長(zhǎng)到3.53‰(LL-46),增幅2.22‰。第二次正偏移發(fā)生在F-F 界線附近,即UKH層,δ13Ccarb值由0.28‰(LL-68)增長(zhǎng)到3.17‰(LL-77),增幅為2.89‰。Y/Ho比值介于33.48~54.42,平均值為42.34(n=19)。Ce/Ce*(Ce/Ce* =2Cen/(Lan+Prn)值介于0.13~0.73,變化范圍較大,平均值為0.53(n=19)。
Y/Ho 比值被廣泛用于指示陸源輸入量,后太古宙澳大利亞頁(yè)巖(Post?Archean Australian Shale,PAAS)和現(xiàn)代海水的Y/Ho 比值分別為~27 和~44[74-75],拉利剖面19 個(gè)灰?guī)r樣品的Y/Ho 平均值為42.34,接近現(xiàn)代海水值,表明陸源碎屑混入量很少。此外,海相碳酸鹽巖δ18Ocarb大于?5‰時(shí),一般認(rèn)為其基本不受成巖流體改造[76]。拉利剖面的除極個(gè)別樣品δ18Ocarb 大于-5‰ 外,其余樣品的δ18Ocarb 值均小于-5‰,且δ13Ccarb 與δ18Ocarb 之間相關(guān)性很低(R2=0.03,圖4),說(shuō)明拉利剖面的灰?guī)r樣品受成巖作用影響較小,較好地記錄了當(dāng)時(shí)的海水信號(hào)。
現(xiàn)代海洋中,Ce3+容易被錳(Mn)的氧化物或者細(xì)菌等氧化成Ce4+。Ce4+容易吸附在Mn氧化物或者氫氧化物的表面,從海水中清除。因此,相對(duì)于其他+3 價(jià)的稀土元素(Rare Earth Element,REE),Ce在海水中的溶解度變低,導(dǎo)致氧化的海水虧損Ce,呈現(xiàn)Ce負(fù)異常;缺氧的海水Ce/Ce*值相對(duì)較高[77?78]。拉利剖面Ce/Ce*值介于0.13~0.73,平均值為0.53。垂向上,Ce/Ce*值在香田組頂部(F-F界線之下)瘤狀灰?guī)r、泥質(zhì)灰?guī)r段發(fā)生了明顯增大(圖5),由最小值0.13增長(zhǎng)到最大值0.73,增幅達(dá)到0.60。因此,盡管拉利剖面碳酸鹽巖Ce/Ce*值總體呈負(fù)異常,但垂向差異較大,在F?F界線之下(UKH層及其之下)海水變得更加還原;而LKH層Ce/Ce*較小,也沒(méi)有明顯的增大,表明LKH層并未發(fā)生明顯的缺氧,類似于部分歐洲、北美剖面結(jié)果[33,36]。
3.2.2 華南其他剖面氧化還原狀態(tài)及缺氧模式
Zhang et al.[46]曾通過(guò)氧化還原敏感元素對(duì)華南廣西地區(qū)深水海槽相(與廣海相連)的板城剖面(圖6)進(jìn)行了氧化還原狀態(tài)研究,結(jié)果顯示Mo、U和V元素在F?F界線附近沒(méi)有富集,表明板城地區(qū)在UKH和LKH層及其附近沉積時(shí)海水沒(méi)有出現(xiàn)缺氧,仍然保持氧化狀態(tài)(圖6)[46]。
Cai et al.[72]通過(guò)硫同位素和鐵組分對(duì)華南近陸源的濱岸臺(tái)地相的錫礦山剖面(圖7)F-F轉(zhuǎn)折期的缺氧事件進(jìn)行了研究。結(jié)果顯示,UKH事件層,F(xiàn)eHR/FeT大于0.38,F(xiàn)ePy/FeHR升至0.88,有機(jī)硫(SKero)和黃鐵礦硫(SPy)同位素值大幅負(fù)偏,Δ34SKero-Py 的快速減?。▓D7),海洋硫酸鹽濃度大幅降低,表明海洋環(huán)境從氧化狀態(tài)快速轉(zhuǎn)變?yōu)槿毖趿蚧癄顟B(tài)[72]。
綜上,從錫礦山、拉利和板城剖面的研究成果來(lái)看,最靠近陸源、水體最淺的錫礦山剖面缺氧程度最高,UKH層缺氧硫化;相對(duì)遠(yuǎn)離大陸、水體較淺的臺(tái)地邊緣—斜坡相拉利剖面UKH層及其之下相對(duì)還原;而更加開(kāi)闊、更深水、更加遠(yuǎn)離大陸的板城剖面持續(xù)氧化。由此可見(jiàn),在華南地區(qū),“由上至下”的缺氧模式更為合理(圖8)。此外,晚泥盆世華南地區(qū)呈網(wǎng)格狀、臺(tái)地—臺(tái)間盆地間隔的古地理格局,且海平面在F?F之交整體呈下降趨勢(shì)[13,43],這在很大程度抑制了上升洋流,一定程度支持了大陸風(fēng)化增強(qiáng)最終導(dǎo)致海水缺氧的模式。
