国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于離子風(fēng)荷電的細(xì)水霧噴霧及抑塵特性

2024-10-23 00:00:00劉桂生李科左子蔣鵬

摘要: 基于離子風(fēng)荷電及設(shè)計(jì)的縮放噴管搭建了荷電細(xì)水霧抑塵系統(tǒng),利用激光粒度分析儀和荷質(zhì)比測(cè)量裝置,通過(guò)改變荷電及噴霧系統(tǒng)參數(shù),研究了荷電電壓和霧化壓力等對(duì)噴霧霧滴粒徑及抑塵特性的影響.結(jié)果表明:荷電細(xì)水霧索太爾平均直徑dst整體隨荷電電壓和霧化壓力提升而減小,但荷電電壓較低時(shí)液滴易聚并,dst略微增大.液滴荷質(zhì)比隨荷電電壓和霧化壓力提升而增大,其增速隨荷電電壓提升而減緩.荷電細(xì)水霧抑塵系統(tǒng)抑塵效率整體隨荷電電壓和霧化壓力提升而上升,但霧化壓力較高時(shí)提高荷電電壓,液滴粒徑過(guò)小則會(huì)導(dǎo)致蒸發(fā)加劇,抑塵效率下降.分級(jí)抑塵效率隨顆粒物粒徑減小呈U形分布,其拐點(diǎn)隨荷電電壓提升而前移.荷電電壓20 kV霧化壓力0.6 MPa時(shí)存在最佳抑塵效率.

關(guān)鍵詞: 荷電細(xì)水霧;索太爾平均直徑;荷質(zhì)比;抑塵;離子風(fēng)

中圖分類號(hào): S210.3 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1674-8530(2024)10-1005-06

DOI:10.3969/j.issn.1674-8530.23.0092

劉桂生,李科文,左子文,等. 基于離子風(fēng)荷電的細(xì)水霧噴霧及抑塵特性[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(10):1005-1010,1017.

LIU Guisheng, LI Kewen, ZUO Ziwen, et al. Droplet and dust suppression characteristics of water mist based on ionic wind charging[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(10): 1005-1010,1017. (in Chinese)

Droplet and dust suppression characteristics

of water mist based on ionic wind charging

LIU Guisheng1, LI Kewen1, ZUO Ziwen2, JIANG Peng2*

(1. Jianbi Power Plant of China Energy, Zhenjiang, Jiangsu 212013, China; 2. School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

Abstract: A charged water mist dust suppression system was established based on ionic wind charging and a domestically designed convergent-divergent nozzle. A laser particle size analyzer and a charge-to-mass ratio measurement device were used to investigate the effects of charged voltage and atomization pressure on the droplet Sauter mean diameter and dust suppression characteristics by changing the charged and spraying system parameters. The results show that the overall Sauter mean diameter dst of the charged droplets decreases with the increase of charging voltage and atomization pressure, while slightly increases under the low charging voltage because of the aggregation of droplets. The charge-to-mass ratio of the droplets increases with the increase of charging voltage and atomization pressure, and the rate of increase slows down with the increase of charging voltage. The overall dust suppression efficiency of the charged water mist dust suppression system generally increases with the increase of charging voltage and atomization pressure. However, when the atomization pressure is too high, the increase of the charging voltage will cause the dst to be too small, resulting in decreasing dust suppression efficiency because of the increase of evaporation. The graded dust suppression efficiency shows a U-shaped distribution with the decrease of particle size, and the inflection point shifts forward with the increase of charging voltage. The optimal dust suppression efficiency is achieved at a charging voltage of 20 kV and an atomization pressure of 0.6 MPa.

