摘 要:針對(duì)無(wú)絕緣高溫超導(dǎo)線圈在交流傳輸和減小屏蔽電流采用的電流掃描反轉(zhuǎn)等各種傳輸波形引起的自場(chǎng)交流損耗問(wèn)題,基于E-J冪指數(shù)模型,提出采用磁矢勢(shì)A和電流矢勢(shì)T的T-A方法中的均質(zhì)化模型方法,模擬計(jì)算傳輸電流、頻率和n值對(duì)無(wú)絕緣高溫超導(dǎo)餅式線圈的電流密度分布和傳輸交流損耗的影響。定量計(jì)算了雙餅線圈中方波、鋸齒波和正弦波的瞬時(shí)交流損耗;采用等效電路模型模擬分析了充/放電速率對(duì)無(wú)絕緣高溫超導(dǎo)線圈匝間電流分布的影響。結(jié)果表明:在幾百至幾千赫茲時(shí),無(wú)絕緣線圈的交流損耗隨頻率的增加而增加;受線圈匝間電流徑向流動(dòng)的影響,無(wú)絕緣線圈快速充電初期可出現(xiàn)局部環(huán)向電流反向,急速放電初期產(chǎn)生局部環(huán)向電流增加的情況。所得結(jié)果可以為無(wú)絕緣高溫超導(dǎo)線圈的穩(wěn)定性和交流損耗研究提供一定的理論參考。
關(guān)鍵詞:超導(dǎo)物理學(xué);高溫超導(dǎo)磁體;無(wú)絕緣線圈;REBCO;交流損耗
中圖分類號(hào):O511+.9
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.7535/hbkd.2024yx05002
AC loss calculation in self-field of NI-HTS
coil carrying different transport currents
ZHAO Mingfei1,2, CUI Yingmin1,2, LI Qi1,2
(1.School of Mathematical and Physical Science, North China Electric Power University, Baoding, Hebei 071003, China;
2.Hebei Key Laboratory of Physics and Energy Technology, Baoding, Hebei 071003, China)
Abstract:To solve the problems of the AC loss in self-field for no-insulation (NI) HTS coils carrying different currentsLvdKdyMK/OrU91wvCFxSUV6N3r1ZYzUAZQe855YsHZs=, such as AC transport current, the current scanning inverse in order to decrease the screening current, and so on, by using the T-A homogenization model based on the E-J power law, the effects of the transport current, frequency, and the n-value on the magnetic flux density and AC loss of NI-HTS pancack coils were simulated. The instantaneous AC losses of square wave, sawtooth wave, and sinusoidal wave for double-pancake coil were simulated quantitatively. The effects of charging and discharging ramping rates on the current distribution were also discussed by using partial element equivalent circuit (PEEC). The results show that the AC losses increase with the increase of frequency from several hundred to kilo Hz. Due to the transfer of the radial current within coil’s turns, some inverse azimuthal currents may appear in the NI-HTS coil in the early charging period, and some of the azimuthal currents may increase during short discharging period for the same reason. The simulation work can provide some theoretical references for the studies of the stability and AC loss for NI-HTS pancake coils.