Carmichael et al.[79]關(guān)于晚泥盆世孤立島弧環(huán)境的缺氧研究顯示,晚泥盆世開(kāi)闊海中島弧兩側(cè)水體出現(xiàn)短暫缺氧;然而上升流,水體停滯以及熱液活動(dòng)引起的缺氧(即上升流模型)都不能很好地解釋?shí)u弧兩側(cè)水體缺氧現(xiàn)象[65]。此外,大量的研究證實(shí)該時(shí)期有明顯的初級(jí)生產(chǎn)力增強(qiáng)以及透光帶富營(yíng)養(yǎng)化現(xiàn)象[32,34,50,62,64,67],因此風(fēng)化作用增強(qiáng)引起輸入海洋的陸源營(yíng)養(yǎng)物質(zhì)增加,導(dǎo)致近陸源的陸緣海地區(qū)的海水富營(yíng)養(yǎng)化和缺氧的模式受到了更多學(xué)者的青睞。
4 F?F生物危機(jī)的成因探討
綜上所述,F(xiàn)?F轉(zhuǎn)折期,古氣候、古海洋等環(huán)境要素發(fā)生了明顯波動(dòng)。各環(huán)境要素間存在一定的成因聯(lián)系,它們對(duì)F?F轉(zhuǎn)折期的生物演變有著不同程度的影響。
F?F轉(zhuǎn)折期的氣候變化與底棲生物為主的生物消亡有著較好的對(duì)應(yīng)關(guān)系(圖2),表明氣候?qū)τ贔?F生物危機(jī)有著直接且深刻的影響。F?F轉(zhuǎn)折期的缺氧事件的出現(xiàn)時(shí)間、程度在世界各地表現(xiàn)不一(圖3),很難直接將海洋缺氧與F?F事件對(duì)應(yīng),缺氧程度、范圍對(duì)于滅絕事件的影響需要進(jìn)一步的明確和限定,但不能排除淺海的缺氧對(duì)F-F事件有一定的影響。
北非、歐洲等地的Kellwasser事件層發(fā)現(xiàn)了汞元素的異常富集[9];西伯利亞Viluy 玄武巖(ViluyTraps)、瑞典Sijan火山口、東歐臺(tái)地強(qiáng)烈的裂谷火山活動(dòng)、中亞造山帶等地的島弧巖漿作用以及華南的凝灰?guī)r層均被視為F?F轉(zhuǎn)折期火山作用的證據(jù)[46,80]。頻繁、短周期的火山放氣作用會(huì)大幅增強(qiáng)大陸風(fēng)化作用,一方面引起氣候在變冷的趨勢(shì)下多次暖—冷交替;另一方面可能向表層海水輸入大量的營(yíng)養(yǎng)物質(zhì),造成靠近陸源的淺海短暫富營(yíng)養(yǎng)化和缺氧(圖9)。世界各地表現(xiàn)不一的缺氧程度和范圍也指示海水缺氧的誘因可能并不單一。氣候與海洋環(huán)境的變化給熱帶淺海底棲生物造成極大的環(huán)境壓力,使它們生理上難以適應(yīng),大量消亡。因此F?F生物危機(jī)并不是單一環(huán)境因素造成的,而是由火山構(gòu)造活動(dòng)、氣候、海洋環(huán)境(海平面、氧化還原狀態(tài)等)等因素相互作用,相互反饋?zhàn)罱K導(dǎo)致(圖9)。
5 結(jié)論
F?F轉(zhuǎn)折期,氣候整體變冷,期間存在多次暖—冷交替;海洋缺氧主要集中在靠近陸源的淺海,缺氧范圍和程度各地表現(xiàn)不一,可能是增強(qiáng)的大陸風(fēng)化作用導(dǎo)致?;鹕交顒?dòng),特別是陸弧火山幕式作用可能是引起氣候波動(dòng),海洋環(huán)境變化的內(nèi)生觸發(fā)因素。因此,F(xiàn)?F生物危機(jī)更可能是多種環(huán)境因素相互作用、互相反饋共同導(dǎo)致,而非單一因素引起。
致謝 感謝中國(guó)科學(xué)院地質(zhì)與地球物理研究所李文君高級(jí)工程師和崔琳琳高級(jí)工程師在實(shí)驗(yàn)分析過(guò)程中給予的幫助,感謝審稿專家及編輯在審稿、排版和校對(duì)過(guò)程中提出的寶貴修改意見(jiàn)。
參考文獻(xiàn)(References)
[1] Algeo T J, Berner R A, Maynard J B, et al. Late Devonian oceanicanoxic events and biotic crises: “rooted” in the evolution of vascularland plants?[J]. GSA Today, 1995, 5(3): 63-66.
[2] van Geldern R, Joachimski M M, Day J, et al. Carbon, oxygenand strontium isotope records of Devonian brachiopod shell calcite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,240(1/2): 47-67.
