摘 要: 胚胎冷凍保存對于胚胎的遠(yuǎn)距離移植和遺傳資源的保護(hù)具有重要意義。然而,豬胚胎由于其胞質(zhì)脂肪含量高,對低溫敏感,增加了其保存難度。研究表明,通過降低脂質(zhì)含量、優(yōu)化培養(yǎng)基成分、保護(hù)細(xì)胞骨架以及恢復(fù)線粒體功能等方式,能夠提高豬胚胎冷凍保存技術(shù)的效率,從而促進(jìn)其廣泛應(yīng)用。因此,本文介紹了胚胎冷凍保存技術(shù),總結(jié)了提高胚胎冷凍效率的多種方法和措施。同時(shí),筆者團(tuán)隊(duì)將通過討論豬胚胎的內(nèi)在特性以及低溫保存對轉(zhuǎn)錄組改變的影響,進(jìn)一步關(guān)注豬胚胎低溫保存的機(jī)制,從而更好地了解和推進(jìn)豬胚胎低溫保存的研究。
關(guān)鍵詞: 豬;胚胎;冷凍保存;玻璃化冷凍
中圖分類號:S828.3
文獻(xiàn)標(biāo)志碼:A
文章編號:0366-6964(2024)11-4796-12
收稿日期:2024-04-15
基金項(xiàng)目:重慶地方豬胚胎冷凍保存技術(shù)研究與豬育種新材料創(chuàng)制(2022-CHQ-01-01);國家家養(yǎng)動(dòng)物種質(zhì)資源庫;中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS06)
作者簡介:董建華(2000-),男,吉林長春人,碩士生,主要從事動(dòng)物繁殖研究,E-mail: 15143173829@163.com
*通信作者:趙學(xué)明,主要從事家畜胚胎生物技術(shù)研究,E-mail:zhaoxueming@caas.cn
Advances in Cryopreservation of Porcine Embryo
DONG" Jianhua1,3, FENG" Xiaoyi1, YANG" Baigao1, LI" Chongyang1, PAN" Hongmei2, L Lihua3,
ZHAO" Xueming1*
(1.Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193," China;
2.Chongqing Academy of Animal Science, Rongchang 402460;
3.College of Animal Science, Shanxi Agricultural University, Taigu 030801," China)
Abstract:" Cryopreservation of embryos is important for long-distance embryo transfer and conservation of genetic resources. However, porcine embryos are sensitive to low temperatures due to their high cytoplasmic lipid content, which increases the difficulty of their preservation. Studies have indicated that techniques such as reducing lipid content and optimizing medium composition can significantly enhance the efficiency of porcine embryo cryopreservation. Additionally, protecting the cytoskeleton and restoring mitochondrial function are also crucial strategies that contribute to this advancement. These improvements collectively foster the broader application and sustainable development of this critical technology.
Therefore, this article introduces embryo cryopreservation and summaries multiple methods and measures to improve embryo freezing efficiency.
Meanwhile, the writers’team will focus more on the mechanism of cryopreservation of porcine embryos by discussing the intrinsic properties of embryos and the effects of cryopreservation on transcriptome alteration to help people better understand and advance research on porcine embryo cryopreservation.