Keywords:superconductingphysics;high-temperature superconducting magnet;no-insulation coil;REBCO;AC losses
超導(dǎo)技術(shù)是當(dāng)今世界眾多國(guó)家都比較關(guān)注的一項(xiàng)前沿科學(xué)技術(shù),也納入到中國(guó)第1個(gè)十年重點(diǎn)發(fā)展綱領(lǐng)《中國(guó)制造2025》中。由稀土(rare earth,Re)、鋇(Ba)、銅(Cu)和氧(O)元素形成的二代的高溫超導(dǎo)材料REBCO,已被廣泛用于中/高場(chǎng)超導(dǎo)磁體、高工程電流密度傳輸電纜、超導(dǎo)磁儲(chǔ)能(superconducting magnetic energy storage, SMES)等工程技術(shù)領(lǐng)域中[1-5]。近十幾年,無(wú)絕緣(no-insulation, NI)高溫超導(dǎo) (high-temperature superconducting,HTS)線圈以其優(yōu)越的熱穩(wěn)定性和“自保護(hù)”性能引起眾多學(xué)者的研究興趣[6-8]。2019年,美國(guó)國(guó)家高磁場(chǎng)實(shí)驗(yàn)室將 REBCO 帶材繞制的無(wú)絕緣磁體內(nèi)插于電阻式磁體中,產(chǎn)生了45.5 T的磁場(chǎng)[9]。同年,中國(guó)科學(xué)院電工研究所采用內(nèi)插無(wú)絕緣REBCO線圈和低溫超導(dǎo)線圈,成功研制出中心磁場(chǎng)高達(dá)32.35 T的全超導(dǎo)磁體[10]。當(dāng)前對(duì)于無(wú)絕緣超導(dǎo)線圈研究,多基于磁體在正常運(yùn)行狀況下進(jìn)行的直流和交流特性分析,常用方法有H公式[11-12]、T-A公式[13-14],和A-H模型[15-16] 等。然而在實(shí)際問(wèn)題中,超導(dǎo)磁體也會(huì)面臨特殊情況:例如在中-高場(chǎng)中,磁體線圈受屏蔽電流的影響,可能需要電流掃描反轉(zhuǎn)以減小屏蔽電流對(duì)中心磁場(chǎng)漂移的影響[17];無(wú)絕緣HTS線圈在極端失穩(wěn)情況下,可能面臨毫秒級(jí)的失超過(guò)程等,目前對(duì)一些特殊情況下的無(wú)絕緣線圈的行為研究還有不足。
本文基于E-J模型,主要采用電流T-A法,對(duì)高溫超導(dǎo)線圈中傳輸電流的磁通密度分布以及傳輸損耗進(jìn)行二維計(jì)算,模擬研究了無(wú)絕緣單餅線圈傳輸電流幅值、頻率和冪指數(shù)n對(duì)線圈內(nèi)層電流密度分布和交流損耗的影響;研究了雙餅線圈中不同電流波形的瞬時(shí)交流損耗和歸一化電流密度的分布;利用等效電路模型討論了較高充/放電速率對(duì)無(wú)絕緣HTS線圈穩(wěn)定性的影響。
1 二維軸對(duì)稱T-A模型
T-A方法用來(lái)計(jì)算二代高溫超導(dǎo)帶材制成的帶堆和線圈的電磁特性已被廣泛采用。在超導(dǎo)層中進(jìn)行電流矢勢(shì)T的建模計(jì)算和在整個(gè)空間系統(tǒng)中進(jìn)行磁矢勢(shì)A的耦合建模計(jì)算。在超導(dǎo)區(qū)求解的狀態(tài)變量是電流矢量T,它由電流密度J的旋度來(lái)定義:
×T=J。(1)
電場(chǎng)和電流密度J可以表示為冪指數(shù)模型:
E=ρJ=E0(JJc(B))(|J|Jc(B))n-1 。(2)
臨界電流密度Jc由修正的Kim關(guān)系式[18]定義,電流密度J只有φ分量,
Jc(B)=Jc0
(1+k2B2∥+B2⊥B0)α,(3)
×(ρ×T)=-Bt,(4)
式中:ρ,T,B和J分別是等效電阻率、電流矢勢(shì)、施加的磁場(chǎng)和電流密度。在二維軸對(duì)稱模型中上述方程可以簡(jiǎn)化為
z(ρTrz)=-Brt 。(5)
電流矢勢(shì)T只有垂直于超導(dǎo)層方向的分量,傳輸電流I用狄利克雷邊界表示,滿足:
I=(T1-T2)δ,(6)
式中:T1,T2分別為超導(dǎo)帶材上端和下端的電流矢勢(shì);δ為超導(dǎo)層厚度。
均質(zhì)化模型和多尺度模型[19-21]是基于T-A公式的2種改進(jìn)方法。與T-A全模型相比,這些方法使用了更少的資源,同時(shí)獲得了類似的磁滯損耗以及電流密度和磁場(chǎng)分布的精度。二維軸對(duì)稱模型中,電流密度的φ分量定義為Jφ=