[3] Percival L M E, Selby D, Bond D P G, et al. Pulses of enhancedcontinental weathering associated with multiple Late Devonianclimate perturbations: Evidence from osmium-isotope compositions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2019, 524: 240-249.
[4] Streel M, Caputo M V, Loboziak S, et al. Late Frasnian-Famennian climates based on palynomorph analyses and the questionof the Late Devonian glaciations[J]. Earth-Science Reviews,2000, 52(1/2/3): 121-173.
[5] Joachimski M M, van Geldern R, Breisig S, et al. Oxygen isotopeevolution of biogenic calcite and apatite during the Middle andLate Devonian[J]. International Journal of Earth Sciences, 2004,93(4): 542-553.
[6] Joachimski M M, Breisig S, Buggisch W, et al. Devonian climateand reef evolution: Insights from oxygen isotopes in apatite[J].Earth and Planetary Science Letters, 2009, 284(3/4): 599-609.
[7] Over D J. The Frasnian/Famennian boundary in central andeastern United States[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2002, 181(1/2/3): 153-169.
[8] Chen D Z, Qing H R, Li R W. The Late Devonian Frasnian Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and87Sr/86Sr isotopic systematics[J]. Earth and Planetary Science Letters,2005, 235(1/2): 151-166.
[9] Racki G, Rakociński M, Marynowski L, et al. Mercury enrichmentsand the Frasnian-Famennian biotic crisis: A volcanic triggerproved?[J]. Geology, 2018, 46(6): 543-546.
[10] McGhee G R, Jr. The Late Devonian mass extinction:The Frasnian/Famennian crisis[M]. New York: Columbia UniversityPress, 1996.
[11] Racki G. Frasnian–Famennian biotic crisis: Undervalued tectoniccontrol? [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998, 141(3/4): 177-198.
[12] Sandberg C A, Morrow J R, Ziegler W. Late Devonian sea-levelchanges, catastrophic events, and mass extinctions[M]//KoeberlC, MacLeod K G. Catastrophic events and mass extinctions: Impactsand beyond. Boulder: Geological Society of America,2002: 473-488.