Key words: porcine; embryo; cryopreservation; vitrification
*Corresponding author: ZHAO Xueming, E-mail: zhaoxueming@caas.cn
胚胎低溫保存的意義在于胚胎冷凍保存技術(shù)可以提高雌性動(dòng)物的繁殖能力,促進(jìn)種質(zhì)的跨地區(qū)交流,減少疾病引起的減產(chǎn)損失,構(gòu)建種質(zhì)資源庫,保護(hù)瀕危動(dòng)物遺傳資源,提高動(dòng)物福利,降低環(huán)境影響和運(yùn)輸成本[1]。胚胎在冷卻后比卵母細(xì)胞更有可能完全脫水,在胚胎低溫保存過程中,雖然有些細(xì)胞受損或死亡,但剩余的細(xì)胞足以使胚胎正常發(fā)育[2]。此外,胚胎的膜脂組成比卵母細(xì)胞含有更多的多不飽和脂肪酸(polyunsaturated fatty acids),比卵母細(xì)胞更容易冷凍保存[2]。自20世紀(jì)70年代成功保存哺乳動(dòng)物卵母細(xì)胞和胚胎以來,該項(xiàng)技術(shù)得到了廣泛應(yīng)用[3-4]。
雖然胚胎冷凍保存技術(shù)已得到進(jìn)一步的發(fā)展,但胚胎經(jīng)冷凍后的存活率和后續(xù)發(fā)育潛能顯著低于新鮮胚胎[5]。相關(guān)研究表明,大家畜如牛、豬、羊等的冷凍后胚胎的發(fā)育能力明顯下降,如表1所示,造成了一定的經(jīng)濟(jì)損失。豬胚胎的細(xì)胞質(zhì)的脂質(zhì)含量顯著高于綿羊[7]、牛[8]和小鼠胚胎[9],研究表明,胚胎中過高的脂質(zhì)含量在冷凍保存過程中可能會(huì)增加脂質(zhì)過氧化以及脂肪毒性的風(fēng)險(xiǎn),冷凍還會(huì)引發(fā)細(xì)胞器受損,包括過氧化物酶體以及線粒體的形態(tài)異常[10]。
關(guān)于豬胚胎低溫保存的相關(guān)研究很多,但缺乏橫向和系統(tǒng)的比較。本文綜述了不同玻璃化方法和胚胎冷凍保存遇到的問題及解決措施。此外,還總結(jié)了一些可以提高冷凍豬胚胎存活率的技術(shù),如去脂方法和減少氧化應(yīng)激。同時(shí),將通過討論胚胎的發(fā)育周期和低溫保存對轉(zhuǎn)錄組改變的影響,進(jìn)一步關(guān)注豬胚胎低溫保存的機(jī)制,以幫助人們更好地了解和推進(jìn)豬胚胎低溫保存的研究,以期為優(yōu)化豬胚胎冷凍保存體系提供一定的參考。
1 豬胚胎主要冷凍保存方法
目前,豬的胚胎冷凍保存主要采用兩種方法:慢速冷凍和玻璃化冷凍。慢速冷凍作為一項(xiàng)發(fā)展較早的技術(shù),通過逐步降低溫度實(shí)現(xiàn)細(xì)胞內(nèi)水分的有序結(jié)晶,減少對胚胎細(xì)胞的損傷,但存在冷凍過程中形成無序冰晶損傷細(xì)胞結(jié)構(gòu)和冷卻、解凍過程耗時(shí)較長等缺點(diǎn)[17]。相較之下,玻璃化冷凍技術(shù)致力于提高冷卻速率,產(chǎn)生類似玻璃樣的凝固,通過高濃度冷凍保護(hù)劑和極快的冷卻速率避免了冰晶的形成,減少了細(xì)胞損傷,同時(shí)縮短了冷凍和解凍的時(shí)間,有效提高了胚胎的存活率和發(fā)育潛力[18]。近年來,玻璃化冷凍在豬胚胎保存中的應(yīng)用更為廣泛[19]。
1.1 慢速冷凍
慢速冷凍是胚胎冷凍保存的方法之一,通過使用可編程的冷凍儀控制溫度,使胚胎在預(yù)設(shè)的程序下緩慢降溫,封存在液氮罐中進(jìn)行胚胎冷凍保存[20]。慢速冷凍可采用低毒性的低溫抗凍保護(hù)劑,如乙二醇(ethylene glycol,EG)、甘油(glycerol,Gly)、二甲基亞砜(dimethylsulfoxide,DMSO)等[20]。
