国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱電離質(zhì)譜法測(cè)定巖石標(biāo)準(zhǔn)物質(zhì)中Sr同位素組成

2024-07-11 07:22:38徐珺程偉遲乃杰張晨西李增勝舒磊單偉李敏孫雨沁王秀鳳周長祥
山東國土資源 2024年6期

徐珺 程偉 遲乃杰 張晨西 李增勝 舒磊 單偉 李敏 孫雨沁 王秀鳳 周長祥

收稿日期:20231103;修訂日期:20240122;編輯:曹麗麗

基金項(xiàng)目:國家自然科學(xué)基金(42272104);中國地質(zhì)調(diào)查局中國礦產(chǎn)地質(zhì)志項(xiàng)目(DD20221695);山東省地質(zhì)勘查項(xiàng)目(魯勘字〔2022〕12號(hào));山東省自然科學(xué)基金(ZR2019PD019);山東省自然科學(xué)基金青年項(xiàng)目(編號(hào)ZR2022QD050);山東省地質(zhì)科學(xué)研究院開放課題資助項(xiàng)目(Kfjjdky202120)作者簡介:徐珺(1995—),女,山東泗水人,工程師,主要從事分析地球化學(xué)研究;Email:xujundky@shandong.cn

*通訊作者:周長祥(1969—),男,山東聊城人,工程技術(shù)應(yīng)用研究員,主要從事同位素分析研究;Email:zcx_690808@163.com

摘要:利用Triton XT型熱電離質(zhì)譜儀,對(duì)1個(gè)碳酸鍶同位素標(biāo)準(zhǔn)物質(zhì)SRM 987和4個(gè)巖石標(biāo)準(zhǔn)物質(zhì)BCR2、BHVO2、JLs1和GBW07127進(jìn)行了鍶(Sr)同位素比值的測(cè)試,測(cè)試時(shí)采用指數(shù)律和88Sr/86Sr=8.375209進(jìn)行質(zhì)量分餾校正,87Rb/85Rb=0.385041進(jìn)行同質(zhì)異位素干擾扣除。測(cè)得SRM 987:87Sr/86Sr比值為0.710252±0.000011(n=40,2SD),BCR2:87Sr/86Sr比值為0.705016±0.000011(n=10,2SD)、BHVO2:87Sr/86Sr比值為0.703471±0.000011(n=10,2SD),JLs1:87Sr/86Sr比值為:0.707825±0.000014(n=10,2SD),與推薦值及前人文獻(xiàn)報(bào)道值在誤差范圍內(nèi)一致。此外,本研究測(cè)定的碳酸鹽巖標(biāo)準(zhǔn)物質(zhì)GBW07127的87Sr/86Sr比值為0.708971±0.000023(n=20,2SD),這一數(shù)據(jù)豐富了目前國家標(biāo)準(zhǔn)物質(zhì)的鍶同位素?cái)?shù)據(jù)庫,可為地球化學(xué)的分析研究提供重要的數(shù)據(jù)參照。

關(guān)鍵詞:熱電離質(zhì)譜儀;鍶同位素;巖石標(biāo)準(zhǔn)物質(zhì);質(zhì)譜分析

中圖分類號(hào):O657.63??? 文獻(xiàn)標(biāo)識(shí)碼:A??? doi:10.12128/j.issn.16726979.2024.06.004

引文格式:徐珺,程偉,遲乃杰,等.熱電離質(zhì)譜法測(cè)定巖石標(biāo)準(zhǔn)物質(zhì)中Sr同位素組成[J].山東國土資源,2024,40(6):2835.XU Jun, CHENG Wei, CHI Naijie, et al. Determination of Sr Isotopic Composition of Rock Standards by Thermal Ionisation Mass Spectrometry[J].Shandong Land and Resources,2024,40(6):2835.

0? 引言

近年來,隨著同位素地球化學(xué)理論和分析測(cè)試技術(shù)的進(jìn)步,Sr同位素的應(yīng)用范圍日益廣泛[16]。目前,其已經(jīng)在天體化學(xué)、同位素地球化學(xué)、沉積學(xué)、礦床學(xué)、考古科學(xué)等研究領(lǐng)域中體現(xiàn)出了重要的作用[720]。因此,Sr同位素比值的高精度準(zhǔn)確測(cè)定尤為重要。

