国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

采前處理對番茄采后保鮮效果影響的研究進(jìn)展

2024-08-24 00:00:00徐競成周洪
中國瓜菜 2024年7期
關(guān)鍵詞:番茄

摘" " 要:番茄果實(shí)風(fēng)味獨(dú)特,營養(yǎng)豐富,深受消費(fèi)者青睞。但是,番茄果實(shí)果皮較薄、果肉柔嫩,致使成熟果實(shí)貨架期較短。采前侵染性病害采后防控難,絕大部分采后致病菌早在生產(chǎn)階段便已侵染番茄果實(shí),并潛伏其中,當(dāng)果實(shí)在采收、貯藏、運(yùn)輸、銷售等環(huán)節(jié)發(fā)生機(jī)械損傷時(shí),這些病原菌便開始二次侵染果實(shí),引發(fā)病理性腐爛,致使果實(shí)徹底失去商品性,因此采前防控十分關(guān)鍵。此外,采前處理廣泛影響采后生理,進(jìn)而影響果實(shí)貨架期。目前,僅憑采后處理已無法完全滿足現(xiàn)階段番茄產(chǎn)業(yè)的發(fā)展需求,因此,采前處理逐漸受到關(guān)注。筆者就近年來國內(nèi)外有關(guān)采前化學(xué)防治、生物防治和物理防治三方面處理提高番茄采后品質(zhì)和延長貨架期的研究進(jìn)行綜述,并根據(jù)研究現(xiàn)狀提出展望,以期為未來番茄采前保鮮處理技術(shù)的研究、應(yīng)用和發(fā)展提供參考。

關(guān)鍵詞:番茄;采前處理;采后生理;侵染性病害;抗性誘導(dǎo)

中圖分類號:S641.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-2871(2024)07-008-12

Research progresses on the effects of preharvest treatments on postharvest preservation of tomatoes

XU Jingcheng 1, 2 , ZHOU Hong 3

(1. Taizhou Academy of Agricultural Sciences, Taizhou 318014, Zhejiang, China; 2. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3. Jiaojiang District Economic Crops and Agricultural Technology Promotion Station of Taizhou City, Taizhou 318000, Zhejiang, China)

Abstract: Tomato(Solanum lycopersicum L.)has a unique flavor and rich nutrition, which is highly favored by consumers. However, mature tomatoes have a lower shelf life due to their soft flesh and thin peel. Preharvest infectious diseases are difficult to prevent and control after harvest. The vast majority of postharvest pathogens have already infected tomato fruits as early as the production stage and remained quiescent. When mechanical damage occurs in the fruits during harvesting, storage, transportation, and sales, these pathogens begin to infect fruits, causing pathological decay and complete loss of commercial value. Therefore, preharvest prevention and control are crucial. In addition, preharvest treatments widely affect postharvest physiology, which in turn affect the shelf life of fruits. At present, relying solely on postharvest technology is not enough to fulfill the development needs of the current tomato industry, therefore, preharvest treatments are gradually receiving attention. This article reviews the research on improving the postharvest quality and shelf life of tomatoes through preharvest chemical control, biological control, and physical measures both domestically and internationally in recent years. Based on the current research status, prospects are proposed to provide reference for the future research, application, and development of tomato preharvest preservation treatment technology.

Key words: Tomato; Preharvest treatments; Postharvest physiology; Infectious diseases; Induced resistance

番茄(Solanum lycopersicum L.)風(fēng)味獨(dú)特,含有番茄紅素、β-胡蘿卜素、氨基酸、可溶性糖和有機(jī)酸等營養(yǎng)物質(zhì),深受消費(fèi)者青睞。番茄果皮薄、果實(shí)多汁、果肉柔軟,在貯運(yùn)過程中極易變質(zhì)腐爛[1]。根據(jù)引起變質(zhì)腐爛因素的不同,番茄采后病害分為生理性病害,如冷害[1]、失水[2]、褐變[3]、軟化[4],以及侵染性病害,如灰霉病[5]、黑霉病(黑斑?。6]、煤污病[7]、紅粉病[8]、果腐病[9]、酸腐病[10]、菌核病[11]、早疫病[12]、晚疫病[13]、炭疽病[14]、潰瘍病[15]、軟腐病[16]等。番茄采后侵染性病害及致病菌詳見表1。為解決采后番茄果實(shí)耐貯性不佳的問題,研究者們圍繞番茄保鮮技術(shù)進(jìn)行了大量研究。當(dāng)前,番茄采后保鮮主要通過預(yù)冷[17]、冷藏[18]、氣調(diào)[19]、涂膜[20]、輻照[21]、精油微膠囊處理[22]、生防菌防治[23]、低溫等離子體處理[24]、超聲波處理[25]、靜電場處理[26]等技術(shù)實(shí)現(xiàn),但是仍存在能耗高、成本高的問題,因此,番茄采后保鮮技術(shù)仍存在較大的提升空間。

采前侵染性病害采后防控難,大部分番茄釆后致病菌早在田間就已侵染果實(shí)并潛伏其中,當(dāng)果實(shí)在采收、貯藏、運(yùn)輸、銷售過程中受損時(shí),致病菌便二次入侵果實(shí)[48]。此外,采后是采前的生命延續(xù),果實(shí)采后自身耐貯性與果實(shí)品質(zhì)相關(guān),而果實(shí)品質(zhì)又與采前因素密切相關(guān)。如今,僅憑采后處理無法完全滿足番茄產(chǎn)業(yè)的發(fā)展需求,因此采前處理逐漸受到重視[49]。筆者就近年來國內(nèi)外有關(guān)采前處理提高番茄采后品質(zhì)和貯藏適應(yīng)性的研究進(jìn)行綜述,以期為未來該領(lǐng)域的研究提供參考。

1 采前化學(xué)防治對番茄果實(shí)采后保鮮效果的影響

1.1 化學(xué)殺菌劑

化學(xué)殺菌劑效果穩(wěn)定,廉價(jià)且易使用,是控制采后病害的主要藥劑之一。麥角甾醇是真菌細(xì)胞膜的重要組分,啶菌惡唑(SYP-Z048)是一種廣譜性殺菌劑,可通過抑制麥角甾醇合成,破壞真菌細(xì)胞膜功能,從而達(dá)到抑菌效果[50]。奉代力等[51]研究表明,采前7 d在番茄葉、果上噴施0.4 g·L-1的25% SYP-Z048乳油藥液可以顯著降低采后果實(shí)的發(fā)病率,減緩維生素C和總可溶性固形物含量的下降。

芬六胺(fenhexamid,F(xiàn)E)可抑制B. cinerea、S. sclerotiorum等真菌增殖[52]。吡唑醚菌酯(pyraclostrobin,PY)通過阻止真菌細(xì)胞色素合成過程中的電子轉(zhuǎn)移,抑制線粒體的呼吸作用,達(dá)到抑菌目的[53]。啶酰菌胺(boscalid,BO)可抑制真菌線粒體呼吸鏈中琥珀酸輔酶Q還原酶活性和真菌孢子的萌發(fā)[54]。Domínguez等[55]發(fā)現(xiàn)采前使用單一FE藥液處理和使用6.7% PY與26.7% BO混合藥液處理能顯著降低番茄的采后失重率,延緩果實(shí)成熟,減少抗氧化次生代謝物——柚皮素和柚皮素查爾酮的積累,有效維持果實(shí)品質(zhì)。

作為一種廣譜類殺菌劑,二氧化氯(ClO2)能夠吸附并滲入真菌細(xì)胞壁,氧化帶有巰基的酶,從而抑制蛋白合成,達(dá)到抑菌效果[56]。董曉慶等[57]研究發(fā)現(xiàn),盛花期后50 d葉面噴施20、40、60 mg·L-1 的ClO2溶液均能顯著降低果實(shí)失重率、腐爛率和軟化速率,延緩呼吸高峰的出現(xiàn),并維持果實(shí)維生素C、β-胡蘿卜素、可溶性蛋白的含量,以20 mg·L-1 的ClO2效果最佳。