雖然慢速冷凍是一種常見的豬胚胎保存方法,但仍存在一些局限性和缺陷。如需要高精密的降溫儀器、冷凍過程耗時(shí)較長,以及冷凍后胚胎發(fā)育率低等問題[21]。此外,在慢速冷凍過程中,細(xì)胞外液結(jié)冰和過度脫水可能會(huì)出現(xiàn)細(xì)胞外滲透壓增高的溶液效應(yīng)[22],冷凍過程會(huì)導(dǎo)致冰晶形成,引起多種損傷,包括脂質(zhì)過氧化(脂質(zhì)氧化損傷)、線粒體結(jié)構(gòu)的異常變化(線粒體變性)、核膜和質(zhì)膜的破損、透明帶的厚度減少和破裂、細(xì)胞器解體以及細(xì)胞骨架的受損等[23]。這些損傷會(huì)顯著影響胚胎的存活率和孵化率,降低其發(fā)育潛力[23]。相對于未經(jīng)冷凍的胚胎,慢速冷凍的胚胎妊娠率出現(xiàn)明顯的下降,囊胚凍融后的胚胎平均存活率((31.0±10.2)%)低于未冷凍胚胎((96.8±2.3)%)[24],這表明冷凍過程中的損傷對胚胎的發(fā)育能力造成了顯著的負(fù)面影響[25]。為提高胚胎冷凍效率,需要進(jìn)一步研究和開發(fā)更先進(jìn)的冷凍保存技術(shù)[26]。
1.2 玻璃化冷凍
玻璃化冷凍是一種經(jīng)濟(jì)、快速且高效的豬胚胎冷凍保存方法,能夠替代傳統(tǒng)的慢速冷凍技術(shù)[26]。相較于慢速冷凍,玻璃化冷凍不需要使用昂貴的冷凍設(shè)備,冷凍時(shí)間也大大縮短[26]。玻璃化冷凍的主要特點(diǎn)是冷卻/升溫速度快,乙二醇、甘油、二甲基亞砜(DMSO)和1,2-丙二醇(PrOH)等可滲透的低溫保護(hù)劑能夠降低玻璃化冷凍過程中冰晶的形成[27]。糖類等不滲透的低溫保護(hù)劑的使用更是能調(diào)節(jié)細(xì)胞內(nèi)外的滲透壓,促使玻璃化的形成[28]。這些物質(zhì)有助于避免胚胎受到更多的冷凍損傷,從而提升胚胎的存活能力[27]。在豬胚胎冷凍過程中,相較于慢速冷凍,玻璃化冷凍具有更高的囊胚率、孵化率以及存活率等[26],如表2所示。
玻璃化冷凍技術(shù)雖然因其高效性和減少冰晶損傷的優(yōu)勢而被廣泛應(yīng)用,但仍存在一些不足之處[32],包括較高的操作要求、特定設(shè)備和耗材的成本、可能的胚胎損傷風(fēng)險(xiǎn)、基因表達(dá)和表觀遺傳狀態(tài)的影響[33]、批量處理的限制[34]、標(biāo)準(zhǔn)化難度[35]、冷凍保護(hù)劑的潛在毒性,以及法律和倫理方面的考量[36]。此外,對于長期效果和對后代健康的影響還需進(jìn)一步研究,且不同胚胎對冷凍條件的適應(yīng)性也需要個(gè)性化優(yōu)化[39]。盡管面臨這些挑戰(zhàn),通過不斷的技術(shù)創(chuàng)新和改進(jìn),許多問題有望得到克服,使玻璃化冷凍技術(shù)更加完善。
2 豬胚胎冷凍存在的問題
影響豬胚胎冷凍的相關(guān)機(jī)制涉及脂質(zhì)相變、氧化應(yīng)激、線粒體損傷、蛋白質(zhì)變性、溶質(zhì)濃度不平衡以及解凍過程等多個(gè)方面[43]。在實(shí)際應(yīng)用中,需要綜合考慮這些因素,優(yōu)化冷凍方案,提高豬胚胎冷凍的成功率。
2.1 脂質(zhì)相變
在冷凍保存過程中,豬胚胎受損的主要原因有生物膜脂質(zhì)相變(lipid phase transition,LPT)[43]、脂肪毒性以及細(xì)胞器損傷等[44]。這些因素會(huì)導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激[45]、蛋白質(zhì)分泌減少[46]、線粒體活性降低[47]、細(xì)胞凋亡增加[48],最終影響囊胚發(fā)育能力。此外,冷凍還會(huì)引起脂滴及其相連細(xì)胞器的損傷,影響脂質(zhì)代謝和細(xì)胞功能[49]。因此,在冷凍前降低脂滴含量可能有助于提高胚胎的發(fā)育能力。
2.2 氧化應(yīng)激