高精度Sr同位素比值測(cè)試儀器主要有熱電離質(zhì)譜儀(TIMS)[2130]和多接收電感耦合等離子體質(zhì)譜儀(MCICPMS)[3139]。盡管MCICPMS具有測(cè)定速度快,所需樣品量少的優(yōu)點(diǎn),但也存在記憶效應(yīng)嚴(yán)重、雜質(zhì)元素基體效應(yīng)明顯及質(zhì)量歧視效應(yīng)較大的問題。相比之下,TIMS法具有依靠不同元素對(duì)應(yīng)不同揮發(fā)溫度的特點(diǎn),能夠在有效分離和純化樣品元素的前提下消除雜質(zhì)的干擾,在同位素分析測(cè)試中具有極佳的穩(wěn)定性和重現(xiàn)性。因此,TIMS以其高精準(zhǔn)度、高靈敏度,高樣品通量、低檢測(cè)限等優(yōu)勢(shì),逐漸成為Sr同位素比值測(cè)定的“黃金分析儀”[4044]。

本研究利用山東省地質(zhì)科學(xué)研究院自然資源部金礦成礦過程與資源利用重點(diǎn)實(shí)驗(yàn)室和山東省金屬礦產(chǎn)成礦地質(zhì)過程與資源利用重點(diǎn)實(shí)驗(yàn)室配置的 Triton XT 型熱電離質(zhì)譜儀, 對(duì)1個(gè)碳酸鍶同位素標(biāo)準(zhǔn)物質(zhì)SRM 987和4個(gè)巖石標(biāo)準(zhǔn)物質(zhì)BCR2、BHVO2、JLs1和GBW07127進(jìn)行了長達(dá)一年多的87Sr/86Sr同位素比值測(cè)試,其中BCR2、BHVO2、JLs1的Sr同位素比值測(cè)試結(jié)果與推薦值在誤差范圍內(nèi)一致,驗(yàn)證了儀器測(cè)試結(jié)果的準(zhǔn)確度、精密度和穩(wěn)定性等技術(shù)指標(biāo)。

此外,本研究報(bào)道了由武漢綜合巖礦測(cè)試中心所研制的碳酸鹽巖標(biāo)準(zhǔn)物質(zhì)GBW07127的87Sr/86Sr比值,該研究可為地球科學(xué)研究人員提供一個(gè)參考,以便對(duì)不同地區(qū)碳酸鹽巖巖石樣品的Sr同位素比值的測(cè)定結(jié)果進(jìn)行比較和分析,以提高研究的可比性和準(zhǔn)確性,為后續(xù)地球化學(xué)分析提供有力的數(shù)據(jù)支持。

1? 儀器介紹

1.1? 儀器的組成

本研究采用美國Thermo Fisher Scientific公司生產(chǎn)的Triton XT型多接收熱電離質(zhì)譜儀作為檢測(cè)儀器。

儀器主要由進(jìn)樣系統(tǒng)、離子源、磁分析器、檢測(cè)器及數(shù)據(jù)處理系統(tǒng)組成。該儀器具有放大器虛擬矩陣功能,此功能可以實(shí)現(xiàn)由各個(gè)法拉第杯與不同放大器的依次連接所構(gòu)成的離子流接收通道,在對(duì)其所接收的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)計(jì)算時(shí),最大限度地消除由各個(gè)放大器增益系數(shù)誤差導(dǎo)致的測(cè)量數(shù)據(jù)系統(tǒng)偏差,從而提高同位素比值測(cè)定的準(zhǔn)確度。儀器的基本物理參數(shù)和性能指標(biāo)見表1。

1.2? 儀器的工作原理

熱電離質(zhì)譜儀利用高溫下樣品中的離子化能力差異來分離和測(cè)量同位素。首先,將發(fā)射劑和待測(cè)的樣品溶液按順序涂布在錸(Re)帶的表面,通過加熱Re帶,樣品元素在其表面受到熱電離的作用,從而溶解并電離。然后,離子化的樣品被引入到電場(chǎng)中,并通過電場(chǎng)的加速作用進(jìn)入質(zhì)譜儀的分析區(qū)域。在分析區(qū)域,離子經(jīng)過一系列的電場(chǎng)和磁場(chǎng)分離裝置,根據(jù)其質(zhì)量電荷比(m/z)進(jìn)行分離。這些分離裝置能夠?qū)㈦x子按照其質(zhì)量的大小分離成不同的束流。隨后,離子束流進(jìn)入質(zhì)譜儀的檢測(cè)器,檢測(cè)到離子后進(jìn)行計(jì)數(shù)并記錄其信號(hào)強(qiáng)度。最后,根據(jù)檢測(cè)到的離子信號(hào)強(qiáng)度和荷質(zhì)比,可以計(jì)算出各種元素和同位素的含量及組成。Triton系列熱電離質(zhì)譜儀內(nèi)部離子路徑見圖1。

2? 分析方法

2.1? 實(shí)驗(yàn)室器皿及主要試劑

本研究中樣品的消解、化學(xué)提純等前處理工作在山東省地質(zhì)科學(xué)研究院的超凈實(shí)驗(yàn)室完成,實(shí)驗(yàn)室潔凈度為千級(jí),超凈工作臺(tái)潔凈度為百級(jí)。