[13] Chen D Z, Tucker M E. The Frasnian–Famennian mass extinction:Insights from high-resolution sequence stratigraphyand cyclostratigraphy in South China[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2003, 193(1): 87-111.
[14] Kaiser S I, Aretz M, Becker R T. The global Hangenberg Crisis(Devonian – Carboniferous transition): Review of a first-ordermass extinction[J]. Geological Society, London, Special Publications,2016, 423(1): 387-437.
[15] 戎嘉余,黃冰. 生物大滅絕研究三十年[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2014,44(3):377-404.[Rong Jiayu, Huang Bing.Study of Mass Extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3):377-404.]
[16] Whiteside J H, Grice K. Biomarker records associated withmass extinction events[J]. Annual Review of Earth and PlanetarySciences, 2016, 44: 581-612.
[17] Erlykin A D, Harper D A T, Sloan T, et al. Mass extinctions overthe last 500 myr: An astronomical cause? [J]. Palaeontology,2017, 60(2): 159-167.
[18] 沈樹(shù)忠,張華. 什么引起五次生物大滅絕?[J]. 科學(xué)通報(bào),2017,62(11):1119-1135.[Shen Shuzhong, Zhang Hua. Whatcaused the five mass extinctions? [J]. Chinese Science Bulletin,2017, 62(11): 1119-1135.]
[19] Copper P. Reef development at the Frasnian/Famennian mass extinctionboundary[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2002, 181(1/2/3): 27-65.
[20] Olempska E. The Late Devonian Upper Kellwasser Event andentomozoacean ostracods in the Holy Cross Mountains, Poland[J]. Acta Palaeontologica Polonica, 2002, 47(2): 247-266.
[21] Ma X P, Gong Y M, Chen D Z, et al. The Late DevonianFrasnian-Famennian Event in South China: Patterns and causesof extinctions, sea level changes, and isotope variations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016,448: 224-244.
[22] Sorauf J E, Pedder A E H. Late Devonian rugose corals and theFrasnian-Famennian crsis[J]. Canadian Journal of Earth Sciences,1986, 23(9): 1265-1287.
[23] 廖衛(wèi)華. 華南中泥盆世兩次重要的珊瑚群更替事件[J]. 古生物學(xué)報(bào),2015,54(3):305-315. [Liao Weihua. Two majorfaunal turnover events of Middle Devonian corals in South China[J]. Acta Palaeontologica Sinica, 2015, 54(3): 305-315.]
[24] 董俊彥,龔一鳴. 層孔蟲研究進(jìn)展與展望[J]. 古地理學(xué)報(bào),2019,21(5):783-802.[Dong Junyan, Gong Yiming. Progressand prospects of studies on stromatoporoids[J]. Journal ofPalaeogeography, 2019, 21(5): 783-802.]
[25] 王玉玨,梁昆,陳波,等. 晚泥盆世F-F 大滅絕事件研究進(jìn)展[J]. 地層學(xué)雜志,2020,44(3):277-298.[Wang Yujue, LiangKun, Chen Bo, et al. Research progress in the Late Devonian FFmass extinction[J]. Journal of Stratigraphy, 2020, 44(3):277-298.]
[26] 宋俊俊,龔一鳴. 古生代介形類的研究現(xiàn)狀及展望[J]. 古生物學(xué)報(bào),2015,54(3):404-424.[Song Junjun, Gong Yiming. Progressesand prospects of palaeozoic ostracod study[J]. ActaPalaeontologica Sinica, 2015, 54(3): 404-424.]
[27] Huang C, Joachimski M M, Gong Y M. Did climate changestrigger the Late Devonian Kellwasser Crisis? Evidence from ahigh-resolution conodont δ18OPO4 record from South China[J].Earth and Planetary Science Letters, 2018, 495: 174-184.
[28] Li Y X. Famennian tentaculitids of China[J]. Journal ofPaleontology, 2000, 74(5): 969-975.