高水平的活性氧(reactive oxygen species,ROS)會(huì)導(dǎo)致胚胎的發(fā)育潛力下降,從而降低胚胎的冷凍效率[50]。體外胚胎冷凍保存會(huì)對胚胎的線粒體造成損傷,包括破壞質(zhì)膜完整性[51]、粗面內(nèi)質(zhì)網(wǎng)擴(kuò)張[52]、滋養(yǎng)層細(xì)胞微絨毛數(shù)量減少和線粒體結(jié)構(gòu)和功能的改變等[53],這些損傷可能導(dǎo)致體外胚胎解凍后存活率降低。冷凍保存過程中對線粒體的損傷可能包括線粒體腫脹、線粒體質(zhì)膜功能受損[54]、基質(zhì)電子密度低和線粒體嵴改變等[55],這些損傷會(huì)影響線粒體的功能和DNA完整性。因此,解凍后的體外胚胎可能出現(xiàn)線粒體數(shù)量減少、ATP含量顯著降低等現(xiàn)象,最終導(dǎo)致存活率降低[56]。
2.3 線粒體損傷
線粒體的質(zhì)量是影響胚胎發(fā)育的重要因素[57]。胚胎中的線粒體參與維持多個(gè)生物化學(xué)過程,涉及降解、生物合成、融合和分裂等[58]。其主要功能是通過β-氧化途徑合成三磷酸腺苷(adenosine triphosphate,ATP)[59]。在細(xì)胞周期的關(guān)鍵時(shí)期,線粒體向高能量消耗區(qū)域的運(yùn)動(dòng)對于胚胎發(fā)育至關(guān)重要[60]。因此,線粒體在細(xì)胞質(zhì)的分布模式與胚胎的質(zhì)量和發(fā)育能力有關(guān)[61]。
冷凍會(huì)引起線粒體質(zhì)膜完整性下降、粗面內(nèi)質(zhì)網(wǎng)擴(kuò)張和滋養(yǎng)層細(xì)胞微絨毛減少等現(xiàn)象[62]。在冷凍胚胎擴(kuò)張囊胚階段,線粒體的形態(tài)從具有最小脊的球形轉(zhuǎn)變?yōu)榫哂写罅繖M向脊的拉長,表明冷凍導(dǎo)致著床前胚胎發(fā)育異常[63]。線粒體膜電位(mitochondrial membrane potential,MMP)通常用來衡量植入前胚胎的線粒體功能和發(fā)育進(jìn)程,有相關(guān)研究表明,冷凍顯著降低了胚胎線粒體膜電位水平[64]。冷凍過程會(huì)影響線粒體功能和遺傳物質(zhì)完整性,導(dǎo)致解凍后胚胎線粒體數(shù)量下降、ATP含量明顯降低,顯著降低了胚胎存活率[65]。此外,冷凍還降低了胚胎對營養(yǎng)物質(zhì)的吸收和利用,抑制了線粒體內(nèi)膜解偶聯(lián)蛋白活性,從而降低了胚胎發(fā)育潛能[65]。
2.4 透明帶損傷
胚胎透明帶(zona pellucida,ZP)高度敏感于酶類物質(zhì),而透明帶損傷是導(dǎo)致胚胎在低溫條件下容易受損的一個(gè)重要因素[66]。冷凍保存過程中會(huì)導(dǎo)致透明帶硬化,通透性增加,降低解凍胚胎的發(fā)育能力[67]。同時(shí),透明帶的病理調(diào)控功能會(huì)影響胚胎的發(fā)育能力,這對于預(yù)測存活率、解凍后的胚胎狀態(tài)以及提高冷凍胚胎的質(zhì)量具有重要意義[66]。盡管透明帶在對抗病原體方面發(fā)揮積極的屏障功能,但當(dāng)胚胎的營養(yǎng)來源來自外部環(huán)境時(shí),透明帶會(huì)對胚胎吸收營養(yǎng)物質(zhì)造成不利影響[68]。
2.5 基因表達(dá)異常
冷凍保存過程中高滲性冷凍保護(hù)劑和低溫會(huì)影響胚胎的基因表達(dá)[69],對玻璃化過程中基因表達(dá)變化的研究有助于人們更好地了解冷凍保存對胚胎的影響[70]。研究表明,玻璃化導(dǎo)致囊胚發(fā)育能力相關(guān)基因POU5F1表達(dá)下調(diào),HSPA1A基因表達(dá)上調(diào)[71]。2020年的一項(xiàng)研究表明,玻璃化囊胚中細(xì)胞凋亡率增加,caspase、caspase-3、caspase-8和caspase-9活性也增加,但BCL-2和SOD-1 mRNA的相對豐度降低[72-73]。這些研究表明,冷凍保存會(huì)影響胚胎多能性、應(yīng)激水平、過氧化物水平、凋亡水平和表觀遺傳修飾有關(guān)的基因表達(dá)[74]。