Trz。將超導(dǎo)帶中的電流密度
Jφ乘以超導(dǎo)層的厚度δ,以獲得表面電流密度K=Jφ·δ,該表面電流密度通過(guò)邊界條件施加到線圈中。
m×(H1-H2)=K,(7)
式中:m為垂直超導(dǎo)帶方向的單位矢量;H1和H2分別是層上方和下方的磁場(chǎng)強(qiáng)度矢量。
縮放后的電流密度定義為Js=δΛJφ,其中δ 是帶材的厚度,Λ是計(jì)算單元的厚度,Js滿足如下公式:
2Aφ=-μ0(σ0Eφ+Js) 。(8)
交流損耗計(jì)算公式如下:
Q=2T∫TT/2
dt∫ΩE·JdΩ,(9)
式中:T為電流變化周期;Ω為超導(dǎo)體計(jì)算區(qū)域。
本文對(duì)3個(gè)小型無(wú)絕緣HTS餅式線圈進(jìn)行了模擬計(jì)算,相關(guān)參數(shù)如表1所示??紤]到線圈模擬運(yùn)行電流在25~40 A,小于臨界電流
Ic,HTS磁體處于較穩(wěn)定的正常運(yùn)行狀態(tài),因此計(jì)算中匝間接觸電阻率70 μΩ·cm2保持不變[22]。
2 計(jì)算結(jié)果與討論
2.1 單餅線圈1的交流損耗和電流密度分布
n值反映超導(dǎo)體從超導(dǎo)態(tài)向正常態(tài)轉(zhuǎn)變的快慢程度。圖1 a)給出了線圈1在1個(gè)周期內(nèi)正弦交變傳輸電流下瞬時(shí)交流損耗與n值的關(guān)系曲線,其中I=0.5Icsin(2πft), f=50 Hz。比較發(fā)現(xiàn):圖1 a)顯示n值較大時(shí),交流損耗峰值會(huì)略增大一些。圖1 b)表明交變電流下,超導(dǎo)帶邊緣的電流密度大于中心值,n值對(duì)單餅線圈寬度邊緣的電流密度影響略大,帶寬中部電流密度較低,受n值影響不大。
無(wú)絕緣線圈1在不同頻率下的單匝平均傳輸損耗如圖2 a)所示,當(dāng)傳輸電流頻率(f)較高時(shí),由于金屬基材中的渦流損耗增加較快,導(dǎo)致了線圈平均傳輸損耗隨著頻率的增加而增加,這與實(shí)驗(yàn)結(jié)果[23]相吻合。圖2 b)為傳輸電流峰值時(shí)線圈最內(nèi)匝電流密度分布,傳輸電流頻率對(duì)線圈寬度邊緣電流密度影響也相對(duì)較大,邊緣電流密度隨著頻率的增加而增大,線圈內(nèi)部電流密度受頻率影響則相對(duì)較小。
圖3模擬線圈1不同幅值的50 Hz交變電流對(duì)瞬時(shí)交流損耗和最內(nèi)層電流密度的影響,其中圖3 a)—b)的線圈自場(chǎng)臨界電流Ic@50 A[22],圖3 c)—d)為自場(chǎng)臨界電流Ic@95 A的同尺寸線圈。由圖可知,瞬時(shí)傳輸損耗隨著電流幅值的增加而增加,帶材電流密度呈對(duì)稱分布。線圈帶材兩端電流密度較大,中部電流密度較低。隨著傳輸電流的增加,線圈端部的電流密度的增加緩慢,傳輸電流逐漸從線圈帶材端部向中部滲透。圖3 b)和圖3 d)表明:線圈最內(nèi)層帶材中部有負(fù)值的反方向電流(最外層結(jié)果相同)。分析認(rèn)為, 0~0005 s是傳輸電流上升的1/4周期,受自場(chǎng)增加的影響,超導(dǎo)線圈最內(nèi)/外層會(huì)產(chǎn)生反向的感應(yīng)屏蔽電流,因?yàn)閭鬏旊娏骷蟹植荚诔瑢?dǎo)帶兩端,超導(dǎo)帶中間傳輸電流較低,所以體現(xiàn)出負(fù)值的反向感應(yīng)電流。圖3 a)—d)對(duì)比表明:相同的歸一化交變傳輸電流下,無(wú)絕緣HTS線圈帶材的傳輸電流密度與臨界電流成正比。
單/雙餅線圈的二維均質(zhì)化截面模型如圖4 a)所示,線圈1的單匝截面上的瞬時(shí)交流損耗如圖4 b)所示。線圈1以2.5 A/s速率充電10 s后,電流保持25 A恒定10 s后,以2.5 A/s放電10 s至0,整個(gè)過(guò)程傳輸損耗隨傳輸電流的變化如圖4 b)所示。
2.2 雙餅線圈仿真模擬
雙餅線圈3為2個(gè)相同匝數(shù)和尺寸的無(wú)絕緣單餅線圈疊加組成,兩餅間距0.4 mm。給雙餅線圈分別通入方波,不同勵(lì)磁速率(5 A/s和2.5 A/s)的鋸齒波以及正弦波4種波形傳輸電流(峰值均為25 A,周期均為20 s),對(duì)比線圈交流損耗、磁通密度以及歸一化電流密度分布規(guī)律,結(jié)果如圖5所示。