[29] Becker R T. Anoxia, eustatic changes, and Upper Devonian tolowermost Carboniferous global ammonoid diversity[M]//HouseM R. The ammonoidea: Environment, ecology, and evolutionarychange. Oxford: Clarendon Press, 1993, 47: 115-163.
[30] Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuationsin Euramerica[J]. GSA Bulletin, 1985, 96(5): 567-587.
[31] Bond D P G, Wignall P B. The role of sea-level change and marineanoxia in the Frasnian–Famennian (Late Devonian) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 263(3/4): 107-118.
[32] Murphy A E, Sageman B B, Hollander D J. Eutrophication bydecoupling of the marine biogeochemical cycles of C, N, and P:A mechanism for the Late Devonian mass extinction[J]. Geology,2000, 28(5): 427-430.
[33] Bond D, Wignall P B, Racki G. Extent and duration of marineanoxia during the Frasnian–Famennian (Late Devonian) mass extinctionin Poland, Germany, Austria and France[J]. GeologicalMagazine, 2004, 141(2): 173-193.
[34] Marynowski L, Rakociński M, Borcuch E, et al. Molecular andpetrographic indicators of redox conditions and bacterial communitiesafter the F/F mass extinction (Kowala, Holy Cross Mountains,Poland) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2011, 306(1/2): 1-14.
[35] Whalen M T, ?liwiński M G, Payne J H, et al. Chemostratigraphyand magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: Implicationsfor carbon and nutrient cycling and mass extinction[J]. Geological Society, London, Special Publications, 2015, 414(1): 37-72.
[36] White D A, Elrick M, Romaniello S, et al. Global seawaterredox trends during the Late Devonian mass extinction detectedusing U isotopes of marine limestones[J]. Earth and PlanetaryScience Letters, 2018, 503: 68-77.
[37] Joachimski M M, Buggisch W. Conodont apatite δ18O signaturesindicate climatic cooling as a trigger of the Late Devonian massextinction[J]. Geology, 2002, 30(8): 711-714.
[38] Zhang L Y, Chen D Z, Huang T Y, et al. An abrupt oceanicchange and frequent climate fluctuations across the Frasnian-Famennian transition of Late Devonian: Constraints fromconodont Sr isotope[J]. Geological Journal, 2020, 55(6): 4479-4492.
[39] Wang K, Orth C J, Attrep M, Jr, et al. Geochemical evidence fora catastrophic biotic event at the Frasnian/Famennian boundaryin South China[J]. Geology, 1991, 19(8): 776-779.
[40] Golonka J. Phanerozoic palaeoenvironment and palaeolithofaciesmaps of the Arctic region[J]. Geological Society,London, Memoirs, 2011, 35(1): 79-129.
[41] Thompson J B, Newton C R. Late Devonian mass extinction:Episodic climatic cooling or warming?[M]//McMillan N J, EmbryA F, Glass D J. Devonian of the world. Calgary: CanadianSociety of Petroleum Geologists, 1988: 29-34.
[42] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250.
[43] Chen D Z, Tucker M. Palaeokarst and its implication for the extinctionevent at the Frasnian-Famennian boundary (Guilin,South China) [J]. Journal of the Geological Society, 2004, 161(6): 895-898.
[44] Le Houedec S, Girard C, Balter V. Conodont Sr/Ca and δ18O recordseawater changes at the Frasnian–Famennian boundary[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376:114-121.
[45] Gereke M, Schindler E. “Time-Specific Facies” and biologicalcrises: The Kellwasser Event interval near the Frasnian/Famennianboundary (Late Devonian) [J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2012, 367-368: 19-29.
[46] Zhang L Y, Chen D Z, Kuang G D, et al. Persistent oxic deepocean conditions and frequent volcanic activities during theFrasnian-Famennian transition recorded in South China[J].Global and Planetary Change, 2020, 195: 103350.