1.2 金屬鹽

1.2.1 鈣鹽 鈣(Ca)離子可與細(xì)胞壁中的果膠結(jié)合形成果膠酸鈣,從而增強(qiáng)細(xì)胞壁的機(jī)械強(qiáng)度,維持細(xì)胞壁穩(wěn)態(tài)和果實(shí)硬度[58]。衰老時(shí)果實(shí)Ca含量降低,致使細(xì)胞壁物理屏障功能退化,病菌入侵,最終導(dǎo)致病理性腐爛[59]。采前CaCl2處理可抑制多聚半乳糖醛酸酶和果膠酸酯裂解酶的活性,提高類纖維素合成酶D3的磷酸化水平,從而有效延緩果實(shí)軟化[60]。Tagele等[61]研究發(fā)現(xiàn),采前噴施5% CaCl2處理的番茄果實(shí),采后在常溫、低溫貯藏條件下,其貨架期分別較未噴施CaCl2對照多出11 d和6 d,采后28 d,果實(shí)中的可滴定酸、維生素C含量分別高出對照42.86%和34.10%,且有效延緩果實(shí)軟化。Daundasekera等[62]研究了采前噴施不同濃度CaCl2和不同的噴施策略對采后番茄的影響,結(jié)果表明,采前噴施CaCl2使番茄貨架期較未噴施CaCl2對照延長了2.3至3.8倍,有效延緩果實(shí)軟化,維持總可溶性糖含量,減輕R. stolonifer所引發(fā)的果腐病。魏寶東等[63]在采前葉面單獨(dú)噴施5 g·L-1 CaCl2及混合噴施20 g·L-1維生素A和5 g·L-1 CaCl2,結(jié)果發(fā)現(xiàn)2個(gè)處理均能有效延緩番茄果實(shí)軟化和乙烯高峰的出現(xiàn),減少乙烯釋放量,降低果實(shí)呼吸速率和果膠甲基酯酶、多聚半乳糖醛酸酶和羧甲基纖維素鈉酶的活性,且混合噴施維生素A和CaCl2效果優(yōu)于單獨(dú)噴施CaCl2。魏寶東等[64]研究表明,在番茄植株始花后15 d噴施5 μg·L-1泛酸鈣水溶液可有效延緩采后冷藏過程中的果實(shí)軟化,而始花后15 d噴施0.5 g·L-1腐植酸鈣水溶液或5 g·L-1 CaCl2水溶液可有效延緩采后冷藏過程中果實(shí)內(nèi)可滴定酸、氨基酸、總可溶性糖和還原糖含量的下降。

水分保持是果實(shí)采后貯藏的關(guān)鍵,含水量能反映果實(shí)的新鮮度[65]。水孔蛋白有助于水分通過質(zhì)膜,影響采后果實(shí)的水分散失,質(zhì)膜內(nèi)在蛋白是一類重要的水孔蛋白[66]。許多蛋白在翻譯后通過磷酸化修飾改變活性[67]。前人研究表明,CaCl2處理通過降低果實(shí)中質(zhì)膜內(nèi)在蛋白的磷酸化水平,減少果實(shí)的失水性損耗[60]。Mazumder等[68]在始花期后7 d開始,在4種番茄上以每周1次的頻率葉面噴施2%的CaCl2直至始收,可有效降低采后果實(shí)的發(fā)病率和發(fā)病程度,減少果實(shí)失重率,在室溫貯藏條件下貨架期較對照(未噴施CaCl2)延長20 d,顯著提高維生素C、番茄紅素和總酚含量。

1.2.2 鉀鹽 Somapala等[46]研究表明,采前土施KCl明顯縮小了接種盤長孢狀刺盤孢(C. gloeosporiodes)、束狀刺盤孢(C. dematium)的番茄果面炭疽病斑的面積,每株土施6.9 g KCl有效延緩了炭疽病暴發(fā)的時(shí)間,果實(shí)細(xì)胞壁厚度顯著高于未施KCl的對照,有效增強(qiáng)了細(xì)胞壁的物理屏障作用。Semida等[69]研究表明,采前葉面噴施0.2%和0.4%硫代硫酸鉀可抑制采后番茄果實(shí)可滴定酸、維生素C、番茄紅素和可溶性糖含量的下降,延緩果實(shí)軟化。細(xì)胞膨壓是影響果實(shí)硬度的內(nèi)因之一[70],而鉀有助于維持細(xì)胞膨壓[71],采前噴鉀使鉀在果實(shí)中累積,從而可有效維持采后果實(shí)硬度。Zahirul等[72]研究表明,采前噴施36.74 mmol·L-1 KH2PO4可顯著降低采后果實(shí)失重率、呼吸速率和乙烯釋放量,有效延長果實(shí)貨架期。

1.3 一氧化氮

硝普鈉中的亞硝基基團(tuán)可在植物體內(nèi)分解,并釋放出一氧化氮(NO)[73]。NO是內(nèi)源性信號分子,可通過減少脂質(zhì)過氧化、激活抗氧化酶等方式緩解冷害對植物的影響[74]。與氣態(tài)的NO相比,硝普鈉更穩(wěn)定且易得,因此硝普鈉常作NO供體使用[75]。Soleimanie等[76]在番茄始花后第41天(綠熟期)和第49天(破色期)在葉、果上噴施200和500 μmol·L-1的硝普鈉溶液,完熟后采收果實(shí),并貯藏在溫度為0.8~1.2 ℃、相對濕度85%~95%的環(huán)境中20 d,然后移至常溫環(huán)境(24 ℃)下2 d,以此模擬番茄采后低溫貯藏和常溫銷售過程,研究結(jié)果表明,采前硝普鈉處理降低了采后果實(shí)失重率,延緩果實(shí)軟化,果實(shí)中維生素C、可滴定酸和番茄紅素含量及超氧化物歧化酶和過氧化物酶活性均顯著高于噴施清水的對照,以200 μmol·L-1 硝普鈉處理效果最佳。

1.4 微量元素

1.4.1 硅 硅(Si)可參與構(gòu)建植物細(xì)胞壁,增加細(xì)胞壁的厚度和強(qiáng)度,從而提高果實(shí)硬度[77]。此外,有研究表明,外源硅處理可降低細(xì)胞壁降解酶活性,從而延緩果實(shí)軟化[78]。蘇敬等[79]研究表明,在番茄始花期葉面噴施7 mmol·L-1 H4SiO4或K2SiO3溶液均能顯著提高采后7 d果實(shí)的硬度及原果膠和纖維素含量,顯著降低可溶性果膠含量和多聚半乳糖醛酸酶、果膠甲基酯酶和纖維素酶的活性,有效維持果實(shí)采后品質(zhì)。

1.4.2 硒 硒(Se)的功能表現(xiàn)出劑量效應(yīng),高濃度硒會取代蛋白中的硫使其失活,有一定的生物毒性[80],但低濃度硒可提高超氧化物歧化酶、過氧化物酶和過氧化氫酶活性[81]或提高抗氧化物質(zhì)——類黃酮、山奈酚的含量[82],從而達(dá)到保鮮效果。Zhu等[83-84]研究表明,在番茄定植后4周開始以1 L·株-1的用量葉面噴施1 mg·L-1硒酸鈉(Na2SeO4)溶液能夠有效提高綠熟期番茄果實(shí)對灰葡萄孢(B. cinerea)的抗性,減輕脂質(zhì)過氧化程度,增強(qiáng)超氧化物歧化酶、谷胱甘肽還原酶和谷胱甘肽過氧化物酶活性,提高維生素C和谷胱甘肽含量,抑制乙烯合成,有效維持果實(shí)品質(zhì),延緩果實(shí)成熟。除Na2SeO4外,亞硒酸鈉(Na2SeO3)也有不錯(cuò)的保鮮效果。劉慧等[85]研究表明,澆施2 mg·L-1 Na2SeO3能夠顯著提高采后番茄果實(shí)硬度、可溶性糖和維生素C含量,增強(qiáng)超氧化物歧化酶和過氧化物酶活性,并在乙烯釋放高峰期降低乙烯釋放量,有效延緩果實(shí)衰老,但3 mg·L-1處理表現(xiàn)出副作用。

1.4.3 硼 硼(B)與細(xì)胞衰老關(guān)系密切,缺B顯著提高植物體內(nèi)脫落酸和乙烯的含量,促進(jìn)果實(shí)成熟、衰老[86]。Smit等[87]研究表明,缺B導(dǎo)致番茄果實(shí)硬度不足,縮短了貯藏期,而采前使用0.16 mg·L-1的B營養(yǎng)液可緩解該問題。劉偉瑩[88]研究表明,采前20 d葉面噴施3 μmol·L-1的山梨醇硼顯著提高了采后番茄果實(shí)番茄紅素和總可溶性糖含量及硬度,降低丙二醛含量,且隨著貯藏期的延長,乙烯釋放受到抑制,超氧化物歧化酶和過氧化氫酶活性上升。四硼酸鉀已被證實(shí)能顯著抑制胡蘿卜果膠桿菌(P. carotovorum)[16]、灰葡萄孢(B. cinerea)[89]、盤長孢狀刺盤孢(C. gloeosporioides)[90]等病原菌。Ahmed等[91]研究表明,在轉(zhuǎn)色期噴施25 mmol·L-1的四硼酸鉀溶液能夠顯著降低采后灰霉病的發(fā)病率,有效延長番茄保鮮期。

1.5 植物激素

1.5.1 水楊酸類 水楊酸(salicylic acid,SA)與植物的模式觸發(fā)免疫和效應(yīng)物觸發(fā)免疫的激活密切相關(guān)[92]。Tagele等[61]研究表明,采前葉面噴施450 mg·L-1 SA,在采后28 d,果實(shí)中的可滴定酸和維生素C含量分別高出噴施清水對照47.62%和38.19%,且有效降低果實(shí)失重率,保持果實(shí)硬度,在最大程度上維持了果實(shí)的商品性。Baninaiem等[93]研究表明,噴施4 mmol·L-1 SA降低了采后40 d果實(shí)的腐爛率、電解質(zhì)滲透率、冷害發(fā)生率,這與SA處理后相對較高的果實(shí)硬度、過氧化物酶活性及可滴定酸和維生素C含量有關(guān)。Baek等[94]研究表明,采前噴施0.5 mmol·L-1 SA能有效保持采后26 d番茄果實(shí)的硬度,提高總酚、維生素C、番茄紅素和β-類胡蘿卜素含量,延緩總可溶性糖和氨基酸含量下降,降低果實(shí)失重率,減少乙烯生成量。此外,前人研究表明,與采后處理相比,采前噴施SA耗時(shí)短、吸收效率高、用量少,建議采前施用[95]。