硝酸、鹽酸均為MOS級(jí),購自北京化學(xué)試劑研究所有限責(zé)任公司;高純Re帶(純度為99.98%,燈絲規(guī)格為9.0mm×0.7mm×0.040mm)購自美國H.Cross公司;AG50W×12陽離子交換樹脂(200~400目)購自BioRad公司。

鹽酸、硝酸、磷酸均通過亞沸蒸餾器純化2次后使用。實(shí)驗(yàn)用水均為經(jīng)MilliQ純水器純化的超純水,電導(dǎo)率≥18.2MΩ·cm。

實(shí)驗(yàn)流程中所用器皿均為聚丙烯或聚四氟乙烯材料,經(jīng)過6mol/L鹽酸和7mol/L硝酸依次煮沸,并用超純水反復(fù)潤洗晾干,以降低器皿的本底。

Sr同位素標(biāo)準(zhǔn)溶液:取一定量的碳酸鍶同位素標(biāo)準(zhǔn)物質(zhì)SRM 987(美國國家標(biāo)準(zhǔn)與技術(shù)研究院NIST),采用鹽酸溶解,并逐級(jí)稀釋至100×106。

2.2? 巖石標(biāo)準(zhǔn)物質(zhì)

BCR2:玄武巖標(biāo)準(zhǔn)物質(zhì),美國地質(zhì)調(diào)查局,采自美國俄勒岡州波特蘭以東29英里的Bridal Veil Flow采石場(chǎng)。

BHVO2:玄武巖標(biāo)準(zhǔn)物質(zhì),美國地質(zhì)調(diào)查局,采自夏威夷火山Halemaumau火山口的繩狀熔巖的表層。

JLs1:石灰?guī)r標(biāo)準(zhǔn)物質(zhì),日本地質(zhì)調(diào)查局,采自日本北海道上磯町上磯郡的加洛石灰?guī)r(三疊紀(jì))。

GBW07127:大理巖標(biāo)準(zhǔn)物質(zhì),武漢綜合巖礦測(cè)試中心,采自中國云南省大理市。

這4個(gè)巖石標(biāo)準(zhǔn)物質(zhì)是實(shí)際研究過程中常見的巖石類型,成分均勻、穩(wěn)定性好,具有一定的化學(xué)組成變化范圍,并且是典型的低Rb/Sr比值地質(zhì)樣品,適用于驗(yàn)證測(cè)試流程的穩(wěn)定性,其具體化學(xué)成分參考值見表2。

2.3? 樣品消解及化學(xué)分離

BCR2、BHVO2為硅酸鹽巖石標(biāo)準(zhǔn)物質(zhì),JLs1、GBW07127為碳酸鹽巖石標(biāo)準(zhǔn)物質(zhì),其消解過程略有不同。

硅酸鹽巖石標(biāo)準(zhǔn)物質(zhì)消解:稱量約110mg的硅酸鹽標(biāo)準(zhǔn)物質(zhì)粉末聚四氟乙烯溶樣罐,加入2.5mL HF、0.5mL HNO3、0.15mL HClO4于置于150℃的電熱板上密封加熱7d,后開蓋蒸干樣品,蒸干后加入1.5mL 2.5mol/L HCl溶液,離心后取上清液等待過柱分離。

碳酸鹽巖石標(biāo)準(zhǔn)物質(zhì)消解:稱量約110mg的碳酸鹽標(biāo)準(zhǔn)物質(zhì)粉末于聚四氟乙烯溶樣罐,加入3mL 0.2mol/L HCl置于100℃的電熱板上密封加熱5 h,后開蓋蒸干樣品,蒸干后加入1.5mL 2.5mol/L HCl溶液,離心后取上清液等待過柱分離。

硅酸鹽巖石標(biāo)準(zhǔn)物質(zhì)與碳酸鹽巖石標(biāo)準(zhǔn)物質(zhì)的化學(xué)分離方法相同,將2mL AG50W×12陽離子交換樹脂置于內(nèi)徑為6 cm的石英柱管中,用6mol/L HCl和高純水依次淋洗交換柱至中性,后按表3的分離流程進(jìn)行Sr同位素的分離,收集Sr洗脫液于PFA溶樣杯中,置于電熱板上在120℃下蒸干。

表3? Sr同位素化學(xué)分離流程淋洗試劑(HCl)/(mol/L)淋洗體積/mL2.50.5×45.02.55.01.55.03.55.03(Sr)