[47] Zhang X S, Joachimski M M, Gong Y M. Late Devonian greenhouse-icehouse climate transition: New evidence from conodontδ18O thermometry in the eastern Palaeotethys (Lali section,South China)[J]. Chemical Geology, 2021, 581: 120383.
[48] Joachimski M M, Pancost R D, Freeman K H, et al. Carbon isotopegeochemistry of the Frasnian-Famennian transition[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 91-109.
[49] Chang J Q, Bai Z Q, Sun Y L, et al. High resolution bio- andchemostratigraphic framework at the Frasnian-Famennianboundary: Implications for regional stratigraphic correlationbetween different sedimentary facies in South China[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2019, 531:108299.
[50] Gong Y M, Xu R, Tang Z D, et al. Relationships between bacterialalgalproliferating and mass extinction in the Late DevonianFrasnian-Famennian transition: Enlightening from carbonisotopes and molecular fossils[J]. Science in China Series D:Earth Sciences, 2005, 48(10): 1656-1665.
[51] Simon L, Goddéris Y, Buggisch W, et al. Modeling the carbonand sulfur isotope compositions of marine sediments: Climateevolution during the Devonian[J]. Chemical Geology, 2007, 246(1/2): 19-38.
[52] Hayes J M, Strauss H, Kaufman A J. The abundance of 13C inmarine organic matter and isotopic fractionation in the globalbiogeochemical cycle of carbon during the past 800 Ma[J].Chemical Geology, 1999, 161(1/2/3): 103-125.
[53] Kump L R, Arthur M A. Interpreting carbon-isotope excursions:Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198.
[54] 陳代釗,王卓卓,汪建國(guó). 晚泥盆世地球各圈層相互作用與海洋生態(tài)危機(jī):來(lái)自高分辨率的沉積和同位素地球化學(xué)證據(jù)[J].自然科學(xué)進(jìn)展,2006,16(4):439-448.[Chen Daizhao, WangZhuozhuo, Wang Jianguo. Earths sphere interactions andmarine ecological crisis in the Late Devonian: High-resolutionsedimentary and isotopic geochemical evidence[J]. Progress inNatural Science, 2006, 16(4): 439-448.]
[55] Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy:Potential resolution and event correlation[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 65-77.
[56] Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanicanoxic events, and seafloor hydrothermal activity in the Jurassicand Cretaceous[J]. American Journal of Science, 2001, 301(2):112-149.
[57] Averbuch O, Tribovillard N, Devleeschouwer X, et al. Mountainbuilding-enhanced continental weathering and organic carbonburial as major causes for climatic cooling at the Frasnian-Famennian boundary (c. 376 Ma)?[J]. Terra Nova, 2005, 17(1):25-34.
[58] Algeo T J, Scheckler S E. Land plant evolution and weatheringrate changes in the Devonian[J]. Journal of Earth Science, 2010,21(Suppl. 1): 75-78.
[59] Joachimski M M, Buggisch W. Anoxic events in the Late Frasnian:Causes of the Frasnian-Famennian faunal crisis?[J]. Geology,1993, 21(8): 675-678.
[60] Riquier L, Tribovillard N, Averbuch O, et al. The Late FrasnianKellwasser horizons of the Harz Mountains (Germany): Twooxygen-deficient periods resulting from different mechanisms[J]. Chemical Geology, 2006, 233(1/2): 137-155.
[61] Bond D, Wignall P B. Evidence for Late Devonian (Kellwasser)anoxic events in the Great Basin, western United States[J].Developments in Palaeontology and Stratigraphy, 2005, 20:225-262.
[62] Haddad E E, Boyer D L, Droser M L, et al. Ichnofabrics andchemostratigraphy argue against persistent anoxia during the UpperKellwasser Event in New York State[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2018, 490: 178-190.
[63] Sim M S, Ono S, Hurtgen M T. Sulfur isotope evidence for lowand fluctuating sulfate levels in the Late Devonian ocean and thepotential link with the mass extinction event[J]. Earth and PlanetaryScience Letters, 2015, 419: 52-62.