1.5.2 茉莉酸類 茉莉酸及其甲酯衍生物和氨基酸衍生物合稱為茉莉酸類物質(zhì)。作為一種內(nèi)源性信號激素,茉莉酸甲酯(methyl jasmonate,MeJA)在采后果蔬品質(zhì)劣變調(diào)控中發(fā)揮關(guān)鍵作用[96]。Baek等[94]研究表明,采前噴施0.25 mmol·L-1 MeJA溶液能有效保持采后26 d番茄果實(shí)的硬度,提高總酚、維生素C、番茄紅素和β-類胡蘿卜素的含量,延緩總可溶性糖和氨基酸含量下降,降低果實(shí)失重率和乙烯生成量。

1.5.3 褪黑素 隨著植物褪黑素(melatonin,MLT)受體CAND2/PMTR1的發(fā)現(xiàn)與相關(guān)信號通路預(yù)測模型的提出,MLT也被認(rèn)為是一種新型植物激素[97]。MLT可通過提高防御性酶活性、總酚和黃酮類化合物含量、內(nèi)源性SA含量等途徑提高植物抗性[98-99]。遭到病原物刺激后,植物體會產(chǎn)生病程相關(guān)蛋白(pathogenesis-related proteins,PR蛋白),而幾丁質(zhì)酶、β-1, 3葡聚糖酶便是其中的兩種病程相關(guān)蛋白,分別由PR2、PR3基因編碼[100-101]。β-1, 3葡聚糖是病原真菌細(xì)胞壁的主要組分,β-1, 3葡聚糖酶可降解β-1, 3葡聚糖,因此細(xì)胞中高水平的β-1, 3葡聚糖酶有助于降解病原菌菌絲體,達(dá)到抑菌效果[102]。生吉萍等[103]研究表明,在始花期整株噴施100 μmol·L-1 MLT可顯著降低番茄采后灰霉病的發(fā)病率和減小病斑面積,提高果實(shí)中幾丁質(zhì)酶、β-1, 3葡聚糖酶、苯丙氨酸解氨酶、多酚氧化酶的活性,緩解維生素C和可溶性蛋白等營養(yǎng)物質(zhì)含量的下降,上調(diào)抗病相關(guān)基因(PR-1、NPR1、PI II、LoxD)表達(dá),由于PR-1、NPR1、PI II、LoxD表達(dá)與JA、SA代謝途徑關(guān)系密切,因此推測MLT通過SA和JA途徑誘導(dǎo)植物產(chǎn)生抗病性。

苯丙烷代謝以苯丙氨酸為起點(diǎn),經(jīng)一系列酶促反應(yīng)后可生成8000多種次生代謝物(如木質(zhì)素、黃酮和生物堿等),木質(zhì)素積累在植物次生細(xì)胞壁中,可物理抵御病菌入侵[104]。Li等[105]研究表明,在膨果后期噴施0.01 mmol·L-1的MLT溶液可降低果實(shí)灰霉病的感染率及采后自然腐爛速率,并提高SA和木質(zhì)素的含量。Li等[105]通過對果實(shí)轉(zhuǎn)錄組的分析,發(fā)現(xiàn)采前MLT處理使Ca信號轉(zhuǎn)導(dǎo)、SA信號通路和苯丙烷代謝通路的基因發(fā)生了差異表達(dá)。在植物體中,SA主要由分支酸通過兩條相對獨(dú)立的途徑合成,各依賴異分支酸合酶和苯丙氨酸解氨酶[106],在Li等[105]的研究中,噴施MLT提高了SA和木質(zhì)素的含量,這種變化都與苯丙烷代謝途徑中的苯丙氨酸解氨酶相關(guān),生吉萍等[103]也發(fā)現(xiàn)MLT處理確實(shí)提高了苯丙氨酸解氨酶活性,推測采前噴施MLT通過提升苯丙烷代謝通路中苯丙氨酸解氨酶的活性提高了SA和木質(zhì)素的含量,然后SA進(jìn)一步誘導(dǎo)果實(shí)系統(tǒng)獲得性抗性,此外,木質(zhì)素強(qiáng)化細(xì)胞壁從而提升物理防御能力,最終延長了番茄保鮮期。

1.6 氨基酸

1.6.1 L-精氨酸 遭到外界脅迫時(shí),NO能激活并誘導(dǎo)植物表達(dá)一系列抗性相關(guān)基因,提高一系列防御性酶的活性,而L-精氨酸是NO的前體物質(zhì)[107]。Zheng等[101]研究表明,在番茄始花后50 d土施L-精氨酸可增強(qiáng)番茄綠熟期果實(shí)對灰葡萄孢(B. cinerea)的抗性。這主要是由于果實(shí)中NO含量的顯著提高誘導(dǎo)提升了防御性酶苯丙氨酸解氨酶、多酚氧化酶、幾丁質(zhì)酶和β-1,3葡聚糖酶的活性,最終提高了番茄果實(shí)對B. cinerea的抗性。

1.6.2" " β-氨基丁酸" " 前人研究表明,種子經(jīng)β-氨基丁酸(β-aminobutyric acid,BABA)處理后,可獲得長效持久的抗病、抗蟲性[108]。Wilkinson等[109]研究表明,苗期施用BABA能誘導(dǎo)提升番茄果實(shí)對灰葡萄孢(B. cinerea)的抗性,從而降低灰霉病的發(fā)生率和發(fā)病程度,并有效延緩果實(shí)衰老。通過分析代謝組學(xué)數(shù)據(jù),Wilkinson等[109]發(fā)現(xiàn)苗期施用BABA可以激發(fā)一種長效的防御機(jī)制,與此前BABA在種子上的表現(xiàn)一致,推測該機(jī)制與脫落酸相關(guān),但深層次的機(jī)制暫不明確。

1.6.3" " 5-氨基乙酰丙酸" " 前人發(fā)現(xiàn)5-氨基乙酰丙酸(5-arminolevulinic acid,5-ALA)具有類似于植物激素的生理活性[110]。王婷等[111]研究表明,葉面噴施5-ALA(噴施量0.06 g·m-2)可顯著降低冷藏時(shí)番茄的呼吸峰值,延緩果實(shí)軟化和維生素C、總可溶性糖含量下降,抑制膜質(zhì)過氧化程度,降低丙二醛含量。目前,采前噴施5-ALA提高番茄采后耐貯性的作用機(jī)制尚不明確,有待進(jìn)一步探究。

1.7 天然抗菌物質(zhì)

1.7.1" " 殼聚糖" " 殼聚糖(chitosan,CTS)是幾丁質(zhì)經(jīng)脫乙酰基后生成的一種高分子聚合物,具有廣譜的抗真菌活性,可抑制B. cinerea和P. expansum孢子萌發(fā)和芽管菌絲發(fā)育[112-113],并可誘導(dǎo)植物系統(tǒng)獲得性抗性[114]。Tagele等[61]發(fā)現(xiàn)采后28 d,CTS處理的保鮮效果顯著優(yōu)于對照(不噴施處理),其中,0.5 % CTS處理的番茄果實(shí)中的可滴定酸含量高出對照33.33%,0.1% CTS處理的番茄果實(shí)中的維生素C含量高出對照23.84%。此外,Migliori等[115]研究表明,與對照(噴施蒸餾水)相比,采前CTS處理能從采后第80天開始降低番茄果實(shí)的腐爛率,有效保水,延緩果實(shí)衰老和β-胡蘿卜素、總可溶性糖和類黃酮含量下降。Almunqedhi等[116]研究表明,綠熟期開始葉面混合噴施2.0 g·L-1 SA和4.0 g·L-1 CTS溶液,以及2.0 g·L-1 SA和6.0 g·L-1 CTS均可顯著降低采后番茄果實(shí)的腐爛率和失重率。

1.7.2 植物精油 植物精油富含次生代謝物,具有強(qiáng)大的抗氧化和抑菌功能[117]。Black-Solis等[118]研究表明,采前用含6.1 %肉桂精油的聚酯網(wǎng)進(jìn)行套網(wǎng)處理能顯著提高采后番茄果實(shí)的抗氧化能力,降低黑霉病發(fā)病率,有效延長保鮮期。前人研究表明,百里香酚、香芹酚可作用于病原真菌的核糖體和線粒體,抑制各種酶的生成,使氧化磷酸化途徑失調(diào),引起脂質(zhì)過氧化、電解質(zhì)滲漏、能量代謝失衡,最終達(dá)到抑菌效果[119]。Migliori等[115]研究表明,采前噴施百里香精油(內(nèi)含57.4%百里香酚和2.8%香芹酚)能降低采后40 d的番茄果實(shí)腐爛率,有效延緩貯藏期間總可溶性糖和類黃酮含量下降。Perdones等[120]研究表明,采前噴施0.25%和0.50%的牛至精油成膜劑能有效降低番茄果實(shí)采后呼吸速率和失重率,有效減輕匍枝根霉(R. stolonifer)所引發(fā)的果腐病,與百里香精油相似,牛至精油中的抑菌成分也是百里香酚和香芹酚[121]。