Key words: charged water mist;Sauter mean diameter;charge-to-mass ratio;dust suppression;ionic wind

大氣顆粒物污染對(duì)人體健康和生態(tài)環(huán)境危害十分嚴(yán)重[1-3].隨著國(guó)家環(huán)保政策加速收緊,燃煤發(fā)電、碼頭散貨裝卸以及采礦等傳統(tǒng)高污染行業(yè)面臨巨大顆粒物排放治理壓力[4-6].以某沿江火力發(fā)電廠碼頭卸煤及轉(zhuǎn)運(yùn)裝置為例,煤炭轉(zhuǎn)運(yùn)中由于煤粉粒度不均、含塵量高等因素,產(chǎn)生大量粉塵污染,尤其是氣流跟隨性較強(qiáng)的PM2.5等小粒徑顆粒物,受江風(fēng)影響短時(shí)污染范圍可達(dá)數(shù)平方公里.因此需研究能有效治理PM2.5等小粒徑顆粒物的抑塵方案[7-9].

目前采用的抑塵技術(shù)主要有干霧抑塵、噴霧抑塵和電除塵技術(shù)[10-12].干霧抑塵技術(shù)利用粒徑10 μm左右細(xì)水霧顆粒提升空氣濕度,促使細(xì)顆粒物發(fā)生凝并,團(tuán)聚成大顆粒,受重力作用沉降,但干霧抑塵存在蒸發(fā)速率快、抗干擾能力弱等缺點(diǎn).噴霧抑塵技術(shù)采用大粒徑大貫穿距噴霧通過(guò)慣性碰撞等方式捕集顆粒物,由于氣液流速較快,對(duì)氣流跟隨性較強(qiáng)的10 μm以下顆粒物捕集效率較低.電除塵技術(shù)通過(guò)電離空氣使顆粒帶電,荷電顆粒通過(guò)靜電吸引至集塵板完成捕集.電除塵對(duì)2 μm以下帶電能力較弱的顆粒物捕集效率較低.荷電細(xì)水霧抑塵是一項(xiàng)結(jié)合傳統(tǒng)濕法抑塵和電除塵優(yōu)點(diǎn)的抑塵技術(shù)[13-15],在電場(chǎng)力作用下通過(guò)將液滴荷電充當(dāng)集塵板主動(dòng)捕集顆粒物,從而提高抑塵效率[16-18], BALACHANDRAN等[19]試驗(yàn)研究結(jié)果表明,荷電細(xì)水霧對(duì)1 μm以下細(xì)顆粒物脫除效率可達(dá)80%~90%.目前惡劣工況下荷電細(xì)水霧系統(tǒng)存在易漏電擊穿等風(fēng)險(xiǎn),影響設(shè)備正常運(yùn)行[20-21].

文中根據(jù)碼頭抓斗卸煤環(huán)境設(shè)計(jì)基于離子風(fēng)荷電的細(xì)水霧抑塵系統(tǒng),以降低荷電噴霧系統(tǒng)漏電擊穿等風(fēng)險(xiǎn).試驗(yàn)研究不同荷電電壓和霧化壓力下的荷電細(xì)水霧抑塵系統(tǒng)噴霧特性及抑塵效率規(guī)律,以期為相關(guān)工業(yè)過(guò)程抑塵技術(shù)發(fā)展提供理論參考.

1 試驗(yàn)裝置及方法

1.1 噴霧粒徑及荷質(zhì)比測(cè)量系統(tǒng)

圖1為荷電細(xì)水霧系統(tǒng)示意圖,系統(tǒng)主要包括供液系統(tǒng)、噴管和離子風(fēng)荷電模塊.離子風(fēng)荷電模塊主要包括風(fēng)送裝置、荷電裝置和絕緣殼體.荷電裝置選用針-環(huán)電極,針、環(huán)電極均為銅質(zhì),電極間距20 mm,如圖2所示,直流電壓調(diào)節(jié)范圍0~25 kV,試驗(yàn)過(guò)程環(huán)境溫度(25±1) ℃,相對(duì)濕度(55±10)%.試驗(yàn)測(cè)試平臺(tái)性能指標(biāo)如表1所示.噴管結(jié)構(gòu)如圖3所示,其尺寸參數(shù):喉管直徑D0為4 mm,進(jìn)口直徑D1為8 mm,出口直徑D2為5 mm,進(jìn)口長(zhǎng)度L1為12 mm,縮管長(zhǎng)度L2為11 mm,出口長(zhǎng)度L3為5 mm.噴霧錐角約為45°.