2.4? Sr同位素質(zhì)譜測(cè)試

Sr同位素測(cè)試采用熱電離質(zhì)譜儀,Triton XT型質(zhì)譜儀配置了9個(gè)法拉第杯接收器和5個(gè)電子倍增器,接收模式為靜態(tài)多接收模式,測(cè)試時(shí)采用的接收杯結(jié)構(gòu)為L1:84Sr、C:85Rb、H1:86Sr、H2:87Sr以及H3:88Sr。質(zhì)譜儀采用雙燈絲(金屬Re)結(jié)構(gòu)測(cè)試,移取1 μL 0.15mol/L H3PO4溶液涂覆于蒸發(fā)帶上蒸干,用2 μL 2.5mol/L HCl溶解樣品并涂覆于去氣后的Re燈絲上,待樣品蒸干后,緩慢升高燈絲電流,使燈絲微紅,保持2~3s,隨后將電流歸零。按順序?qū)⑼亢脴悠返恼舭l(fā)帶移至樣盤,裝入電離帶后蓋上屏蔽罩,等待上機(jī)。

87Sr/86Sr同位素比值測(cè)試:調(diào)整蒸發(fā)帶和電離帶的電流,預(yù)熱2min樣品,從而選擇性去除樣品中殘余的微量Rb[42]。測(cè)試過程中少量的Rb(85Rb/86Sr<0.0005)可通過TIMS的Method軟件用Peak Stripping法進(jìn)行計(jì)算扣除。樣品預(yù)熱后,將88Sr信號(hào)強(qiáng)度調(diào)整為5~10V,同時(shí)監(jiān)測(cè)85Rb<0.2mV,每次測(cè)試均采集100組數(shù)據(jù),其中積分時(shí)間為4s。采用指數(shù)律和88Sr/86Sr=8.375209進(jìn)行質(zhì)量分餾校正,87Rb/85Rb=0.385041進(jìn)行同質(zhì)異位素干擾扣除,測(cè)定的87Sr/86Sr比值內(nèi)部精度優(yōu)于0.003%。

3? 測(cè)試結(jié)果及討論

3.1? SRM 987的87Sr/86Sr比值測(cè)定

SRM 987是TIMS分析Sr同位素組成最常用的國際標(biāo)準(zhǔn)物質(zhì)。先前的研究結(jié)果顯示,不同儀器上測(cè)量出的SRM 987的87Sr/86Sr比值存在一定差異,但總體范圍通常在0.710140~0.710330之間,平均值約為0.710248。為了驗(yàn)證本實(shí)驗(yàn)室TIMS檢測(cè)結(jié)果的一致性和穩(wěn)定性,對(duì)SRM 987標(biāo)準(zhǔn)溶液進(jìn)行了長達(dá)一年的監(jiān)測(cè)。

SRM 987標(biāo)準(zhǔn)溶液的Sr同位素比值測(cè)試結(jié)果見圖2。87Sr/86Sr比值在0.710 240~0.710 263之間,平均值為0.710 252±0.000 011(n=40,2SD),測(cè)試值符合SRM987校準(zhǔn)證書指定值要求,表明儀器的Sr同位素比值測(cè)試結(jié)果十分穩(wěn)定,基本沒有出現(xiàn)明顯偏差。

3.2? BCR2、BHVO2、JLs1的87Sr/86Sr測(cè)定

BCR2、BHVO2和JLs1的Sr同位素比值測(cè)試結(jié)果見圖3—圖5。BCR2標(biāo)準(zhǔn)物質(zhì)的測(cè)試結(jié)果顯示,其87Sr/86Sr比值在0.705 009~0.705 025之間,平均值為0.705 016±0.000 011(n=10,2SD)。BHVO2標(biāo)準(zhǔn)物質(zhì)的測(cè)試結(jié)果顯示,其87Sr/86Sr比值在0.703463~0.703479之間,平均值為0.703471±0.000011(n=10,2SD)。JLs1標(biāo)準(zhǔn)物質(zhì)的Sr同位素比值測(cè)試結(jié)果顯示,其87Sr/86Sr比值在0.707814~0.707836之間,平均值為0.707825±0.000014(n=10,2SD)。3個(gè)標(biāo)準(zhǔn)物質(zhì)的Sr同位素比值測(cè)試的誤差基本都小于1×105,表明儀器的精度很高。

本文統(tǒng)計(jì)了文獻(xiàn)中報(bào)道的不同實(shí)驗(yàn)室對(duì)于3個(gè)巖石標(biāo)準(zhǔn)物質(zhì)(BCR2、BHVO2和JLs1)Sr同位素比值的測(cè)試結(jié)果并進(jìn)行了比對(duì)(表4)。結(jié)果顯示,本實(shí)驗(yàn)室的測(cè)試結(jié)果與國內(nèi)外學(xué)者長期統(tǒng)計(jì)結(jié)果在誤差范圍內(nèi)相一致。