給雙餅線圈通入方波傳輸電流時(shí),根據(jù)圖5 a)可以看到,交流損耗在傳輸電流平穩(wěn)時(shí)為0。因?yàn)榫€圈在電流幅值不變時(shí),磁場(chǎng)強(qiáng)度和方向保持不變,無(wú)磁通運(yùn)動(dòng),損耗為0。當(dāng)傳輸電流變化時(shí),線圈內(nèi)磁通發(fā)生實(shí)時(shí)變化,引起傳輸損耗變化。
對(duì)比圖5 b)與圖5 c),當(dāng)傳輸電流勵(lì)磁速度變大但電流幅值不變時(shí),在傳輸電流變化速率最大時(shí)損耗會(huì)出現(xiàn)峰值,這是由于傳輸電流瞬間變小,會(huì)引起線圈內(nèi)磁通發(fā)生變化,導(dǎo)致交流損耗瞬間變大。圖5 c)中線圈在0~10 s勵(lì)磁過(guò)程中,上升速率為2.5 A/s,把圖5 c)局部放大后,第10 s的瞬時(shí)交流損耗值為0.01 W/m;圖5 b)0~5 s勵(lì)磁過(guò)程中,上升速率為5 A/s,第5 s瞬時(shí)交流損耗值為0.02 W/m,對(duì)比可得:線圈截面的瞬時(shí)交流損耗隨電流勵(lì)磁速率的增加有上升趨勢(shì)。對(duì)比圖5 b)與圖5 d)可知,傳輸電流幅值周期一定時(shí),正弦波的交流損耗峰值比鋸齒波較小一些,但相差不大,這是因?yàn)檎也▊鬏旊娏鞯淖兓时蠕忼X波小,因此引起的磁通運(yùn)動(dòng)變化較小,由于交流損耗是磁通運(yùn)動(dòng)引起的,所以正弦波傳輸電流交流損耗峰值較小,并且由于瞬態(tài)效應(yīng),第1個(gè)峰值都較小。
雙餅線圈的方波傳輸電流下的磁通密度和歸一化電流分布如圖6所示。當(dāng)傳輸電流不變時(shí),線圈內(nèi)磁通密度分布也不變,當(dāng)電流瞬間變小,會(huì)引起磁通密度減小。磁通變化,產(chǎn)生屏蔽電流,中間深藍(lán)色區(qū)域磁通密度較小。從圖6 b)中可以看出,屏蔽電流分布也是對(duì)稱的。
2.3 充/放電速率與無(wú)絕緣線圈的電流分布
無(wú)絕緣線圈在較低的充放電速率(0.1~1 A/s)和正常恒流工作模式時(shí),高溫超導(dǎo)線圈環(huán)向電阻為0,徑向接觸電阻高于環(huán)向電阻,電流沿環(huán)向流動(dòng)。當(dāng)充放電速率較高時(shí),環(huán)向電流受電感阻礙的影響,可能出現(xiàn)部分電流向徑向轉(zhuǎn)移。根據(jù)PEEC復(fù)雜電路模型[24-27],把無(wú)絕緣超導(dǎo)線圈每一匝平均化分為若干個(gè)計(jì)算單元(divs),根據(jù)基爾霍夫定律, 線圈中每個(gè)單元滿足電流方程如下[28]:
[C1]{Iθ(t)}={C2} ,(10)
式中:矢量 {Iθ(t)} 由每個(gè)單元的環(huán)向電流作為數(shù)組元素(隨時(shí)間變化)組成;矩陣[C1]包含單元內(nèi)REBCO可變電阻、超導(dǎo)基材電阻、匝間接觸電阻、單元自感和單元間互感系數(shù);矢量{C2}包含接觸電阻、基材電阻、單元自感和互感系數(shù)、隨時(shí)間變化的總傳輸電流、前一個(gè)時(shí)間步長(zhǎng)的環(huán)向電流變化
Iθ(t-Δt)和電流變化所引起的感應(yīng)電動(dòng)勢(shì)。求解式(10)可得無(wú)緣線圈每個(gè)單元的電流。本文計(jì)算了充/放電速率分別為 0.1 A/ms和4 A/ms 情況下,無(wú)絕緣超導(dǎo)單餅線圈2中的電流變化,其中模擬時(shí)間步長(zhǎng)h=1×10-5 s。
圖7為模型中采用Nd=1 div/匝的計(jì)算結(jié)果,藍(lán)色線為總傳輸電流,橙色線為線圈每匝的環(huán)向電流。圖7 a)顯示,0.4 s時(shí)總電流達(dá)到40 A,線圈中環(huán)向電流約為20 A;圖7 b)顯示,0.4 s時(shí)環(huán)向電流約為33 A。對(duì)比表明,充放電速率較高時(shí),勵(lì)磁速率相應(yīng)也較快。