綜上,精油中所含的各類次生代謝物才是有效成分。目前,除上文提及的次生代謝物外,綠原酸[122]、阿魏酸[123]、檸檬醛[124]等也被證實(shí)具有不錯(cuò)的番茄保鮮效果,但目前這些次生代謝物主要用于采后而非采前,筆者建議今后可將該領(lǐng)域的研究部分拓展至采前。

1.7.3" " 蜂膠" " "蜂膠是蜜蜂將植物芽孢或樹皮上采集的天然樹脂與自身腭腺、蠟腺分泌物混合后,加工而成的一種膠狀物,具抗菌活性[125]。2-異丁基噻唑呈強(qiáng)烈的番茄香氣[126]。2-(E)-己烯醛可損害真菌細(xì)胞壁和細(xì)胞器導(dǎo)致菌體死亡[127],并可作為信號傳遞分子誘導(dǎo)植物抗病相關(guān)基因的表達(dá)[128]。萜烯類物質(zhì)(如芳樟醇)具有抑菌活性[129]。Migliori等[115]研究表明,與對照(噴施蒸餾水處理)相比,采前噴施0.2%的蜂膠乙醇提取液(內(nèi)含20 mg·mL-1高良姜素)能夠從第80天開始降低番茄果實(shí)的腐爛率,并有效延緩貯藏期間可滴定酸、2-異丁基噻唑、2-(E)-己烯醛和萜烯含量的下降。

2 采前生物防治對番茄果實(shí)采后保鮮效果的影響

盡管化學(xué)殺菌劑在采后病害防治上成效顯著,但會引發(fā)農(nóng)藥殘留、使病菌產(chǎn)生抗藥性、危害人體健康等問題,因此,急需尋找高效環(huán)保的替代方法,無毒且具有生防功能的拮抗微生物成為首選[130]。在初次侵染難以避免的情況下,采前使用生防菌能讓其占據(jù)果實(shí)表面、表皮氣孔等位點(diǎn),擠壓病菌生存空間[131],分泌具有抑菌功能的酶或代謝物[132],誘導(dǎo)寄主產(chǎn)生抗病性[133],從而達(dá)到抑菌目的。

2.1 哈茨木霉

灰葡萄孢(B. cinerea)可侵染1000多種作物,寄主適應(yīng)范圍廣,經(jīng)傷口或氣孔侵染果實(shí),導(dǎo)致果實(shí)變軟變色,并在果面形成灰褐色霉層,致使果實(shí)失去價(jià)值[134]。哈茨木霉(Trichoderma harzianum)是一種廣譜性生防菌,生長速度是B. cinerea的2.0~4.2倍,可通過占領(lǐng)營養(yǎng)空間、產(chǎn)生抗菌肽、誘導(dǎo)植物對病菌產(chǎn)生抗性、寄生病原菌絲使其斷裂等途徑抑制B. cinerea[135]。曹森等[136]研究表明,采前3 d果面噴施3.0×106 CFU·mL-1的T. harzianum可有效降低采后果實(shí)腐爛率,減輕果實(shí)軟化,延緩總可溶性糖、可滴定酸和維生素C含量下降,降低果實(shí)呼吸速率和乙烯生成速率,并維持更高的超氧化物歧化酶、過氧化物酶和多酚氧化酶活性,從而延長番茄果實(shí)貯藏期。

2.2 季也蒙畢赤酵母

Zhao等[137]研究表明,采前果面噴施108 CFU·mL-1的季也蒙畢赤酵母(Pichia guilliermondii)菌懸液可誘導(dǎo)提高番茄果實(shí)中過氧化物酶、苯丙氨酸解氨酶和β-1,3葡聚糖酶3種防御性酶的活性,顯著降低果實(shí)腐敗率,噴施次數(shù)與保鮮效果呈正相關(guān)。

2.3 出芽短梗霉

出芽短梗霉(Aureobasidium pullulans)是一種類酵母真菌,已被廣泛應(yīng)用于果蔬采后病害控制領(lǐng)域[138]。Shi等[139]從番茄坐果開始,用108 CFU·mL-1的A. pullulans S2菌液噴施整個(gè)植株和周圍土壤,發(fā)現(xiàn)噴施A. pullulans S2降低了采后番茄的腐爛率,改變了果實(shí)表面微生物的群落結(jié)構(gòu)。

2.4 印度梨形孢

王慧俐[140]研究表明,采前接種印度梨形孢(Piriformospora indica)可顯著降低采后番茄灰霉病、黑斑病的發(fā)病率,延緩果實(shí)軟化,激發(fā)過氧化物酶和多酚氧化酶活性,降低丙二醛含量,上調(diào)果實(shí)中能量代謝相關(guān)以及抗性相關(guān)基因的表達(dá),下調(diào)果實(shí)中乙烯合成相關(guān)基因和細(xì)胞壁降解相關(guān)基因的表達(dá)。

2.5 枯草芽孢桿菌

枯草芽孢桿菌(Bacillus subtilis)能產(chǎn)生抗菌肽、抗菌脂肽和非肽類物質(zhì),這些物質(zhì)能夠改變病菌質(zhì)膜通透性,造成胞體原生質(zhì)泄漏、菌絲畸形,抑制孢子萌發(fā)[141-143]。奉代力等[51]于采前7 d在番茄葉、果上噴施8.0×109 CFU·mL-1的B. subtilis水劑,可顯著延緩采后果實(shí)維生素C含量下降。

2.6 具有生防潛力的低毒真菌病毒

低毒真菌病毒是一類天然存在的能夠?qū)е轮参锊≡婢醵玖Φ牟《?,具有生物防治作用[144]。匍柄霉屬真菌(Stemphylium spp.)是番茄采后致病菌。Liu等[144]在番茄匍柄霉病菌中發(fā)現(xiàn)一種低毒真菌病毒Stemphylium lycopersici alternavirus 1(SlAV1),可靶向干擾Stemphylium spp.真菌毒素Altersolanol A的合成,使Stemphylium spp.喪失致病力,更值得注意的是,整合了SlAV1基因序列的Stemphylium spp.能從致病菌轉(zhuǎn)變?yōu)樯谰?,該發(fā)現(xiàn)為番茄采后病害的防治提供了新的思路。

3 采前物理防治對番茄果實(shí)采后保鮮效果的影響

3.1 紫外線

UV-C是指波長在100~280 nm的紫外線[145]。UV-C處理可通過降低病原物的侵染能力(如改變果實(shí)表皮蠟質(zhì)結(jié)構(gòu),減少真菌附著胞數(shù)量)[146],誘導(dǎo)形成病程相關(guān)蛋白[147]和生成防御性次生代謝物[148],改變植物激素信號[149]等途徑提高果實(shí)抗病性。值得注意的是,在這一過程中,低劑量(不超過10 kJ·m-2)的UV-C主要起到類似激素的誘導(dǎo)作用,而非直接輻照殺菌。Obande等[150]在采前8 h用3 kJ·m-2和8 kJ·m-2 的UV-C(波長為254 nm)對綠熟期番茄進(jìn)行輻照,發(fā)現(xiàn)采后5 d,UV-C處理果實(shí)略有轉(zhuǎn)色,而對照(未進(jìn)行輻照)果實(shí)轉(zhuǎn)色明顯,8 kJ·m-2 處理果實(shí)達(dá)到與對照相同轉(zhuǎn)色程度的時(shí)間較對照延后10 d。與對照和3 kJ·m-2 處理相比,8 kJ·m-2處理能有效保持果實(shí)硬度。此外,Obande等[150]在各處理采后果實(shí)上接種指狀青霉(Penicillium digitatum)孢子并監(jiān)測果實(shí)變化情況,發(fā)現(xiàn)8 kJ·m-2處理能有效延緩果實(shí)軟化。

3.2 藍(lán)光、紅光、遠(yuǎn)紅光

Affandi等[151]研究表明,利用混合光(含12%藍(lán)光和88 %紅光)補(bǔ)光可提高采后番茄的抗冷性,補(bǔ)光可減少綠熟期采收的番茄采后果重?fù)p耗,延緩果實(shí)轉(zhuǎn)色,補(bǔ)光有效延緩了成熟期采收的番茄果實(shí)軟化和轉(zhuǎn)色。光合有效輻射(photosynthetically active radiation,PAR)是太陽輻射中對植物光合作用有效的那部分光譜,波長區(qū)間在380~710 nm[152],而遠(yuǎn)紅外光光譜區(qū)間在700~750 nm,與PAR有小范圍重疊[153]。Affandi等[154]研究表明,在每天16 h的PAR 150 μmol·m-2 s-1光照的背景下,耦合30或50 μmol·m-2 s-1非PAR遠(yuǎn)紅光處理能顯著減緩冷藏期間的果重?fù)p耗、果面凹陷及轉(zhuǎn)色,延緩果實(shí)軟化。目前,采前補(bǔ)光誘導(dǎo)采后果實(shí)抗冷性的機(jī)制仍不明確。