3.3? GBW07127的87Sr/86Sr測(cè)定

在2022年7月—2023年8月期間,對(duì)巖石標(biāo)準(zhǔn)物質(zhì)GBW07127展開Sr同位素比值的測(cè)試,測(cè)試結(jié)果見表5。GBW07127的87Sr/86Sr比值在0.708951~0.708988之間,平均值為0.708971±0.000023(n=20,2SD)。

為驗(yàn)證數(shù)據(jù)的準(zhǔn)確性,本研究將巖石標(biāo)準(zhǔn)物質(zhì)GBW07127送至中國地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心實(shí)驗(yàn)室,利用該實(shí)驗(yàn)室配備的Triton型熱電離質(zhì)譜儀對(duì)該標(biāo)準(zhǔn)物質(zhì)進(jìn)行了Sr同位素比值的對(duì)比測(cè)試。實(shí)驗(yàn)結(jié)果見表5,GBW07127的87Sr/86Sr比值為0.708970±0.000030(n=4,2SD),與本實(shí)驗(yàn)室測(cè)得的數(shù)據(jù)在誤差范圍內(nèi)是一致的,表明了本研究測(cè)試結(jié)果的準(zhǔn)確性。

4? 結(jié)論

本研究利用了山東省地質(zhì)科學(xué)研究院自然資源部金礦成礦過程與資源利用重點(diǎn)實(shí)驗(yàn)室和山東省金屬礦產(chǎn)成礦地質(zhì)過程與資源利用重點(diǎn)實(shí)驗(yàn)室配置的Triton XT型多接收熱電離質(zhì)譜儀,對(duì)1個(gè)碳酸鍶同位素標(biāo)準(zhǔn)物質(zhì)SRM 987和4個(gè)巖石標(biāo)準(zhǔn)物質(zhì)BCR2、BHVO2、JLs1和GBW07127的87Sr/86Sr比值進(jìn)行了系統(tǒng)的測(cè)定。測(cè)試過程中,采用指數(shù)律和88Sr/86Sr=8.375209進(jìn)行質(zhì)量分餾校正,87Rb/85Rb=0.385041進(jìn)行同質(zhì)異位素干擾扣除。實(shí)驗(yàn)結(jié)果顯示,SRM 987的87Sr/86Sr為0.710252±0.000011(n=40,2SD),BCR2的87Sr/86Sr為0.705016±0.000011(n=10,2SD),BHVO2的87Sr/86Sr為0.703471±0.000011(n=10,2SD),JLs1的87Sr/86Sr為0.707825±0.000014(n=10,2SD)。這些結(jié)果與前人的測(cè)試值在誤差范圍內(nèi)一致,驗(yàn)證了本實(shí)驗(yàn)室配置的Triton XT型熱電離質(zhì)譜儀在高精度和高靈敏度的Sr同位素測(cè)試方面的可靠性和準(zhǔn)確性。值得一提的是,本研究測(cè)定的碳酸鹽巖標(biāo)準(zhǔn)物質(zhì)GBW07127的87Sr/86Sr比值為0.708971±0.000023(n=20,2SD),這一數(shù)據(jù)豐富了目前國家標(biāo)準(zhǔn)物質(zhì)的鍶同位素?cái)?shù)據(jù)庫,能夠?yàn)闇?zhǔn)確解讀地質(zhì)過程以及巖石成因等地質(zhì)化學(xué)研究給予可行的數(shù)據(jù)支撐。

致謝:感謝中國地質(zhì)調(diào)查局天津地質(zhì)調(diào)查中心劉文剛高級(jí)工程師對(duì)本文研究工作的幫助和支持。

參考文獻(xiàn):

[1]? TILLBERG M,DRAKE H,ZACK T,et al. In situ RbSr dating of slickenfibres in deep crystalline basement faults[J].Scientific Reports,2020,10(1):112.

[2]? 遲乃杰,單偉,張晨西,等.膠西北花山巖體巖石成因與地質(zhì)意義:來自地球化學(xué)、年代學(xué)與SrNd同位素的約束[J].山東國土資源,2023,39(10):111.

[3]? GYOMLAI T,AGARD P,HERVIOU C,et al.In situ RbSr and 40Ar39Ar dating of distinct mica generations in the exhumed subduction complex of the Western Alps[J].Ore Geology Reviews,2023,178: 58.

[4]? LI C F,CHU Z Y,WANF X C,et al.Determination of 87Rb/86Sr and 87Sr/86Sr ratios and RbSr contents on the same filament loading for geological samples by isotope dilution thermal ionization mass spectrometry[J].Talanta, 2021,233:17.