3 改善胚胎冷凍效率的研究
盡管相對于常規(guī)冷凍,玻璃化冷凍胚胎存活率較高,但解凍胚胎移植后的存活率依舊較低[75]。因此,研究并提出提高胚胎冷凍效率的措施,旨在提高解凍速率、增強(qiáng)胚胎質(zhì)量和適應(yīng)性,以及減少冰晶和保護(hù)劑傷害,從而達(dá)到增加可移植胚胎量的目的[76]。
3.1 去脂
減少細(xì)胞內(nèi)脂質(zhì)可提高胚胎冷凍存活率,以促進(jìn)胚胎正常發(fā)育[77]。目前,顯微操作去脂和化學(xué)去脂等方法已被成功應(yīng)用,并取得了良好的效果[78]。
3.1.1 顯微操作去脂
有研究顯示,采用離心后操作進(jìn)行侵入式脫脂和使用4%胰蛋白酶結(jié)合離心進(jìn)行非侵入式脫脂,均能顯著提高玻璃化胚胎的存活率[79]。圖1展示了Hara等[80]從胚胎細(xì)胞中通過高速離心使脂滴極化,再利用顯微打孔技術(shù)將脂滴吸出實(shí)現(xiàn)去脂的操作,在去脂后4細(xì)胞期胚胎凍后囊胚發(fā)育率提高了21.9%; 豬桑葚胚冷凍后存活率提高了42.1%并成功產(chǎn)出健康仔豬。根據(jù)已有研究,脫脂技術(shù)在囊胚階段的應(yīng)用能夠有效地提高胚胎對低溫條件的耐受性[69]。這意味著通過去除脂質(zhì)組分,囊胚可以更好地抵抗低溫引起的損傷,從而提高其在冷凍保存等過程中的存活率和發(fā)育成功率。
然而,進(jìn)行顯微操作后,可能對胚胎的透明帶造成損傷,這可能會(huì)增加病原體傳播的風(fēng)險(xiǎn)[81]。因此,在進(jìn)行顯微操作時(shí),需要謹(jǐn)慎操作以減少透明帶受損,來提高胚胎的發(fā)育能力。
3.1.2 化學(xué)去脂
通過優(yōu)化培養(yǎng)基來改變胚胎的脂質(zhì)成分或降低胚胎的脂質(zhì)含量,對胚胎造成的破壞較?。?2]。有關(guān)胚胎去脂的研究表明,胚胎去脂后有利于其發(fā)育[83]。用胰蛋白酶使透明帶膨脹,以及通過高滲透壓濃縮胚胎體積,這兩種方法可打破透明帶周圍空間的橋狀結(jié)構(gòu),防止脂滴重新分布到胚胎中[84]。此外,Tatsumi等[85]開發(fā)了一種選擇性自噬系統(tǒng),誘導(dǎo)噬脂,從而減少了脂滴(lipid droplet,LD)的大小和數(shù)量。
研究表明,在培養(yǎng)基中添加左旋肉堿(L-carnitine)[86]、福斯可林(forskolin)、黃連素(berberine)等化學(xué)物質(zhì)[87],能夠有效減少脂質(zhì)含量,促進(jìn)細(xì)胞脂質(zhì)代謝,增強(qiáng)胚胎對低溫的耐受性,并提升冷凍后的存活率[88]。在冷凍前24 h內(nèi)用福斯可林處理2-4細(xì)胞胚胎能夠明顯提高其冷凍耐受性[89]。在培養(yǎng)過程中加入β腎上腺素受體激動(dòng)劑異丙腎上腺素(ISO)可以提高cAMP水平,從而提高豬卵母細(xì)胞的成熟率[90]。左旋肉堿是一種脂質(zhì)代謝增強(qiáng)劑,可影響卵母細(xì)胞中的β-氧化和t(ATP)水平[91]。研究表明,在受精前將卵母細(xì)胞在3 mmol·L-1左旋肉堿中培養(yǎng)1 h,可提高卵裂率,并提高囊胚的低溫耐受性[90-91]。在不干擾胚胎發(fā)育的前提下,左旋肉堿表現(xiàn)出脂質(zhì)調(diào)節(jié)的活性,能夠促進(jìn)脂質(zhì)代謝,從而降低胚胎內(nèi)的脂質(zhì)含量[26]。