如圖4a所示,選取噴頭下方4點(diǎn)測(cè)量細(xì)水霧粒徑分布,A,B兩點(diǎn)分別位于噴頭正下方10 cm和20 cm處,C,D兩點(diǎn)與B同一水平線,B,C和C,D間距均為5 cm. 細(xì)水霧通過(guò)荷電模塊荷電,設(shè)定荷電電壓U分別為5,10,15,20,25 kV,噴霧霧化壓力p為0.3~0.7 MPa,流量設(shè)定為 100 mL/min,通過(guò)激光粒徑分析儀測(cè)量液滴粒徑分布.每組工況每個(gè)測(cè)量點(diǎn)測(cè)量40次,取測(cè)量結(jié)果平均值研究其特性.如圖4b所示,荷質(zhì)比測(cè)量裝置由法拉第筒、金屬網(wǎng)、微安表和量筒組成,將荷電細(xì)水霧直接噴入內(nèi)筒,收集荷電細(xì)水霧的金屬網(wǎng)接微安表,荷電液滴群在金屬網(wǎng)產(chǎn)生電流,根據(jù)電流值和荷電細(xì)水霧體積計(jì)算其荷質(zhì)比.

1.2 抑塵效率測(cè)量系統(tǒng)

荷電細(xì)水霧抑塵系統(tǒng)抑塵特性試驗(yàn)平臺(tái)如圖5所示,試 驗(yàn)在尺寸為4.30 m×3.50 m×3.25 m的封閉空間內(nèi)進(jìn)行,試驗(yàn)平臺(tái)包括荷電細(xì)水霧抑塵系統(tǒng)、揚(yáng)塵系統(tǒng)和風(fēng)機(jī)等.荷電細(xì)水霧抑塵系統(tǒng)為空間頂部對(duì)角線上等距布置的3個(gè)噴管及其荷電模塊,通過(guò)改變荷電模塊電場(chǎng)強(qiáng)度和系統(tǒng)參數(shù)研究荷電電壓和霧化壓力對(duì)荷電細(xì)水霧抑塵系統(tǒng)抑塵特性的影響.噴槍置于頂部并連接揚(yáng)塵設(shè)備和空壓機(jī)向封閉空間引入固定質(zhì)量細(xì)顆粒物,風(fēng)機(jī)氣流流速設(shè)定為1 105 m3/h,使顆粒物在空間內(nèi)均勻分布.

采樣器選用氣溶膠粒度分布采樣器,將不同等效直徑的懸浮顆粒物收集到各級(jí)采集板上,測(cè)出氣溶膠的數(shù)量及粒子大小分布.不同采集層級(jí)顆粒物粒徑范圍如表2所示,采集板如圖6所示.

采樣過(guò)程中,將收集器放置在腔室中心,采集器采樣流量維持在28.3 L/min,采樣30 min,采樣體積V=283 L.測(cè)量位置設(shè)于噴嘴下方30 cm處,每組測(cè)量重復(fù)5次并取其平均值.滑石粉和采樣前后的濾膜需烘干處理以減小試驗(yàn)過(guò)程中濾膜吸附小液滴及液滴蒸發(fā)帶來(lái)的誤差,冷卻至室溫后稱重,比較不同工況下細(xì)顆粒物含量并計(jì)算抑塵效率.封閉空間內(nèi)固體顆粒物質(zhì)量濃度計(jì)算式為

ρ=m2-m1V,(1)

式中:ρ為顆粒質(zhì)量濃度;m1,m2分別為采樣前后濾膜質(zhì)量;V為采樣體積.抑塵效率計(jì)算公式為

η=1-m0mi×100%,(2)

式中:η為抑塵效率;m0,mi分別為抑塵前后集塵器的增重.