[5]? 張傳昱,李文昌,余海軍,等.云南水頭山鉛鋅礦床閃鋅礦RbSr定年及其地質(zhì)意義[J].沉積與特提斯地質(zhì),2022,42(1):123132.

[6]? DONG L L,WAN B,YANG W D,et al.RbSr geochronology of single goldbearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance[J].Ore Geology Reviews,2018,100:99110.

[7]? 馮睿,程玉文,錢寧,等.熱電離質(zhì)譜測(cè)定浙江楊梅中87Sr/86Sr同位素比值及其在產(chǎn)地溯源中的應(yīng)用[J].武漢大學(xué)學(xué)報(bào)(理學(xué)版),2022,68(6):688692.

[8]? ALVIM A M V,SANTOS R V,RODDAZ M,et al.Fossil isotopic constraints (C,O and87Sr/86Sr) on Miocene shallowmarine incursions in Amazonia[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2021,573:110422.

[9]? 周許梅,高軍波,楊瑞東,等.廣西宜州石炭紀(jì)龍頭錳礦床鍶同位素組成與地質(zhì)意義[J].礦物學(xué)報(bào),2023,43(2):186190.

[10]?? HENSHALL T,COOK D L,GARCON M,et al.Highprecision strontium isotope analysis of geological samples by thermal ionisation mass spectrometry[J].Chemical Geology,2018,482:113120.

[11]? 王巧云,郭晶,郝興中,等.膠東山后金礦成礦流體及成礦物質(zhì)來源:來自HO、SrNdPb、HeAr同位素證據(jù)[J].山東國土資源,2023,39(8):17.

[12] ?XIONG S F,JIANG S Y,CHEN Z H,et al. A Mississippi Valleytype ZnPb Mineralizing System in South China Constrained by Insitu UPb Dating of Carbo nates and Barite and Insitu SSrPb Isotopes[J]. GSA Bulletin,2022,134(11/12):28802890.

[13]? 范美彤,葛璐,朱碧,等.冷泉碳酸鹽巖Sr同位素示蹤研究進(jìn)展[J].地質(zhì)學(xué)報(bào),2019,98(8):20822091.

[14]? BENSON L V,TAYLOR H E,PLOWMAN T I,et al.The cleaning of burned and contaminated archaeological maize prior to87Sr/86Sr analysis[J].Journal of Archaeological Science,2010,37(1):8491.

[15]? 彭麗,王桂琴,江小英,等.高精度熱電離質(zhì)譜(TIMS)在南極隕石研究中的應(yīng)用前景[J].極地研究,2013,25(4):425435.

[16]? MCARTHUR J M,HOWARTH R J,BAILEYai T R.Strontium isotope stratigraphy:lowess version 3: best fit to the marine Srisotope curve for 0509 ma and accompanying lookup table for deriving numerical age[J].Journal of Geology,2001,109(2):155170.

[17]? 潘旭,孫子威,高繼葦,等.多步浸提法在碳酸鹽巖Sr同位素分析中的對(duì)比及優(yōu)化[J].巖礦測(cè)試,2023,42(4):691706.

[18]? ZHOU Y,ZHU M Y,LING H F,et al.Reconstructing Tonian seawater87Sr/86Sr using calcite microspar[J].Geology,2020,48(5):462467.

[19]? DECREE S,CAWTHORN G,DELOULE E,et al.Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LAICPMS and insitu O and Sr isotope analyses[J].Contributions to Mineralogy and Petrology,2020,175(4):34

[20]? HEI H X,SU S G,WANG Y,et al.Rhyolites in the Emeishan large igneous province (SWChina) with implications for plumerelated felsic magmatism[J].Journal of Asian Earth Sciences,2018,164:344368.

[21]? 張利國,楊梅,楊紅梅,等.螢石一次溶樣連續(xù)分離Rb、Sr、Sm、Nd及SrNd同位素比值TIMS精確測(cè)定[J].華南地質(zhì),2022,38(4):701707.

[22]?? LI Y L,LI C F,GUO J H.Reevaluation and optimisation of dissolution methods for strontium isotope stratigraphy based on chemical leaching of carbonate certificated reference materials[J].Microchemical Journal,2020,254:104607.

[23]? JO H J,LEE H M,KIM G E,et al.Determination of SrNdPb Isotopic Ratios of Rock Reference Materials Using Column Separation Techniques and TIMS[J].Separation,2021,8(11):114.

[24]? 唐索寒,朱祥坤,李津,等.利用鍶特效樹脂分離富集巖石樣品中的鍶及測(cè)定87Sr/86Sr[J].分析化學(xué)研究簡報(bào),2010,38(7):9991002.

[25]? DI Y K,KRESTIANINOV E ,ZINK S,et al.Highprecision multidynamic Sr isotope analysis using thermal ionization mass spectrometer (TIMS) with correction of fractionation drift[J].Chemical Geology,2021,582:120411.