3.3 套袋

套袋能減少果實(shí)失水并物理隔絕田間病蟲[155]。番茄潰瘍病又稱萎蔫病、細(xì)菌性潰瘍病,由密執(zhí)安棒形桿菌密執(zhí)安亞種引發(fā),該病菌可造成果實(shí)皺縮、畸形,出現(xiàn)“鳥眼狀”斑點(diǎn),極大地影響番茄的產(chǎn)量和商品性[156]。Buthelezi等[15]研究表明,在番茄植株坐果16 d后套袋能夠顯著降低采后潰瘍病的發(fā)病率,有效延長果實(shí)貨架期,且透明塑料袋的效果優(yōu)于藍(lán)色塑料袋。不同顏色的果袋主要是通過影響果實(shí)接受到的光強(qiáng)和光質(zhì)來影響植物的各種代謝過程,前人發(fā)現(xiàn)藍(lán)光可以抑制苯丙氨酸解氨酶的活性[157],而木質(zhì)素具有強(qiáng)化植物細(xì)胞壁從而提高抗病性的能力,木質(zhì)素的合成與苯丙烷代謝途徑的關(guān)鍵酶苯丙氨酸解氨酶直接相關(guān)[158]。

4 展 望

目前,國內(nèi)外針對番茄采前處理提高采后果實(shí)保鮮效果的研究還較少,相關(guān)研究仍在起步階段。許多采前處理都有明顯的優(yōu)缺點(diǎn),如:化學(xué)殺菌劑處理,雖然成本低、操作便捷,但可能存在農(nóng)殘問題;而植物激素、氨基酸、精油、紫外線、可見光、套袋等處理,雖無農(nóng)殘問題,但處理成本較高,較難被種植戶接受。總體而言,生防菌處理是較為理想的采前處理措施。

此外,在我國目前的產(chǎn)銷模式下,種植戶和批發(fā)商并非利益共同體,采前處理增加了種植戶的成本投入,但收益較低,對種植戶缺乏吸引力。目前采后保鮮處理仍是主流,采前處理更多只是停留在技術(shù)研究層面。隨著現(xiàn)代設(shè)施農(nóng)業(yè)的蓬勃發(fā)展,如今國內(nèi)已出現(xiàn)一些農(nóng)業(yè)集團(tuán)或公司,他們既是生產(chǎn)番茄的主體,又會自建倉庫進(jìn)行采后貯藏,產(chǎn)銷一體的經(jīng)營模式為番茄采前保鮮技術(shù)的應(yīng)用提供了可能。筆者認(rèn)為,在此模式下,采前處理才可能作為采后處理的有效補(bǔ)充。在技術(shù)開發(fā)方面,今后應(yīng)該著重于篩選環(huán)保、高效的生防菌菌劑,并集成多套采前、采后復(fù)合保鮮技術(shù),以期達(dá)到最佳的保鮮效果。

參考文獻(xiàn)

[1] BAI C M,F(xiàn)ANG M H,ZHAI B,et al.Regulations of m6A methylation on tomato fruit chilling injury[J].Horticultural Plant Journal,2021,7(5):434-442.

[2] WU H Q,LIU L,CHEN Y F,et al.Tomato SlCER1-1 catalyzes the synthesis of wax alkanes which increases the drought tolerance and fruit storability[J].Horticulture Research,2022,9:uhac004.

[3] ARAH I K,AMAGLO H,KUMAH E K,et al.Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes:A mini review[J].International Journal of Agronomy,2015:478041.

[4] WANG D D,LU Q H,WANG X M,et al.Elucidating the role of SlXTH5 in tomato fruit softening[J].Horticultural Plant Journal,2023,9(4):777-788.

[5] BU S W,MUNIR S,HE P F,et al.Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea[J].Biological Control,2021,157:104568.

[6] ZHANG L P,JIA C G,LIU L H,et al.The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death[J].Journal of Experimental Botany,2011,62(15):5405-5418.

[7] MISLIVEC P B,BRUCE V R,STACK M E,et al.Molds and tenuazonic acid in fresh tomatoes used for catsup production[J].Journal of Food Protection,1987,50(1):38-41.

[8] HAMID M I,HUSSAIN M,GHAZANFAR M U,et al.Trichothecium roseum causes fruit rot of tomato,orange,and apple in pakistan[J].Plant Disease,2014,98(9):1271.

[9] JANISIEWICZ W J,CONWAY W S.Combining biological control with physical and chemical treatments to control fruit decay after harvest[J].Stewart Postharvest Review,2010,6(1):1-16.

[10] SRIVASTAVA M P,TANDON R N.Post-harvest diseases of tomato in India[J].Mycopathologia et Mycologia Applicata,1966,29(3):254-264.

[11] JABNOUN-KHIAREDDINE H,ABDALLAH R A,EL-MOHAMEDY R,et al.Comparative efficacy of potassium salts against soil-borne and air-bornefungi and their ability to suppress tomato wilt and fruit rots[J].Journal of Microbial and Biochemical Technology,2016,8:45-55.

[12] ADSS I,HAMZA H,HAFEZ E,et al.Enhancing tomato fruits post-harvest resistance by salicylic acid and hydrogen peroxide elicitors against rot caused by alternaria solani[J].Journal of Agricultural Chemistry and Biotechnology,2017,8(1):1-8.

[13] GHATAK A,ANSAR M,GHATAK L V,et al.Elucidation of relationship between phytophthora leaf blight and fruit rot in tomato[J].Revista Latino Americana De Enfermagem,2015,3(2):50-57.

[14] JONES R W,PRUSKY D.Expression of an antifungal peptide in Saccharomyces:A new approach for biological control of the postharvest disease caused by Colletotrichum coccodes[J].Phytopathology,2002,92(1):33-37.

[15] BUTHELEZI N M D,OLOWOYO J O,MAFEO T P.Influence of preharvest bagging on maturity indices and postharvest quality of cherry tomato (Solanum lycopersicum var.cerasiforme)[J].HortScience,2023,58(1):95-104.

[16] AHMED F A,ARIF M,ALVAREZ A M.Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in Tomato[J].Frontiers in Microbiology,2017,8:1728.

[17] DUAN Y,WANG G B,F(xiàn)AWOLE O A,et al.Postharvest precooling of fruit and vegetables:A review[J].Trends in Food Science and Technology,2020,100:278-291.

[18] BAI C M,WU C E,MA L L,et al.Transcriptomics and metabolomics analyses provide insights into postharvest ripening and senescence of tomato fruit under low temperature[J].Horticultural Plant Journal,2023,9(1):109-121.

[19] MAJIDI H,MINAEI S,ALMASSI M,et al.Tomato quality in controlled atmosphere storage,modified atmosphere packaging and cold storage[J].Journal of Food Science and Technology,2014,51(9):2155-2161.

[20] YADAV A,KUMAR N,UPADHYAY A,et al.Edible coating as postharvest management strategy for shelf-life extension of fresh tomato (Solanum lycopersicum L.):An overview[J].Journal of Food Science,2022,87(6):2256-2290.

[21] ADAM M Y,ELBASHIR H A,AHMED A H R.Effect of gamma radiation on tomato quality during storage and processing[J].Current Research Journal of Biological Sciences,2014,6(1):20-25.

[22] LOCALI-PEREIRA A R,GUAZI J S,CONTI-SILVA A C,et al.Active packaging for postharvest storage of cherry tomatoes:Different strategies for application of microencapsulated essential oil[J].Food Packaging and Shelf Life,2021,29:100723.

[23] SEDJOAH R C A A,SUN S W,ABDALMEGEED D,et al.Overexpression of pptase in Streptomyces sp.NAUS:Increasing biocontrol potential against postharvest tomato fruit decay and isolation of a novel antifungal compound[J].Postharvest Biology and Technology,2023,204:112462.

[24] JIA S T,ZHANG N,JI H P,et al.Effects of atmospheric cold plasma treatment on the storage quality and chlorophyll metabolism of postharvest tomato[J].Foods,2022,11(24):4088.

[25] MUSTAPHA A T,ZHOU C S,SUN Y H,et al.Simultaneous multifrequency:A possible alternative to improve the efficacy of ultrasound treatment on cherry tomato during storage[J].Journal of Food Processing and Preservation,2019,43(9):e14083.

[26] CHANG C K,TSAI S Y,GAVAHIAN M,et al.Direct and alternating current electric fields affect pectin esterase and cellulase in tomato (Solanum lycopersicum L.) fruit during storage[J].Postharvest Biology and Technology,2023,205:112495.

[27] MA M X,DE SILVA D D,TAYLOR P W J.Black mould of post-harvest tomato (Solanum lycopersicum) caused by Cladosporium cladosporioides in Australia[J].Australasian Plant Disease Notes,2020,15(1):25.

[28] CRISTINA R,REYES-PéREZ J,BERNARDO M,et al.Control of phytopathogenic microorganisms of post-harvest in tomato (Lycopersicon esculentum Mill.) with the use of citrus extract[J].Journal of Plant Science and Phytopathology,2018,2:37-43.

[29] LI C X,ZHAO J L,WANG J D,et al.First report of Trichothecium roseum causing postharvest fruit rot on purple passion fruit in China[J].Plant Disease,2022,106(12):3212.

[30] MIEDES E,LORENCES E P.The implication of xyloglucan endotransglucosylase/hydrolase (XTHs) in tomato fruit infection by Penicillium expansum Link. A.[J].Journal of Agricultural and Food Chemistry,2007,55(22):9021-9026.

[31] KOKA J A,WANI A H,BHAT M Y.Incidence and severity of fungal rot of tomato and brinjal in Kashmir Valley[J].Journal of Drug Delivery and Therapeutics,2022,12(4):61-67.