雖然這些去脂物質(zhì)能夠有效減少胚胎脂質(zhì)含量,但受到冷凍方法、藥物濃度、處理時(shí)間等因素的影響,這些去脂物質(zhì)對胚胎低溫耐受性的改善效果差異較大[92],需要考慮冷凍方法、藥物濃度等因素[93]。這些去脂物質(zhì)雖可提高冷凍后胚胎的存活率和囊胚再擴(kuò)張率,但少有研究追蹤其后續(xù)發(fā)育,這些物質(zhì)對胚胎后續(xù)發(fā)育是否具有持續(xù)的積極作用還有待深入研究。
3.2 添加抗氧化劑
培養(yǎng)系統(tǒng)會(huì)影響胚胎的發(fā)育效率,特別是含有血清的培養(yǎng)基會(huì)導(dǎo)致細(xì)胞中脂質(zhì)成分的沉積,從而降低胚胎的耐寒性[94]。因此,為玻璃化過程開發(fā)一種有效的化學(xué)成分明確培養(yǎng)基(chemical defined medium)非常重要[95]。2016年,Cuello等[95]將泰羅德乳酸鹽-HEPES-聚乙烯醇培養(yǎng)基(TL-PVA)作為基本培養(yǎng)基用于玻璃化和升溫程序,獲得了較高的胚胎存活率(gt;90%)。因此,優(yōu)化培養(yǎng)基可提高胚胎的冷凍保存耐受性[96]。
L-抗壞血酸(AC)是一種非酶抗氧化劑,可保護(hù)細(xì)胞免受有害氧化產(chǎn)物的傷害[97]。Castillo-Martín等[98]在培養(yǎng)基和玻璃化升溫培養(yǎng)基中添加了抗壞血酸,增加了SOD1和GPX1的基因表達(dá),降低了HSPA1A的表達(dá)和過氧化物水平,從而提高了豬玻璃化囊胚的存活率。此外,用10 μmol·L-1褪黑素進(jìn)行玻璃化解凍胚胎,表明可減少線粒體產(chǎn)熱和ROS水平,提高ATP水平,降低非整倍體率[99]。小鼠卵母細(xì)胞在IVM前3h用米立農(nóng)(milrinone)孵育,可恢復(fù)ROS水平和線粒體膜電位,并恢復(fù)囊胚腔形成率[100]。玻璃化可誘導(dǎo)線粒體分布異常,而米力農(nóng)作為一種cAMP降解抑制劑,可穩(wěn)定線粒體功能活性和氧化應(yīng)激,從而減少線粒體的冷凍損傷[101]。
培養(yǎng)基的基質(zhì)和溫度也很重要[102]。相關(guān)研究發(fā)現(xiàn),適當(dāng)?shù)臏囟仁谦@得高存活率的關(guān)鍵因素,在升溫過程中分別將熱板溫度調(diào)至38.5℃與42℃,前者玻璃化卵母細(xì)胞的存活率比后者提高20%[103]。另一項(xiàng)研究表明,38℃時(shí)培養(yǎng)基產(chǎn)生的低溫保護(hù)劑毒性低于22℃時(shí)的毒性,提高了升溫后的存活率[104]。
3.3 增強(qiáng)線粒體功能
保持線粒體功能完整性是一種維持豬冷凍保存胚胎細(xì)胞發(fā)育能力的有效方法[105]。據(jù)報(bào)道,在玻璃化前用線粒體膜孔抑制劑環(huán)孢菌素A(cyclosporin A,CsA)處理卵母細(xì)胞可有效保護(hù)成熟豬卵母細(xì)胞的發(fā)育能力[106]。在較早的一篇報(bào)道中,將環(huán)孢菌素A在玻璃化豬卵母細(xì)胞中應(yīng)用,有效提高了胚胎的存活率[96]。
冷凍保存不僅會(huì)損害線粒體,還會(huì)損害細(xì)胞骨架結(jié)構(gòu),例如微管[107],這些細(xì)胞骨架對豬胚胎細(xì)胞中線粒體的固定和分布很重要[108]。豬玻璃化胚胎細(xì)胞內(nèi)線粒體分布異常,可以使用微管穩(wěn)定劑紫杉醇(paclitaxel)對胚胎細(xì)胞進(jìn)行預(yù)處理來緩解[108]。聯(lián)合使用環(huán)孢菌素A與紫杉醇可以提高玻璃化冷凍后卵母細(xì)胞的存活率、成熟率和囊胚率[107]。此外,1 μg·mL-1環(huán)孢菌素A提高胚胎囊胚期的發(fā)育效率較好,而4 μg·mL 對胚胎發(fā)育有害(對照組、1 μg·mL和4 μg·mL處理的囊胚率為 52.0%、61.0%和23.0%)[107]。
3.4 人工強(qiáng)制塌陷囊胚腔
