摘要: 利用帶殺生滅過(guò)程主特征值的逼近程序,給出主特征值的基本估計(jì),并計(jì)算狀態(tài)空間有限情形下兩種逼近程序的收斂速度.
關(guān)鍵詞: 帶殺生滅過(guò)程;基本估計(jì);收斂速度
中圖分類號(hào): O211.6
文獻(xiàn)標(biāo)志碼:A
doi: 10.3969/j.issn.2095-4298..0.010
Estimations of the principal eigenvalue for birth-death processes with killing
Dai Kang, Li Yueling*
(School of Mathematics & Statistics,Jiangsu Normal University,Xuzhou 221116,Jiangsu,China)
Abstract: Based on the approximation procedures for the principal eigenvalue of birth-death processes with killing, the basic estimates for the principal eigenvalue are provided, and the convergence rates of the two approximation procedures in finite state space are calculated.
Key words: birth-death processes with killing; basic estimate; convergence ratHCDVWEIq+N/p5YZJapgs9Q==e
參考文獻(xiàn):
[1] Chen M F.Exponential L2-convergence and L2-spectral gap for Markov processes[J].Acta Math Sin,1991,7(1):19.
[2] Chen M F.Speed of stability for birth-death processes[J].Front Math China,2010,5(3):379.
[3] 陳木法.一維算子兩個(gè)譜問(wèn)題的判別準(zhǔn)則[J].中國(guó)科學(xué):數(shù)學(xué),2015,45(5):429.
[4] Chen M F.Analytic proof of dual variational formula for the first eigenvalue in dimension one[J].Sci China:Math,1999,42(8):805.
[5] 陳木法.主特征值估計(jì)的新故事[J].數(shù)學(xué)進(jìn)展,1999,28(5):385.
[6] Chen M F.Explicit bounds of the first eigenvalue[J].Sci China:Math,2000,43(10):1051.
[7] Chung K L,Zhao Z X.From Brownian motion to Schrdinger’s equation[M].Berlin:Springer-Verlag,1995.
[8] Simon B.Functional integration and quantum physics[M].London:Academic Press,1979.
[9] Wang J.First eigenvalue of birth-death processes with killing[J].Front Math China,2012,7(3):561.
[10] Wang J.Sharp bounds for the first eigenvalue of symmetric Markov processes and their applications[J].Acta Math Sin Engl Ser,2012,28(10):1995.
[責(zé)任編輯: 鐘傳欣]