[32] ORTEGA-ACOSTA S,PALEMóN-ALBERTO F,TERRONES-SALGADO J,et al.First report of Rhizoctonia solani AG-4 HG-I causing fruit rot on tomato in Mexico[J].Plant Disease,2021,106(5):1531.

[33] KONG J,ZHANG Y,JU J,et al.Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes[J].Food Chemistry,2019,285:380-388.

[34] OLADIRAN A O,IWU L N.Studies on the fungi associated with tomato fruit rots and effects of environment on storage[J].Mycopathologia,1993,121(3):157-161.

[35] SEKIGUCHI H,MASUNAKA A,NOMIYAMA K,et al.Internal fruit rot of sweet pepper caused by Fusarium lactis in Japan and fungal pathogenicity on tomato and eggplant fruits[J].Journal of General Plant Pathology,2021,87(5):326-329.

[36] MEDINA-ROMERO Y M,ROQUE-FLORES G,MACIAS-RUBALCAVA M L.Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits[J].Applied Microbiology and Biotechnology,2017,101(22):8209-8222.

[37] ABU BAKAR A I,IZZATI M Z N A,KALSOM Y U.Diversity of Fusarium species associated with post-harvest fruit rot disease of tomato[J].Sains Malaysiana,2013,42(7):911-920.

[38] MUNIZ M D F S,ROCHA D F,SILVEIRA N S S,et al.Identification of fungi causal agents of postharvest diseases on commercialized fruits in Alagoas,Brazil[J].Summa Phytopathologica,2003,29(1):38-42.

[39] PRENCIPE S,SPADARO D.First report of Stemphylium eturmiunum causing postharvest rot on tomato (Solanum lycopersicum) in Italy[J].Plant Disease,2021,105(11):2021.

[40] NIZAMANI S,KHASKHELI A A,JISKANI A M,et al.Isolation and identification of the fungi causing tomato fruit rot disease in the vicinity of Tandojam,Sindh[J].Agricultural Science Digest,2021,41:186-190.

[41] PODGORSKA-KRYSZCZUK I.Biological control of Aspergillus flavus by the yeast Aureobasidium pullulans in vitro and on tomato fruit[J].Plants,2023,12(2):236.

[42] MARIUTTI L R B,SOARES L M V.Survey of aflatoxins in tomato products[J].Ciência e Tecnologia de Alimentos,2009,29(2):431-434.

[43] MOHANA N C,KUMAR H K N,MAHADEVAKUMAR S,et al.First report of Aspergillus versicolor associated with fruit rot disease of tomato (Solanum lycopersicum) from India[J].Plant Disease,2022,106(4):1300.

[44] THOMIDIS T,PRODROMOU I,F(xiàn)ARMAKIS A,et al.Effect of temperature on the growth of Geotrichum candidum and chemical control of sour rot on tomatoes[J].Tropical Plant Pathology,2021,46(5):545-552.

[45] SEGURA-PALACIOS M A,CORREA-PACHECO Z N,CORONA-RANGEL M L,et al.Use of natural products on the control of Aspergillus flavus and production of aflatoxins in vitro and on tomato fruit[J].Plants,2021,10(12):2553.

[46] SOMAPALA K.Preharvest application of potassium on enhancing resistance to anthracnose in tomato(Lycopersicon esculentum L.)[J].International Journal of Agriculture,F(xiàn)orestry and Plantation,2015,1:DOI.10.13140/RG.2.1.4452.4008.

[47] AHMED F A,SIPES B S,ALVAREZ A M.Postharvest diseases of tomato and natural products for disease management[J].African Journal of Agricultural Research,2017,12(9):684-691.

[48] THOMIDIS T,PRODROMOU I,PARESIDOU M,et al.Effects of temperature and leaf wetness duration on pathogens causing preharvest fruit rots on tomato[J].Journal of Plant Pathology,2023,105(4):1431-1448.

[49] ALIMI B A,MELESSE S F,WORKNEH T S.Multifactorial analysis of the effects of pre and postharvest treatments on the quality of stored tomato[J].CyTA-Journal of Food,2016,14(2):206-212.

[50] CHEN F P,F(xiàn)AN J R,ZHOU T,et al.Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide syp-z048 and analysis of DMI-resistant mutants[J].Plant Disease,2012,96(3):416-422.

[51] 奉代力,鄭紀(jì)慈,陳文學(xué),等.采前3種殺菌劑噴施對櫻桃番茄采后品質(zhì)的影響及啶菌惡唑殘留檢測[J].食品科學(xué).2014,35(6):224-228.

[52] ZIOGAS B N,MARKOGLOU A N,MALANDRAKIS A A.Studies on the inherent resistance risk to fenhexamid in Botrytis cinerea[J].European Journal of Plant Pathology,2003,109(4):311-317.

[53] FERNANDEZ-ORTUNO D,CHEN F P,SCHNABEL G.Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas[J].Plant Disease,2012,96(8):1198-1203.

[54] VELOUKAS T,LEROCH M,HAHN M,et al.Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry[J].Plant Disease,2011,95(10):1302-1307.

[55] DOMíNGUEZ I,F(xiàn)ERRERES F,DEL RIQUELME F P,et al.Influence of preharvest application of fungicides on the postharvest quality of tomato (Solanum lycopersicum L.)[J].Postharvest Biology and Technology,2012,72:1-10.

[56] 魏佳.一氧化氮和二氧化氯對哈密瓜和葡萄采后病害及農(nóng)藥殘留的影響[D].烏魯木齊:新疆大學(xué),2018.

[57] 董曉慶,吳本翠,黃世安,等.采前噴施二氧化氯對設(shè)施番茄采后貯藏品質(zhì)的影響[J].北方園藝,2020(20):98-106.

[58] TSANTILI E,CHRISTOPOULOS M V,PONTIKIS C A,et al.Texture and other quality attributes in olives and leaf characteristics after preharvest calcium chloride sprays[J].HortScience,2008,43(6):1852-1856.

[59] GAO Q Y,XIONG T T,LI X P,et al.Calcium and calcium sensors in fruit development and ripening[J].Scientia Horticulturae,2019,253:412-421.

[60] XU Y X,LIU J J,ZANG N N,et al.Effects of calcium application on apple fruit softening during storage revealed by proteomics and phosphoproteomics[J].Horticultural Plant Journal,2022,8(4):408-422.

[61] TAGELE A,WOLDETSADIK K,GEDAMU F,et al.Effects of preharvest applications of chemicals and storage conditions on the physico-chemical characteristics and shelf life of tomato (Solanum lycopersicum L.) fruit[J].Heliyon,2022,8(6):e09494.

[62] DAUNDASEKERA W A M,LIYANAGE G L S G,WIJERATHNE R Y,et al.Preharvest calcium chloride application improves postharvest keeping quality of tomato (Lycopersicon esculentum Mill.)[J].Ceylon Journal of Science,2015,44(1):55-60.

[63] 魏寶東,馬玥,李曉明,等.葉面噴施維生素A和鈣混劑對采后番茄果實(shí)軟化生理的影響[J].北方園藝,2012(14):156-159.

[64] 魏寶東,張鑫浩,李曉明,等.不同鈣制劑處理對番茄冷藏期間品質(zhì)的影響[J].食品科學(xué),2011,32(6):279-282.

[65] YANG H B,ZHU Z F,ZHANG M F,et al.QTL analysis reveals reduction of fruit water loss by NAC042 through regulation of cuticular wax synthesis in citrus fruit[J].Horticultural Plant Journal,2022,8(6):737-746.

[66] ZELAZNY E,MIECIELICA U,BORST J W,et al.An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane[J].Plant Journal,2009,57(2):346-355.

[67] HUBBARD M J,COHEN P.On target with a new mechanism for the regulation of protein phosphorylation[J].Trends in Biochemical Sciences,1993,18(5):172-177.

[68] MAZUMDER M N N,MISRAN A,DING P,et al.Preharvest foliar spray of calcium chloride on growth,yield,quality,and shelf life extension of different lowland tomato varieties in Malaysia[J].Horticulturae,2021,7(11):466.

[69] SEMIDA W M,EMARA A E,BARAKAT M A.Improving quality attributes of tomato during cold storage by preharvest foliar application of calcium chloride and potassium thiosulfate[J].International Letters of Natural Sciences,2019,76:98-110.

[70] LI R,SUN S,WANG H J,et al.FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J].Nature Communications,2020,11(1):5844.

[71] ZULFIQAR F,NAFEES M,DARRAS A,et al.Pre-harvest potassium foliar application improves yield,vase life and overall postharvest quality of cut gladiolus inflorescences[J].Postharvest Biology and Technology,2022,192:112027.

[72] ZAHIRUL I M,YOUNG-TACK L,AKTER M M,et al.Effect of pre-harvest potassium foliar spray and postharvest storage methods on quality and shelf life of cherry tomatoes[J].Research Journal of Biotechnology,2018,13(7):49-54.

[73] ZHANG Y J,LIU G Y,XU S Z,et al.Nitric oxide reduces the yield loss of waterlogged cotton by enhancing post-stress compensatory growth[J].Field Crops Research,2022,283:108524.