[64] Joachimski M M, Ostertag-Henning C, Pancost R D, et al. Watercolumn anoxia, enhanced productivity and concomitantchanges in δ13C and δ34S across the Frasnian-Famennianboundary (Kowala—Holy Cross Mountains/Poland)[J]. ChemicalGeology, 2001, 175(1/2): 109-131.
[65] Carmichael S K, Waters J A, K?nigshof P, et al. Paleogeographyand paleoenvironments of the Late Devonian Kellwasser Event:A review of its sedimentological and geochemical expression[J].Global and Planetary Change, 2019, 183: 102984.
[66] John E H, Wignall P B, Newton R J, et al. δ34SCAS and δ18OCASrecords during the Frasnian–Famennian (Late Devonian) transitionand their bearing on mass extinction models[J]. ChemicalGeology, 2010, 275(3/4): 221-234.
[67] George A D, Chow N, Trinajstic K M. Oxic facies and the LateDevonian mass extinction, Canning Basin, Australia[J]. Geology,2014, 42(4): 327-330.
[68] Tissot F L H, Dauphas N. Uranium isotopic compositions of thecrust and ocean: Age corrections, U budget and global extent ofmodern anoxia[J]. Geochimica et Cosmochimica Acta, 2015,167: 113-143.
[69] Lau K V, Macdonald F A, Maher K, et al. Uranium isotope evidencefor temporary ocean oxygenation in the aftermath of theSturtian Snowball Earth[J]. Earth and Planetary Science Letters,2017, 458: 282-292.
[70] Clarkson M O, Stirling C H, Jenkyns H C, et al. Uranium isotopeevidence for two episodes of deoxygenation during OceanicAnoxic Event 2[J]. Proceedings of the National Academy ofSciences of the United States of America, 2018, 115(12): 2918-2923.
[71] Song H Y, Song H J, Algeo T J, et al. Uranium and carbon isotopesdocument global-ocean redox-productivity relationshipslinked to cooling during the Frasnian-Famennian mass extinction[J]. Geology, 2017, 45(10): 887-890.
[72] Cai C F, Xu C L, Fakhraee M, et al. Significant fluctuation inthe global sulfate reservoir and oceanic redox state during theLate Devonian event[J]. PNAS Nexus, 2022, 1(4): pgac122.
[73] Kazmierczak J, Kremer B, Racki G. Late Devonian marineanoxia challenged by benthic cyanobacterial mats[J]. Geobiology,2012, 10(5): 371-383.
[74] Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontiumisotope constraints on sedimentary environment of Ediacaran carbonatesin southern Anhui, South China[J]. Chemical Geology,2009, 265(3/4): 345-362.
[75] 常華進(jìn),儲(chǔ)雪蕾,馮連君,等. 氧化還原敏感微量元素對(duì)古海洋沉積環(huán)境的指示意義[J]. 地質(zhì)論評(píng),2009,55(1):91-99.[Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitivetrace elements as paleoenvironments proxies[J]. GeologicalReview, 2009, 55(1): 91-99.]
[76] Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolutionof Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 37-57.
[77] Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidationprocess during sorption of rare earth elements on biogenicMn oxide produced by Acremonium sp. strain KR21-2[J].Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477.
[78] Ling H F, Chen X, Li D, et al. Cerium anomaly variations inEdiacaran-earliest Cambrian carbonates from the Yangtze Gorgesarea, South China: Implications for oxygenation of coevalshallow seawater[J]. Precambrian Research, 2013, 225:110-127.
[79] Carmichael S K, Waters J A, Suttner T J, et al. A new model forthe Kellwasser Anoxia Events (Late Devonian): Shallow wateranoxia in an open oceanic setting in the Central Asian OrogenicBelt[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2014, 399: 394-403.
[80] Percival L M E, Davies J H F L, Schaltegger U, et al. Preciselydating the Frasnian-Famennian boundary: Implications for thecause of the Late Devonian mass extinction[J]. Scientific Report,2018, 8(1): 9578.
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(U19B6003,42330203)[Foundation: National Natural Science Foundation of China, No. U19B6003, 42330203]