為了更明確快充/放電速率對(duì)徑向電流的影響,本文采用充放電速率為4 A/ms且更為細(xì)致的每匝多單元PEEC模型計(jì)算。圖8 a)為4 divs/匝的環(huán)向電流分布計(jì)算結(jié)果。c1表明,快速充電時(shí)環(huán)向局部出現(xiàn)反向(負(fù)值)電流,這是因?yàn)榭焖俪潆娨饛较螂娏鞯碾p向流動(dòng)(沿兩側(cè)反方向逐漸匯入環(huán)向電流)導(dǎo)致,反向電流僅出現(xiàn)在快速充電的初始時(shí)間段內(nèi),當(dāng)環(huán)向電流逐步增加時(shí),反向電流則會(huì)淹沒(méi)在正方向環(huán)向電流中。s66ciSuR5S0Y6Wo26Blryw==同理,無(wú)絕緣線圈快速放電時(shí),由于受徑向電流雙向流動(dòng)的影響,環(huán)向電流出現(xiàn)短時(shí)間局部大于傳輸電流值的現(xiàn)象(如c2所示)。圖8 b)為線圈充電過(guò)程中t=6 ms時(shí),無(wú)絕緣線圈2的電流瞬時(shí)分布圖。計(jì)算采用Nd=36 div/匝,輸入電流端坐標(biāo)為(15.0 mm,0°),輸出電流端為(15.9 mm,360°)。如圖8 b)所示,充電和放電端的環(huán)向電流顯示約為23 A,徑向電流顯示約為1 A,總輸運(yùn)電流達(dá)到24 A@6 ms。對(duì)比徑向電流圖可知,在充電過(guò)程中,無(wú)絕緣線圈電流輸入和輸出端附近匝間,出現(xiàn)了局部環(huán)向電流反向的現(xiàn)象(環(huán)向電流圖的深藍(lán)色區(qū)域)。可以理解為徑向電流沿兩個(gè)相反的方向轉(zhuǎn)移到環(huán)向電流,該結(jié)果與圖8 a)一致。無(wú)絕緣高溫超導(dǎo)線圈在高充放電速率下,出現(xiàn)短時(shí)間的環(huán)向和徑向電流不均勻性,在高場(chǎng)下可能導(dǎo)致線圈應(yīng)力和應(yīng)變不均勻,嚴(yán)重的可能誘發(fā)失超,影響磁體穩(wěn)定運(yùn)行。
3 結(jié) 語(yǔ)
本文采用T-A模型和等效電路模型,對(duì)3個(gè)小型無(wú)絕緣高溫超導(dǎo)線圈進(jìn)行了模擬計(jì)算。研究了不同n值、頻率和臨界電流密度對(duì)單餅線圈交流損耗和電流密度分布的影響,雙餅線圈在不同傳輸波形下的交流損耗和磁通密度分布,以及充/放電速率對(duì)匝間電流分布的影響。交變傳輸電流主要沿線圈帶寬兩側(cè)分布,中部則較多體現(xiàn)為屏蔽電流;頻率較高時(shí),受金屬基材渦流損耗增加的影響,線圈的交流損耗隨著頻率和幅值的增加而增加;無(wú)絕緣HTS線圈在快速充/放電時(shí),電流沿徑向流動(dòng)現(xiàn)象較為突出,短時(shí)間內(nèi)可能出現(xiàn)局部環(huán)向電流反向或環(huán)向電流瞬時(shí)增大等現(xiàn)象。電流的不均勻分布,在高場(chǎng)下將導(dǎo)致線圈局部受力不均勻,從而可能對(duì)磁體的穩(wěn)定運(yùn)行產(chǎn)生潛在影響。本文可以為高溫超導(dǎo)線圈的交流損耗和磁體穩(wěn)定性的研究提供一定的理論參考。
以上結(jié)論主要基于仿真結(jié)果,后續(xù)工作將對(duì)無(wú)絕緣線圈開展實(shí)驗(yàn)測(cè)試,研究實(shí)際工況下無(wú)絕緣線圈的交流損耗以及其失超和恢復(fù)特性。
參考文獻(xiàn)/References:
[1] JO J H,RYU Y G,CHOE Y.Simulation on modified multi-surface levitation structure of superconducting magnetic bearing for flywheel energy storage system by H-formulation and Taguchi method[J].Physica C:Superconductivity and Its Applications,2023. DOI:10.1016/j.physc.2023.1354305.
[2] SAID S M,ABDEL-SALAM M,NAYEL M,et al.Optimal design and cost of superconducting magnetic energy storage for voltage sag mitigation in a real distribution network[J].Journal of Energy Storage,2023. DOI:10.1016/j.est.2023.108864.