2 結(jié)果討論

2.1 荷電細(xì)水霧流場(chǎng)特性

圖7為不同工況索太爾平均直徑.圖7a為A點(diǎn)索太爾平均直徑dst測(cè)量結(jié)果,細(xì)水霧索太爾平均直徑隨霧化壓力升高呈下降趨勢(shì).非荷電工況0.3 MPa下細(xì)水霧dst約為110 μm,0.7 MPa細(xì)水霧dst降至45 μm左右.隨電場(chǎng)強(qiáng)度提高,不同霧化壓力下dst整體呈下降趨勢(shì),這是由于液滴荷電后發(fā)生破碎,不同粒徑液滴破碎荷質(zhì)比最小值βmin[22]為

βmin=4.313r3×10-8,(3)

式中:r為液滴半徑.由式(3)可知,液滴粒徑越大,其破碎所需荷質(zhì)比越小,反之則不易破碎.因此提升荷電電壓則液滴粒徑減小,隨著電場(chǎng)強(qiáng)度提升,下降速率減緩.荷電電壓較低時(shí),液滴表面電荷分布不均勻易發(fā)生聚并,dst略微增大.0.6 MPa和0.7 MPa兩工況粒徑相近,選擇0.6 MPa工況進(jìn)一步研究測(cè)量位置(見(jiàn)圖4)對(duì)dst的影響.

圖7b為0.6 MPa工況不同測(cè)量位置dst分布,測(cè)量位置忽略噴霧羽流區(qū)[23],測(cè)量點(diǎn)距離噴管越遠(yuǎn)時(shí),dst越大,較遠(yuǎn)點(diǎn)液滴受阻力作用速度下降,受卷吸作用影響湍動(dòng)能較大,液滴輸運(yùn)過(guò)程比較復(fù)雜,液滴之間發(fā)生聚并增大了平均直徑.隨荷電電壓提高,dst整體呈下降趨勢(shì).值得注意的是,5 kV工況液滴荷電不均勻,荷電量較大的液滴會(huì)吸引荷電量較小或未荷電液滴出現(xiàn)同極性相互吸引現(xiàn)象[24],因此較0 kV工況液滴易發(fā)生聚并,使得dst升高.

荷質(zhì)比測(cè)量結(jié)果如圖8所示.液滴荷質(zhì)比β(β=q/m,其中q,m分別為液滴荷電量、質(zhì)量)隨荷電電壓提升整體呈上升趨勢(shì),低電壓工況液滴發(fā)生聚并,索太爾平均直徑dst提升后液滴數(shù)量下降,降低了離子與液滴接觸幾率,β略微降低.液滴荷電量存在瑞利極限QR[25]為

QR=8πε0r3γ,(4)

式中:ε0 為真空介電常數(shù);γ為表面張力系數(shù).由式可知,隨液滴粒徑減小,液滴瑞利極限下降,實(shí)際工況中液滴荷電量一般不超過(guò)30%QR.因此隨荷電電壓提升液滴dst減小,液滴荷電難度增大,β增速減緩.荷電電壓較低時(shí)離子數(shù)量較少,β整體較低,霧化壓力影響較小,提升荷電電壓后,霧化壓力對(duì)荷質(zhì)比影響較明顯,提高霧化壓力減小了dst,β隨之升高.霧化壓力和荷電電壓較高的工況,β提升難度較大,在20 kV,0.6 MPa時(shí)開(kāi)始出現(xiàn)平臺(tái)期趨勢(shì),提高荷電電壓或霧化壓力,β提升不明顯,即此工況下霧滴粒徑為宜.