降低胚胎囊胚腔內(nèi)液體含量可以通過多種方法實(shí)現(xiàn),包括微量移液[70]、微針穿刺[71]以及激光脈沖等技術(shù)[71]。2004年,采用最小體積冷卻(MVC)法對處于囊胚膨大期的生產(chǎn)(IVP)胚胎進(jìn)行玻璃化處理,胚胎存活率為41.2%[27]。使用超細(xì)開放式細(xì)管法(SOPS)和Vit-Master對體外培養(yǎng)的囊胚進(jìn)行玻璃化,冷卻速率為80,000℃·min-1,存活率為75%[109]。此外,通過孤雌激活(PA)和手工克隆從脫脂卵母細(xì)胞中獲得的豬囊胚也可通過Cryotop方法進(jìn)行有效玻璃化[109]。Fujino等[110]使用金屬網(wǎng)玻璃化(metal mesh vitrification, MMV)方法對豬囊胚進(jìn)行玻璃化,存活率為84.4%,可見使用金屬網(wǎng)的玻璃化方法比塑料板玻璃化方法的冷卻速度更快,塑料板玻璃化方法的存活率只有53.1%[110]。此外,使用pullulan膜對豬囊胚進(jìn)行玻璃化,其耗氧量和細(xì)胞存活率與使用MVC玻璃化方法的胚胎相似[111]。pullulan膜可溶于溫水,因此玻璃化溶液可在吸管中稀釋,然后將胚胎直接移植到受體中[112],該方法能夠提高胚胎解凍效率。在玻璃化前塌陷囊胚腔,以避免囊胚腔內(nèi)冰的形成,并提高囊胚期胚胎解凍后的存活率[113]。在豬胚胎中人工誘導(dǎo)囊腔塌陷可提高Cryotop玻璃化后囊胚的再膨脹率。
4 小 結(jié)
盡管對于豬胚胎冷凍保存的研究在不斷深入,但為了優(yōu)化和標(biāo)準(zhǔn)化豬胚胎冷凍保存的體系,未來仍需進(jìn)行更多凍存方案的探索。未來研究中,深入探討胚胎在冷凍及復(fù)蘇過程中的代謝調(diào)控機(jī)制和細(xì)胞損傷的分子機(jī)制將是關(guān)鍵方向。同時(shí),目前使用的經(jīng)典冷凍保護(hù)劑自20世紀(jì)50年代被發(fā)現(xiàn)以來未有大的突破。因此,開發(fā)新型的抗凍有機(jī)物質(zhì),例如新型納米材料,抗凍蛋白等,以減少對胚胎的毒理作用并增強(qiáng)膜的通透性,將成為未來研究的一個(gè)有前景的領(lǐng)域。
玻璃化冷凍技術(shù)因其在提高胚胎存活率和發(fā)育率方面的潛力,在胚胎冷凍保存中扮演著至關(guān)重要的角色。隨著技術(shù)的進(jìn)步,通過優(yōu)化玻璃化方法來進(jìn)一步提升胚胎的保存效果將具有深遠(yuǎn)的意義。預(yù)計(jì)隨著冷凍保存技術(shù)的持續(xù)發(fā)展,它將在生物遺傳育種、種質(zhì)資源保護(hù)等更廣泛的領(lǐng)域中受到更多的關(guān)注,并發(fā)揮更加重要的作用。
參考文獻(xiàn)(References):
[1] LPEZ A,DUCOLOMB Y,CASAS E,et al.Effects of porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity during early embryo development in vitro[J].Front Cell Dev Biol,2021,9:636765.
[2] MARTINEZ E A,CUELLO C,PARRILLA I,et al.Design,development,and application of a non-surgical deep uterine embryo transfer technique in pigs[J].Anim Front,2013,3(4):40-47.
[3] BLOCKEEL C,CAMPBELL A,COTICCHIO G,et al.Should we still perform fresh embryo transfers in ART?[J].Hum Reprod, 2019, 34(12):2319-2329.