[3] LI Wenxin,YANG Tianhui,LI Chao,et al.Exploration on the application of a new type of superconducting energy storage for regenerative braking in urban rail transit[J].Superconductor Science and Technology,2023.DOI:10.1088/1361-6668/acf902.
[4] RADU J,DUMITRU C.Design and numerical study o+OtcNNEnc2oNm6uOsjeF0g==f magnetic energy storage in toroidal superconducting magnets made of YBCO and BSCCO[J].Magnetochemistry,2023. DOI:10.3390/magnetochemistry9100216.
[5] ESMAEILI M S,MEHRPOOYA M.Modeling and exergy analysis of an integrated cryogenic refrigeration system and superconducting magnetic energy storage[J].Journal of Energy Storage,2023.DOI:10.1016/j.est.2023.109033.
[6] WANG Kangshuai,WANG Qiuliang,ZHOU Benzhe,et al.Analysis of charging characteristics of a 500 MHz HTS-LTS series NMR magnet with an intra-layer no-insulation HTS layer-wound coil structure[J].Physica C:Superconductivity and Its Applications,2023. DOI:10.1016/j.physc.2023.1354372.
[7] KIM G Y,PARK J H,BNG J,et al.Investigation on nonuniform current density and shape deformation affecting the magnetic field performance of a saddle-shaped no-insulation HTS cosine-theta dipole magnet[J].Superconductor Science and Technology,2023. DOI: 10.1088/1361-6668/acdf8d.
[8] ZHONG Zhuoyan,WU Wei,LU Lu,et al.Time-variant magnetic field,voltage,and loss of no-insulation (NI) HTS magnet induced by dynamic resistance generation from external AC fields[J].Superconductor Science and Technology,2023. DOI: 10.1088/1361-6668/acbd6b.
[9] HAHN S,KIM K,KIM K,et al.45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J].Nature,2019,570(7762):496-499.
[10]LIU Jianhua,WANG Qiuliang,QIN Lang,et al.World record 3235-tesla direct-current magnetic field generated with whole superconductor magnet[J].Superconductor Science and Technology,2020,33(3):1-5.
[11]YONG Huadong,WEI Dong,TANG Yunkai,et al.Numerical modelling of electromechanical coupling behaviors in HTS coil with implementation of H formulation in FE software[J].Superconductivity,2024. DOI:10.1016/j.supcon.2024.100097.