2.2 荷電細(xì)水霧抑塵系統(tǒng)抑塵特性

圖9為不同荷電電壓和霧化壓力下荷電細(xì)水霧抑塵系統(tǒng)抑塵效率η.抑塵效率主要取決于液滴粒徑和荷質(zhì)比,減小液滴粒徑和提高荷質(zhì)比均能提升抑塵效率.根據(jù)荷電細(xì)水霧液滴索太爾平均直徑和荷質(zhì)比研究結(jié)果,提升荷電電壓和霧化壓力,液滴索太爾平均直徑dst減小,荷質(zhì)比提高,因此抑塵效率η整體隨荷電電壓和霧化壓力提升呈上升趨勢(shì).如前文所述,液滴荷質(zhì)比提升速率隨荷電電壓提高逐漸減緩,因此相同霧化壓力下隨荷電電壓提升,η曲線斜率逐漸減??;液滴粒徑dst隨霧化壓力提升而下降,相同荷電電壓下η隨霧化壓力提高而上升.0.7 MPa工況低電壓抑塵效率較高,隨著電壓提升,被0.6 MPa工況抑塵效率反超(10 kV),電壓進(jìn)一步提升后2個(gè)工況抑塵效率出現(xiàn)下降趨勢(shì),故文中系統(tǒng)在霧化壓力0.6 MPa,荷電電壓20 kV時(shí),霧滴粒徑適宜,達(dá)到最佳抑塵效率.η下降原因在于霧化壓力和荷電電壓均較大時(shí),dst過(guò)小易蒸發(fā)且難以在捕集顆粒物后形成有效沉積,因此實(shí)際過(guò)程中應(yīng)同步調(diào)整霧化壓力和荷電電壓參數(shù),避免荷電細(xì)水霧粒徑過(guò)小降低抑塵效率.

如圖10所示,選取0.6 MPa,20 kV工況進(jìn)一步研究霧化壓力和荷電電壓對(duì)荷電細(xì)水霧抑塵系統(tǒng)分級(jí)抑塵效率的影響.

荷電細(xì)水霧依靠慣性碰撞、攔截作用、擴(kuò)散作用和靜電力作用捕集顆粒物.圖10a中非荷電細(xì)水霧分級(jí)抑塵效率隨著顆粒物粒徑減小逐漸降低,霧滴難以通過(guò)慣性碰撞等被動(dòng)捕集方式有效抑制捕集受氣流擾動(dòng)影響較大的小粒徑顆粒物.荷電細(xì)水霧分級(jí)抑塵效率隨顆粒物粒徑下降近似呈U形分布,且η明顯高于非荷電工況,說(shuō)明靜電力作用能有效提高抑塵效率,但對(duì)于慣性力相對(duì)較大的顆粒物,牽引其撞擊液滴所需靜電力較大,η隨粒徑減小先降低,顆粒物粒徑減小后靜電力作用顯著,η升高.隨著荷電電壓提升,液滴荷質(zhì)比提高,靜電力作用增強(qiáng),分級(jí)抑塵效率拐點(diǎn)前移.圖10b為霧化壓力對(duì)分級(jí)抑塵效率的影響,分級(jí)抑塵效率隨顆粒物粒徑下降先降低后升高,隨霧化壓力升高而升高.0.7 MPa,25 kV工況相對(duì)于0.6 MPa,20 kV工況分級(jí)抑塵效率下降主要體現(xiàn)于前幾級(jí)顆粒物,說(shuō)明液滴粒徑過(guò)小不利于捕集較大粒徑顆粒物,從而使整體抑塵效率下降.

3 結(jié) 論

文中基于離子風(fēng)荷電及設(shè)計(jì)的縮放噴管搭建了荷電細(xì)水霧抑塵系統(tǒng),研究了霧化壓力和荷電電壓等對(duì)荷電細(xì)水霧流場(chǎng)及抑塵特性的影響.

1) 細(xì)水霧索太爾平均直徑dst隨荷電電壓和霧化壓力提升整體呈下降趨勢(shì),但荷電電壓較低時(shí)dst由于液滴易聚并略微增大.液滴荷質(zhì)比與荷電電壓和霧化壓力正相關(guān),其增長(zhǎng)速率隨荷電電壓提升而減緩,20 kV,0.6 MPa工況下繼續(xù)提高,系統(tǒng)參數(shù)荷質(zhì)比提升不明顯.