[74] YANG H Q,WU F H,CHENG J Y.Reduced chilling injury in cucumber by nitric oxide and the antioxidant response[J].Food Chemistry,2011,127(3):1237-1242.

[75] ZHENG Y L,DUAN L H,RAN Y L,et al.Transcriptomics analysis reveals molecular mechanism of softening and cell wall polysaccharides-disassembling in peaches treated by flow microcirculation of sodium nitroprusside medium[J].Postharvest Biology and Technology,2023,196:112190.

[76] SOLEIMANIE S A,VAFAEE Y,SABA M K.Preharvest application of sodium nitroprusside improves tomato fruit quality and alleviates chilling injury during cold storage[J].International Journal of Vegetable Science,2020,26(4):364-378.

[77] NASR I S,KORKAR H M,ABD-EL H A.Evaluation of silicon concentrations and modified atmosphere packing (MAP) on behavior of pioneer plums under two different storage temperatures[J].World Journal of Agricultural Sciences,2013,9(6):454-465.

[78] 趙文哲,陳修德,鄧文鵬,等.外源硅處理對草莓果實(shí)果膠物質(zhì)降解的影響[J].植物生理學(xué)報(bào),2021,57(10):1926-1936.

[79] 蘇敬,乜蘭春,齊迎斌,等.番茄葉面噴施硅和鈣對果實(shí)硬度及相關(guān)生理代謝的影響[J].園藝學(xué)報(bào),2016,43(4):789-795.

[80] WU Z L,BANUELOS G S,LIN Z Q,et al.Biofortification and phytoremediation of selenium in China[J].Frontiers in Plant Science,2015,6:136.

[81] GUO Q X,YE J H,ZENG J M,et al.Selenium species transforming along soil-plantcontinuum and their beneficial roles for horticultural crops[J].Horticulture Research,2023,10(2):270.

[82] SCHIAVON M,DALL'ACQUA S,MIETTO A,et al.Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.)[J].Journal of Agricultural and Food Chemistry,2013,61(44):10542-10554.

[83] ZHU Z,CHEN Y L,SHI G Q,et al.Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system[J].Food Chemistry,2017,219:179-184.

[84] ZHU Z,CHEN Y L,ZHANG X J,et al.Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits[J].Scientia Horticulturae,2016,198:304-310.

[85] 劉慧,張靜林,劉杰超,等.施硒對櫻桃番茄貯藏品質(zhì)及3種活性氧代謝酶的影響[J].食品工業(yè)科技.2019,40(24):256-261.

[86] 魏宗梅,許雪峰,李天忠,等.葉面噴施硼酸對蘋果果實(shí)硼和鈣含量的影響[J].園藝學(xué)報(bào),2007,34(5):1111-1116.

[87] SMIT J N,COMBRINK N J J.The effect of boron levels in nutrient solutions on fruit production and quality of greenhouse tomatoes[J].South African Journal of Plant and Soil,2004,21(3):188-191.

[88] 劉偉瑩.硼對番茄生長及果實(shí)貯藏性的影響[D].廣東佛山:佛山科學(xué)技術(shù)學(xué)院,2019.

[89] QIN G Z,ZONG Y Y,CHEN Q L,et al.Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action[J].International Journal of Food Microbiology,2010,138(1/2):145-150.

[90] SHI X Q,LI B Q,QIN G Z,et al.Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango[J].Plant Disease,2010,95(1):63-69.

[91] AHMED F A,ALVAREZ A M.Reduction of gray mold with preharvest applications of potassium tetraborate in greenhouse tomato[J].Plant Health Progress,2018,19(2):131-135.

[92] VLOT A C,DEMPSEY D A,KLESSIG D F.Salicylic acid,a multifaceted hormone to combat disease[J].Annual Review of Phytopathology,2009,47(1):177-206.

[93] BANINAIEM E,DASTJERDI A M.Enhancement of storage life and maintenance of quality in tomato fruits by preharvest salicylic acid treatment[J].Frontiers in Sustainable Food Systems,2023,7:1180243.

[94] BAEK M W,CHOI H R,LEE H C,et al.Preharvest methyl jasmonate and salicylic acid treatments improve the nutritional qualities and postharvest storability of tomato[J].Scientia Horticulturae,2023,321:112332.

[95] CHEN C J,SUN C C,WANG Y H,et al.The preharvest and postharvest application of salicylic acid and its derivatives on storage of fruit and vegetables:A review[J].Scientia Horticulturae,2023,312:111858.

[96] ASGHARI M,HASANLOOE A R.Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content,catalase and peroxidase enzymes activity in“Sabrosa”strawberry fruit during storage[J].Scientia Horticulturae,2015,197:490-495.

[97] ARNAO M B,HERNáNDEZ-RUIZ J.Melatonin:A new plant hormone and/or a plant master regulator?[J].Trends in Plant Science,2019,24(1):38-48.

[98] WU S Q,WANG Y,ZHANG J K,et al.Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress[J].Horticultural Plant Journal,2021,7(1):13-22.

[99] LI S E,XU Y H,BI Y,et al.Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J].Postharvest Biology and Technology,2019,157:110962.

[100] EBRAHIM S,USHA K,SINGH B.Pathogenesis-related (PR)-proteins:Chitinase and β-1,3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.)[J].Scientia Horticulturae,2011,130(4):847-852.

[101] ZHENG Y,SHENG J P,ZHAO R R,et al.Preharvest L-arginine treatment induced postharvest disease resistance to Botrysis cinerea in tomato fruits[J].Journal of Agricultural and Food Chemistry,2011,59(12):6543-6549.

[102] HU X L,YANG P,CHAI C D,et al.Structural and mechanistic insights into fungal beta-1,3-glucan synthase FKS1[J].Nature,2023,616(7955):190-198.

[103] 生吉萍,趙瑞瑞,陳玲玲,等.褪黑素采前噴施對采后番茄果實(shí)抗病性和貯藏品質(zhì)的影響[J].食品科學(xué),2020,41(9):188-193.

[104] LIU C,YU H,RAO X L,et al.Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(23):e2106367118.

[105] LI S G,CHENG Y,YAN R,et al.Preharvest spray with melatonin improves postharvest disease resistance in cherry tomato fruit[J].Postharvest Biology and Technology,2022,193:112055.

[106] PENG Y J,YANG J F,LI X,et al.Salicylic acid:Biosynthesis and signaling[J].Annual Review of Plant Biology,2021,72:761-791.

[107] CORPAS F J,GONZáLEZ-GORDO S,PALMA J M.NO source in higher plants:Present and future of an unresolved question[J].Trends in Plant Science,2022,27(2):116-119.

[108] WORRALL D,HOLROYD G H,MOORE J P,et al.Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens[J].New Phytologist,2012,193(3):770-778.

[109] WILKINSON S W,PASTOR V,PAPLAUSKAS S,et al.Long‐lasting ‐aminobutyric acid‐induced resistance protects tomato fruit against Botrytis cinerea[J].Plant Pathology,2018,67(1):30-41.

[110] 王婷.采前ALA處理對設(shè)施番茄采后品質(zhì)及貯藏性的影響[D].陜西楊凌:西北農(nóng)林科技大學(xué),2008.

[111] 王婷,饒景萍,宋永令,等.5-氨基乙酰丙酸對番茄果實(shí)品質(zhì)及采后生理的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,36(10):127-131.

[112] TERRY L A,JOYCE D C.Elicitors of induced disease resistance in postharvest horticultural crops:A brief review[J].Postharvest Biology and Technology,2004,32(1):1-13.

[113] LIU J,TIAN S P,MENG X H,et al.Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit[J].Postharvest Biology and Technology,2007,44(3):300-306.

[114] GONG D,BI Y,LI Y C,et al.Preharvest elicitors spray improves antioxidant activity,alleviates chilling injury,and maintains quality in harvested fruit[J].Horticulturae,2022,8(12):1208.

[115] MIGLIORI C A,SALVATI L,DI CESARE L F,et al.Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage[J].Scientia Horticulturae,2017,222:193-202.

[116] ALMUNQEDHI B M,KASSEM H A,AL-HARB A E R.Effect of preharvest chitosan and/or salicylic acid spray on quality and shelf life of tomato fruits[J].Journal of Scientific and Engineering Research,2017,4(11):114-122.

[117] YUAN S,XUE Z H,ZHANG S L,et al.The characterization of antimicrobial nanocomposites based on chitosan,cinnamon essential oil,and TiO2 for fruits preservation[J].Food Chemistry,2023,413:135446.

[118] BLACK-SOLIS J,VENTURA-AGUILAR R I,CORREA-PACHECO Z,et al.Preharvest use of biodegradable polyester nets added with cinnamon essential oil and the effect on the storage life of tomatoes and the development of Alternaria alternata[J].Scientia Horticulturae,2019,245:65-73.

[119] 崔醒,朱秋勁,侯瑞,等.丁香酚、香芹酚和百里香酚對禾谷鐮刀菌的抑菌活性及機(jī)制[J].食品科學(xué),2022,43(23):10-18.

[120] PERDONES A,TUR N,CHIRALT A,et al.Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings[J].Journal of the Science of Food and Agriculture,2016,96(13):4505-4513.

[121] HOU H Y,ZHANG X Y,ZHAO T,et al.Effects of Origanum vulgare essential oil and its two main components,carvacrol and thymol,on the plant pathogen Botrytis cinerea[J].PeerJ,2020,8:e9626.