[12]YAN Yufan,QU Timing,GRILLI F.Numerical modeling of AC loss in HTS coated conductors and roebel cable using T-A formulation and comparison with H formulation[J].IEEE Access,2021,9:49649-49659.
[13]XU Xiaoyong,HUANG Zhen,LI Wan,et al.3D finite element modelling on racetrack coils using the homogeneous T-A formulation[J].Cryogenics,2021.DOI:10.1016/J.CRYOGENICS.2021.103366.
[14]VARGAS L C R,HUBER F,RIVA N,et al.3D homogenization of the T-A formulation for the analysis of coils with complex geometries[J].Superconductor Science and Technology,2022. DOI:10.1088/1361-6668/ac9932.
[15]SANTOS B M O,DIAS F J M,SASS F,et al.Simulation of superconducting machine with stacks of coated conductors using hybrid A-H formulation[J].IEEE Transactions on Applied Superconductivity,2020,30(6):1-9.
[16]BORTOT L,AUCHMANN B,GARCIA I C,et al.A coupled A-H formulation for magneto-thermal transients in high-temperature superconducting magnets[J].IEEE Transactions on Applied Superconductivity,2020,30(5):1-11.
[17]KIM Y G,CHOI Y H,YANG D G,et al.Study for reducing the screening Current-Induced field in a 10-MHz No-Insulation magnet using current sweep reversal method[J].IEEE Transactions on Applied Superconductivity,2015,25(3):1-5.
[18]KIM Y,HEMPSTEAD C,STRNAD A.Magnetization and critical supercurrents[J].Physical Reviews Letters,1963. DOI:10.1103/PhysRev.129.528.
[19]WANG Yaning,JING Ze.Multiscale modelling and numerical homogenization of the coupled multiphysical behaviors of high-field high temperature superconducting magnets[J].Composite Structures,2023. DOI:10.1016/j.compstruct.2023.116863.
[20]JUAREZ E B,TRILLAUD F,ZERMENO V M,et al.Screening current-induced field and field drift study in HTS coils using T-A homogenous model[J].Journal of Physics:Conference Series,2020. DOI:10.1088/1742-6596/1559/1/012128.
[21]ZHANG Huiming,ZHANG Min,YUAN Weijia.An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors[J].Superconductor Science and Technology,2017. DOI:10.1088/1361-6DKpTRYC7i051xSKOtU7KVg==668/30/2/024005.
[22]WANG Xudong,HAHN S,KIM Y,et al.Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation ReBCO pancake coil[J].Superconductor Science and Technology,2013. DOI: 10.1088/0953-2048/26/3/035012.
[23]GUO Shuqiang,REN Li,LI Xin,et al.The relationship between AC loss of YBCO superconducting coil and current waveform,amplitude,frequency and temperature[J].Physica C:Superconductivity and Its Applications,2021. DOI:10.1016/j.physc.2021.1353839.
[24]HAHN S,PARK D K,BASCUN J,et al.HTS pancake coils without turn-to-turn insulation[J].IEEE Transactions on Applied Superconductivity,2011. DOI: 10.1109/tasc.2010.2093492.
[25]ITOH R,OGA Y,NOGUCHI S,et al.Screening current simulation inside YBCO tape in charging YBCO magnet[J].IEEE Transactions on Applied Superconductivity,2013. DOI:10.1109/tasc.2012.2236373.
[26]WANG Y,SONG H,XU D,et al.An equivalent circuit grid model for no-insulation HTS pancake coils[J].Superconductor Science and Technology,2015. DOI: 10.1088/0953-2048/28/4/045017.
[27]LIU Yingzhen,OU Jing,GYURAKI R,et al.Study of contact resistivity of a no-insulation superconducting coil[J].Superconductivity Science Technology,2021. DOI: 10.1088/1361-6668/abd14d.
[28]SUETOMI Y,YOSHIDA T,TAKAHASHI S,et al.Quench and self-protecting behaviour of an intra-layer no-insulation (LNI) REBCO coil at 314 T[J].Superconductor Science and Technology,2021. DOI: 10.1088/1361-6668/abf54e.