2) 系統(tǒng)抑塵效率η整體隨荷電電壓和霧化壓力提升而上升,但霧化壓力和荷電電壓均較高時(shí),液滴粒徑過(guò)小導(dǎo)致蒸發(fā)加劇,抑塵效率下降.荷電細(xì)水霧分級(jí)抑塵效率隨顆粒物粒徑下降呈U形分布,其拐點(diǎn)隨荷電電壓提升而前移.試驗(yàn)系統(tǒng)在荷電電壓20 kV霧化壓力0.6 MPa時(shí)存在最佳抑塵效率.

參考文獻(xiàn)(References)

[1] 劉新蕾,歐陽(yáng)婉約,張彤.大氣顆粒物重金屬組分的化學(xué)形態(tài)及健康效應(yīng)[J].環(huán)境化學(xué),2021,40(4):974-989.

LIU Xinglei, OUYANG Wanyue, ZHANG Tong. Chemical speciation and health effect of heavy metals in atmospheric particulate matter[J]. Environmental chemistry, 2021,40(4): 974-989. (in Chinese)

[2] SILVA T D, ALVES C, OLIVEIRA H, et al. Metabolic dysregulations underlying the pulmonary toxicity of atmospheric fine particulate matter: focus on energy-producing pathways and lipid metabolism[J]. Air quality, atmosphere amp; health, 2022,15: 2051-2065.

[3] YANG D D, ZHANG H, WANG Z L, et al. Changes in anthropogenic particulate matters and resulting global climate effects since the industrial revolution[J]. International journal of climatology, 2022, 42(1): 315-330.

[4] 隋子峰. 燃煤電廠亞微米顆粒物形成機(jī)理及釋放規(guī)律研究[D].北京:華北電力大學(xué), 2018.

[5] WANG Z, QIN C H, ZHANG W. Study on characteri-stics of emissions of air pollutants in ships in the Yangtze River delta and countermeasures[J].Earth and environmental science, 2020, 450(1): 012032.

[6] WANG Z M, ZHOU W, JISKANI I M, et al. Annual dust pollution characteristics and its prevention and control for environmental protection in surface mines[J]. Science of the total environment, 2022, 825: 153949.

[7] UUGWANGA M N, KGABI N A. Dilution and disper-sion of particulate matter from abandoned mine sites to nearby communities in Namibia[J]. Heliyon, 2021, 7(4): e06643.

[8] XU J Y, LIU M Y, CHEN H. Spatial heterogeneity of river effects on PM2.5 pollutants in waterfront neighborhoods based on mobile monitoring[J]. Atmospheric pollution research, 2022, 13(9): 101539.

[9] ZHANG X H, WANG H F, CHEN X, et al. Experimental study on dust suppression at transhipment point based on the theory of induced airflow dust production[J]. Building and environment, 2019, 160: 106200.

[10] ZHOU Q, QIN B T. Coal dust suppression based on water mediums: a review of technologies and influencing factors[J]. Fuel, 2021, 302: 121196.

[11] CHEN H, LUO Z Y, JIANG J P, et al. Effects of si-multaneous acoustic and electric fields on removal of fine particles emitted from coal combustion[J]. Powder technology, 2015, 281: 12-19.

[12] YIN W J, ZHOU G, GAO D H. Simulation analysis and engineering application of distribution characteristics about multi-stage atomization field for cutting dust in fully mechanized mining face[J]. Advanced powder technology, 2019, 30(11): 2600-2615.

[13] 孟新, 王軍鋒, 徐惠斌, 等. 荷電噴霧對(duì)脫硫塔內(nèi)顆粒物的脫除試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào) (自然科學(xué)版), 2023, 44(1): 82-88.

MENG Xin, WANG Junfeng, XU Huibin, et al. Removal characteristics of fine particles in desulfuri-zation tower by charged spray[J]. Journal of Jiangsu University(natural science edition), 2023, 44(1): 82-88. (in Chinese)

[14] TENG C Z, LI J. Experimental study on particle removal of a wet electrostatic precipitator with atomization of charged water drops[J]. Energy amp; fuels, 2020, 34(6): 7257-7268.