[26]? 張晨蕾,祝紅麗,劉峪菲,等.熱電離質(zhì)譜(TIMS)測(cè)定Ca同位素時(shí)Sr干擾影響的實(shí)驗(yàn)評(píng)價(jià)[J].質(zhì)譜學(xué)報(bào),2017,38(5):567573.

[27]?? LI C F,GUO J H,CHU Z Y,et al. Direct highprecision measurements of the 87Sr/86Sr isotope ratio in natural water without chemical separation using thermal ionization mass spectrometry equipped with 1012 Ω resistors[J].Analytical Chemistry,2015,87:74267432.

[28]? LI C F,WU H Q,CHU Z Y,et al.Precise determination of radiogenic Sr and Nd isotopic ratios and Rb,Sr,Sm,Nd elemental concentrations in four coal ash and coal fly ash reference materials using isotope dilution thermal ionization mass spectrometry[J].microchemical journal,2019,146:906913.

[29]? 劉文剛,劉卉,李國占,等.微量螢石樣品消解技術(shù)及其SmNd同位素高精度熱離子質(zhì)譜法測(cè)試[J].地質(zhì)學(xué)報(bào),2017,91(11):25842592.

[30]? RACZEK I,JOCHUM K P,HOFMANN A W.Neodymium and Strontium Isotope Data for USGS ReferenceMaterials BCR1, BCR2, BHVO1, BHVO2, AGV1, AGV2, GSP1, GSP2 and Eight MPIDING Reference Glasses[J].The Journal of Geostandards and Geoanalysis,2003,27(2):173179.

[31]?? WANG J Y,DI Y K,ASAEL D,et al.Tarhan a An investigation of factors affecting highprecision Sr isotope analyses (87Sr/86Sr and δ88/86Sr) by MCICPMS[J].Chemical Geology,2023,621:121365.

[32]?? HENN A S,CHERNONOZHKIN S M,VANHAECKE F,et al.Development of methods for Mg, Sr and Pb isotopic analysis of crude oil by MCICPMS: addressing the challenges of sample decomposition[J]. Journal of Analytical Atomic Spectrometry,2021,36:1478.

[33]? LUGLI F,WEBER M ,GIOVANARD T,et al. Fast offline data reduction of laser ablation MCICPMS Sr isotope measurements via an interactive Excelbased spreadsheet ‘SrDR [J].Journal of Analytical Atomic Spectrometry,2020,35:852.

[34]? CELLIER R, BERAIL S, BARRE J, et al.Analytical strategies for Sr and Pb isotopic signatures by MCICPMS applied to the authentication of Champagne and other sparkling wines[J].Talanta,2021,234:122433.

[35]? BAO Z,ZONG C L,F(xiàn)ANG L R,et al.Determination of HfSrNd isotopic ratios by MCICPMS using rapid acid digestion after fluxfree fusion in geological materials[J].Acta Geochimica,2018,37(2):244256.

[36]? LEE S G,Ko K S.Development of an analytical method for accurate and precise determination of rare earth element concentrations in geological materials using an MCICPMS and group separation[J].Frontiers in Chemistry,2023(10):906160.

[37]? 韋剛健,梁細(xì)榮,李獻(xiàn)華,等.(LP)MCICPMS方法精確測(cè)定液體和固體樣品的Sr同位素組成[J].地球化學(xué),2002,31(3):295299.

[38]? IRRGEHER J,PROHASKA T,STURGEON R E,et al.Determination of strontium isotope amount ratios in biological tissues using MCICPMS[J].Anal Methods,2013(5):16871694.

[39]? WALL A J,CAPO R C,STEWART B W,et al.High throughput method for Sr extraction from variable matrix waters and 87Sr/86Sr isotope analysis by MCICPMS[J].Journal of Analytical Atomic Spectrometry,2013,28( 8):13381344.

[40]? LI C F,CHU Z Y,WANG X C,et al.Sr isotope analysis of picogramlevel samples by thermal ionization mass spectrometry using a highly sensitive slicotungstic acid emitter[J].Analytical chemistry,2019,91:72887294.

[41]? KOORNNEEF J M,BOUMAN C,SCHWIETERS J B,et al.Use of 1012 ohm current amplifiers in Sr and Nd isotope analyses by TIMS for application to subnanogram samples[J].Journal of Analytical Atomic Spectrometry,2014,819(5): 4955.

[42]? 劉文剛,李志丹,魏雙,等.高Rb/Sr比值地質(zhì)樣品中Sr同位素的快速分離及高精度測(cè)試[J].Chinese Journal of Analytical Chemistry,2019,47(7):10541060.