[122] KAI K,WANG R,BI W L,et al.Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato[J].World Journal of Microbiology and Biotechnology,2021,37(6):93.

[123] SHU P,LI Y J,WANG X Y,et al.Exogenous ferulic acid treatment increases resistance against Botrytis cinerea in tomato fruit by regulating nitric oxide signaling pathway[J].Postharvest Biology and Technology,2021,182:111678.

[124] DU S L,ZHANG J H,CHEN S Y,et al.The combined effect of 1-methylcyclopropene and citral suppressed postharvest grey mould of tomato fruit by inhibiting the growth of Botrytis cinerea[J].Journal of Phytopathology,2019,167(2):123-134.

[125] TRIPATHI P,DUBEY N K.Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables[J].Postharvest Biology and Technology,2004,32(3):235-245.

[126] MARTINA M,TIKUNOV Y,PORTIS E,et al.The genetic basis of tomato aroma[J].Genes,2021,12(2):226.

[127] ARROYO F T,MORENO J,DAZA P,et al.Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum[J].Journal of Agricultural and Food Chemistry,2007,55(14):5701-5707.

[128] KISHIMOTO K,MATSUI K,OZAWA R,et al.Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in arabidopsis against Botrytis cinerea[J].Phytochemistry,2008,69(11):2127-2132.

[129] HERMAN A,TAMBOR K,HERMAN A.Linalool affects the antimicrobial efficacy of essential oils[J].Current Microbiology,2016,72(2):165-172.

[130] DUKARE A S,PAUL S,NAMBI V E,et al.Exploitation of microbial antagonists for the control of postharvest diseases of fruits:A review[J].Critical Reviews in Food Science and Nutrition,2019,59(9):1498-1513.

[131] JANISIEWICZ W J,TWORKOSKI T J,SHARER C.Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients[J].Phytopathology,2000,90(11):1196-1200.

[132] YEHUDA H,DROBY S,BAR-SHIMON M,et al.The effect of under- and overexpressed CoEXG1-encoded exoglucanase secreted by Candida oleophila on the biocontrol of Penicillium digitatum[J].Yeast,2003,20(9):771-780.

[133] TIAN S P,YAO H J,DENG X,et al.Characterization and expression of beta-1,3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii[J].Phytopathology,2007,97(3):260-268.

[134] XIONG J S,ZHU H Y,BAI Y B,et al.RNA sequencing-based transcriptome analysis of mature strawberry fruit infected by necrotrophic fungal pathogen Botrytis cinerea[J].Physiological and Molecular Plant Pathology,2018,104:77-85.

[135] 康萍芝,張麗榮,沈瑞清,等.哈茨木霉制劑對設(shè)施連作番茄根際土壤微生物的生態(tài)效應(yīng)及防病作用[J].農(nóng)藥,2013(2):128-131.

[136] 曹森,吉寧,馬超,等.1-MCP結(jié)合哈茨木霉菌對櫻桃番茄貯藏的保鮮效果[J].食品工業(yè)科技,2019,40(1):262-268.

[137] ZHAO Y,WANG R L,TU K,et al.Efficacy of preharvest spraying with Pichia guilliermondii on postharvest decay and quality of cherry tomato fruit during storage[J].African Journal of Biotechnology,2011,10(47):9613-9622.

[138] DI FRANCESCO A,DI FOGGIA M,BARALDI E.Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits[J].Food Microbiology,2020,87:103395.

[139] SHI Y,YANG Q Y,ZHANG Q H,et al.The preharvest application of Aureobasidium pullulans S2 remodeled the microbiome of tomato surface and reduced postharvest disease incidence of tomato fruit[J].Postharvest Biology and Technology,2022,194:112101.

[140] 王慧俐.印度梨形孢Piriformospora indica對果蔬生長、品質(zhì)及抗病性的影響及其相關(guān)機(jī)制研究[D].杭州:浙江大學(xué),2015.

[141] STEIN T.Bacillus subtilis antibiotics:Structures,syntheses and specific functions[J].Molecular Microbiology,2005,56(4):845-857.

[142] KIM P I,RYU J,KIM Y H,et al.Production of biosurfactant lipopeptides iturin A,fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides[J].Journal of Microbiology and Biotechnology,2010,20(1):138-145.

[143] 姜北辰,賀凱茹,楊姍姍,等.枯草芽孢桿菌抑菌成分研究進(jìn)展[J].乳業(yè)科學(xué)與技術(shù),2023,46(2):35-41.

[144] LIU H,WANG H,LIAO X L,et al.Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent[J].Proceedings of the National Academy of Sciences of the United States of America,2023,119(50):e2214096119.

[145] MAHARAJ R,ARUL J,NADEAU P.Effect of photochemical treatment in the preservation of fresh tomato (Lycopersicon esculentum cv.Capello) by delaying senescence[J].Postharvest Biology and Technology,1999,15(1):13-23.

[146] CHARLES M T,MAKHLOUF J,ARUL J.Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit:II.Modification of fruit surface and changes in fungal colonization[J].Postharvest Biology and Technology,2008,47(1):21-26.

[147] POMBO M A,ROSLI H G,MARTíNEZ G A,et al.UV-C treatment affects the expression and activity of defense genes in strawberry fruit ( Fragaria × ananassa Duch.)[J].Postharvest Biology and Technology,2011,59(1):94-102.

[148] BRAVO S,GARCíA-ALONSO J,MARTíN-POZUELO G,et al.The influence of post-harvest UV-C hormesis on lycopene,β-carotene,and phenolic content and antioxidant activity of breaker tomatoes[J].Food Research International,2012,49(1):296-302.

[149] TIECHER A,DE PAULA L A,CHAVES F C,et al.UV-C effect on ethylene,polyamines and the regulation of tomato fruit ripening[J].Postharvest Biology and Technology,2013,86:230-239.

[150] OBANDE M A,TUCKER G A,SHAMA G.Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance[J].Postharvest Biology and Technology,2011,62(2):188-192.

[151] AFFANDI F Y,PRAYOGA T,OUZOUNIS T,et al.Additional blue LED during cultivation induces cold tolerance in tomato fruit but only to an optimum[J].Biology-Basel,2022,11(1):101.

[152] GITELSON A,ARKEBAUER T,VI?A A,et al.Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region[J].Remote Sensing of Environment,2021,258:112401.

[153] MARTINEZ-GARCIA J F,RODRIGUEZ-CONCEPCION M.Molecular mechanisms of shade tolerance in plants[J].New Phytologist,2023,239(4):1190-1202.

[154] AFFANDI F Y,VERDONK J C,OUZOUNIS T,et al.Far-red light during cultivation induces postharvest cold tolerance in tomato fruit[J].Postharvest Biology and Technology,2020,159:111019.

[155] LIU T,SONG S,YUAN Y B,et al.Improved peach peel color development by fruit bagging:Enhanced expression of anthocyanin biosynthetic and regulatory genes using white non-woven polypropylene as replacement for yellow paper[J].Scientia Horticulturae,2015,184:142-148.

[156] WANG Y Q,DENG S Z,LI Z Y,et al.Advances in the characterization of the mechanism underlying bacterial canker development and tomato plant resistance[J].Horticulturae,2022,8(3):209.

[157] 婁玉穗,尚泓泉,樊紅杰,等.不同顏色果袋對陽光玫瑰葡萄成熟過程中果銹發(fā)生及品質(zhì)的影響[J].河南農(nóng)業(yè)科學(xué),2023,52(8):105-114.

[158] DONG N Q,LIN H X.Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions[J].Journal of Integrative Plant Biology,2021,63(1):180-209.

收稿日期:2024-02-21;修回日期:2024-04-18

基金項(xiàng)目:臺州市農(nóng)業(yè)科技項(xiàng)目(202202)

作者簡介:徐競成,男,農(nóng)藝師,研究方向?yàn)樵O(shè)施蔬菜栽培生理、蔬菜采后生理和保鮮技術(shù)。E-mail:xujingcheng94@163.com

通信作者:周" " 洪,女,高級農(nóng)藝師,研究方向?yàn)槭卟嗽耘嗌砗褪卟诵缕贩N引選推廣。E-mail:distinyzh@126.com

猜你喜歡
番茄
番茄炒蛋
秋茬番茄“疑難雜癥”如何挽救
番茄灰霉病巧防治
番茄果實(shí)“起棱”怎么辦
種植秋番茄澆好前“三水”
電力十足的小番茄
小番茄發(fā)電機(jī)
冬天的番茄為啥不太好吃
啟蒙(3-7歲)(2018年2期)2018-03-15 08:03:44
番茄炒蛋做成功啦
番茄豐收
桃源县| 伊通| 克东县| 晋州市| 涪陵区| 嘉义县| 三亚市| 家居| 宝山区| 宁明县| 专栏| 梨树县| 井冈山市| 罗城| 潞城市| 通州市| 凤台县| 北宁市| 泾源县| 六盘水市| 稻城县| 于都县| 武乡县| 盐源县| 尤溪县| 泽库县| 永春县| 福海县| 夹江县| 红桥区| 集贤县| 萍乡市| 白朗县| 旅游| 包头市| 谷城县| 日土县| 乌鲁木齐市| 萝北县| 阿图什市| 九寨沟县|