[15] 李金, 王軍鋒, 徐惠斌, 等. 電暈放電噴霧荷電特性[J]. 化工進(jìn)展, 2020, 40(3): 1300-1306.

LI Jin, WANG Junfeng, XU Huibin, et al. Charge characteristics of corona discharge spray[J]. Chemical industry and engineering progress, 2020, 40(3): 1300-1306. (in Chinese)

[16] 孟新,王軍鋒,徐惠斌,等. 荷電噴霧對(duì)脫硫塔內(nèi)顆粒物的脫除試驗(yàn)[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,44(1):82-88.

MENG Xin,WANG Junfeng,XU Huibin,et al. Removal characteristics of fine particles in desulfurization tower by charged spray[J]. Journal of Jiangsu University (natural science edition), 2023,44(1):82-88.(in Chinese)

[17] 陸建榮, 王貞濤, 夏磊, 等. 荷電噴霧射流卷吸流場(chǎng)與脫硫傳質(zhì)試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào), 2017,35(10): 881-886.

LU Jianrong, WANG Zhentao, XIA Lei, et al. Experiment on convolution flow and SO2 removal mass transfer in charged spray[J]. Journal of drainage and irrigation machinery engineering, 2017,35(10): 881-886. (in Chinese)

[18] 王軍鋒, 張姚文, 孟令鵬. 靜電噴霧旋風(fēng)除塵器荷電特性及細(xì)顆粒物的脫除[J]. 高電壓技術(shù), 2019,45(2): 637-642.

WANG Junfeng, ZHANG Yaowen, MENG Lingpeng. Charged droplet characetrisitcs and fine particle removal efficiency by electrostatic spray cyclone[J]. High voltage engineering, 2019,45 (2): 637-642.(in Chinese)

[19] BALACHANDRAN W, JAWOREK A, KRUPA A. Efficiency of smoke removal by charged water droplets[J]. Journal of electrostatics, 2003, 58: 209-220.

[20] TAO L X, WANG Y Y, YUE C M, et al. Synergistic emission reduction of particulate pollutants in coal-fired power plants using ultra-low emission technology[J]. Aerosol and air quality research, 2020, 20(11): 2529-2535.

[21] XU C Y, ZHANG H, CHANG J C, et al. Experimental study on the removal of fine particles using hole-slotted collectors in wet electrostatic precipitators [J]. Journal of the air amp; waste management association, 2021, 71(4): 477-487.

[22] GAWANDE N, MAYYA Y S, THAOKAR R. Numerical study of Rayleigh fission of a charged viscous liquid drop[J]. Physical review fluids, 2017, 2(11): 113603.

[23] BREDDAN M K J D, WIRZ R E. Electrospray plume evolution: Influence of drag[J]. Journal of aerosol science, 2023, 167: 106079.

[24] HUO Y P, ZHANG C, ZUO Z W, et al. Effect of gas ionization on interphase interaction of adjacent oppositely charged droplets[J]. Experiments in fluids, 2020, 61: 213.

[25] ZUO Z W, WANG J F, HUO Y P, et al. Particle motion induced by electrostatic force of a charged droplet[J]. Environmental engineering science, 2016, 33(9): 650-658.

(責(zé)任編輯 朱漪云)

文水县| 密山市| 吉安县| 尉犁县| 剑川县| 嫩江县| 大足县| 晋中市| 凉城县| 平潭县| 玛多县| 和平区| 兴化市| 福州市| 淮南市| 商水县| 镇赉县| 正镶白旗| 庆安县| 苗栗县| 资源县| 宝清县| 绥滨县| 独山县| 鸡东县| 余庆县| 桓台县| 伊金霍洛旗| 张家川| 永修县| 炉霍县| 青冈县| 永福县| 横山县| 南投市| 萝北县| 云和县| 宜阳县| 明水县| 宣武区| 云南省|