[43]? LI C F,CHU Z Y,GUO J H,et al.A rapid single column separation scheme for highprecision SrNdPb isotopic analysis in geological samples using thermal ionization mass spectrometry[J].Analytical? Methods,2015(7):47934802.

[44]? YANG Y H,ZHANG H F,CHU Z Y,et al.Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of LuHf, RbSr and SmNd isotope systems using Multi Collecter ICPMS and TIMS[J].International Journal of Mass Spectrometry,2010,290:120126.

[45]? YANG Y H, WU F Y, LIU Z C,et al. Evaluation of Sr chemical purification technique for natural geological samples using common cationexchange and Srspecific extraction chromatographic resin prior to MCICPMS or TIMS measurement[J].Journal of Analytical Atomic Spectrometry,2012(27):516.

[46] ?LI C F,LI X H,LI Q L,et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a singlestep separation scheme[J].Analytica Chimica Acta,2012,727:5460.

[47]? WEIS D,KIEFFER B,MAERSCHALK C,et al. Highprecision isotopic characterization of USGS reference materials by TIMS and MCICPMS[J].Geochemistry Geophysics Geosystems,2006(7):130.

[48]? ERBAN KOCHERGINA Y V,ERBAN V,HORA J M,et al.Sample preparation and chromatographic separation for Sr,Nd,and Pb isotope analysis in geological, environmental, and archaeological samples[J].Journal of Geosciences,2022,67:273285.

[49]? REINHARD A A,JACKSON M G,KOORNNEEF J M,et al.Sr and Nd isotopic compositions of individual olivinehosted melt inclusions from Hawai'i and Samoa: Implications for the origin of isotopic heterogeneity in melt inclusions from OIB lavas[J].Chemical Geology,2018,495:3649.

[50]? STAMMEIER J A,NEBEL O,HIPPLE D,et al.A coherent method for combined stable magnesium and radiogenic strontium isotope analyses in carbonates (with application to geological reference materials SARM 40,SARM 43,SRM 88A,SRM 1B) [J].MethodsX, 2020(7):100847.

[51]? RODLER A S,F(xiàn)RRI R,GAUCHER C,et al. Multiproxy isotope constraints on ocean compositional changes across the late Neoproterozoic Ghaub glaciation, Otavi Group,Namibia[J].Precambrian Research,2017,298:306324.

[52]? SUN N,CHEN X Q,TIAN L L,et al. Determining 88Sr/86Sr of barite using the Na2CO3 exchange method[J].journal of analytical atomic spectrometry,2022(37):390398.

Determination of Sr Isotopic Composition of Rock Standards by Thermal Ionisation Mass Spectrometry

XU Jun, CHENG Wei, CHI Naijie, ZHANG Chenxi, LI Zengsheng, SHU Lei, SHAN Wei, LI Min, SUN Yuqin, WANG Xiufeng, ZHOU Changxiang

(Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Shandong Institute of Geological Sciences, Shandong Ji'nan 250013, China)

Abstract: The strontium isotope ratios for a carbonated strontium isotope standard SRM 987 and four rock samples BCR2, BHVO2, JLs1, and GBW07127 have been determined by using the Triton XT thermal ionisation mass spectrometer provided by the Shandong Institute of Geological Sciences. To correct for mass fractionation, an exponential law with 88Sr/86Sr=8.375209 has been employed, while 87Rb/85Rb=0.385041 has been used to correct for isobaric interference. The obtained? 87Sr/86Sr ratios for SRM 987, BCR2, BHVO2, and JLs1 are 0.710252±0.000011(n=40, 2SD), 0.705016±0.000011 (n=10, 2SD), 0.703471±0.000011 (n=10, 2SD), and 0.707825±0.000014 (n=10, 2SD), respectively. the results are consistent with the recommended values and the previously published literature.inthis study, we report the 87Sr/86Sr ratio of carbonatite standard GBW07127, which results in 0.708971+ 0.000023 (n=20,2SD). This data enriches the current strontium isotope library of the national standard material,and it can provideimportant data references for the analytical study of geochemistry.

Key words: Thermal ionization mass spectrometry; strontium isotopes; rock reference samples; mass spectrometric analysis

北川| 呼和浩特市| 德安县| 绥宁县| 铜陵市| 略阳县| 灵宝市| 贵德县| 万安县| 常德市| 江油市| 余干县| 石门县| 习水县| 乌鲁木齐市| 剑川县| 白银市| 读书| 崇礼县| 贵德县| 普洱| 洮南市| 平陆县| 工布江达县| 迭部县| 张家界市| 嘉兴市| 东乌| 青神县| 丰县| 巫山县| 翁牛特旗| 南川市| 兴和县| 桐城市| 朝阳市| 余庆县| 特克斯县| 榆社县| 滦南县| 乌恰县|