[4] CHEN Z J,SHI Y H,SUN Y,et al.Fresh versus frozen embryos for infertility in the polycystic ovary syndrome[J].N Engl J Med,2016,375(6):523-533.
[5] 高 峰,何琪富,吳盛輝,等.哺乳動(dòng)物配子冷凍保存并應(yīng)用于珍稀瀕危動(dòng)物保護(hù)的技術(shù)策略[J].畜牧獸醫(yī)學(xué)報(bào),2022, 53(8): 2479-2489.
GAO F,HE Q F,WU S H,et al.Mammalian gametes cryopreserved and applied to technical strategies for the protection of rare and endangered animals[J].Acta Veterinaria et Zootechnica Sinica,2022,53(8):2479-2489.(in Chinese)
[6] ZENG X Z,LI S Y,LIU L,et al.Role of functional fatty acids in modulation of reproductive potential in livestock[J].J Anim Sci Biotechnol,2023,14(1):24.
VINING L M,ZAK L J,HARVEY S C, et al.The role of apoptosis in cryopreserved animal oocytes and embryos[J]. Theriogenology,2021,173:93-101.
[7] ZHUAN Q, LI J, DU X, et al. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol. 2022;13(1):95.
[8] KERE M,LIU P C,CHEN Y K,et al.Ultrastructural characterization of porcine growing and in vitro matured oocytes[J].Animals (Basel),2020,10(4):664.
[9] CHEN J S,TSAI L K,YEH T Y,et al.Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs[J].J Reprod Dev,2021,67(6):392-401.
[10] CAO L H,YANG T,HUANG S H,et al.Expression patterns of ZO-1/2 and their effects on porcine oocyte in vitro maturation and early embryonic development[J].Theriogenology,2021,161:262-270.
[11] ABEDPOUR N,SHOOREI H,RAJAEI F.Detrimental effects of vitrification on integrin genes (α9 and β1) and in vitro fertilization in mouse oocytes[J].Mol Biol Rep,2023,50(6):4823-4829.
[12] GONZALEZ-PLAZA A,CAMBRA J M,PARRILLA I,et al.The open Cryotop system is effective for the simultaneous vitrification of a large number of porcine embryos at different developmental stages[J].Front Vet Sci,2022,9:936753.
[13] TAJIMA S,UCHIKURA K,KURITA T,et al.Insemination of recipient sows improves the survival to term of vitrified and warmed porcine expanded blastocysts transferred non-surgically[J].Anim Sci J,2020,91(1):e13453.
[14] QIU J,MATSUKAWA K,KOSHIMOTO C,et al.Equilibrium vitrification of mouse embryos at various developmental stages using low concentrations of cryoprotectants[J].J Reprod Dev,2021,67(2):109-114.
[15] MARTNEZ-RODERO I,GARCIA-MARTNEZ T,ORDEZ-LEN E A,et al.A shorter equilibration period improves post-warming outcomes after vitrification and in straw dilution of in vitro-produced bovine embryos[J].Biology (Basel),2021,10(2): 142.
[16] SKRZYPEK K,NIBBELINK M C,LIEFERS-VISSER J,et al.A high cell-bearing capacity multibore hollow fiber device for macroencapsulation of islets of Langerhans[J].Macromol Biosci,2020,20(8):2000021.
[17] ALMIANA C,DUBUISSON F,BAUERSACHS S,et al.Unveiling how vitrification affects the porcine blastocyst:clues from a transcriptomic study[J].J Anim Sci Biotechnol,2022,13(1):46.
[18] ALMUBARAK A,LEE S,YU I J,et al.Effects of Nobiletin supplementation on the freezing diluent on porcine sperm cryo-survival and subsequent in vitro embryo development[J].Theriogenology,2023,214:314-322.
[19] ABDELHADY A W,MITTAN-MOREAU D W,CRANE P L,et al.Ice formation and its elimination in cryopreservation of oocytes[J].Sci Rep,2024,14:18809.
[20] CUELLO C, GONZLEZ-PLAZA A, CAMBRA J M, et al. Vitrification of pig embryos dysregulates the microRNA transcriptome profile[J]. Theriogenology. 2024;226:243-252.
[21] NAKAGAWA Y,KANEKO T.Improvement of survivability and developmental ability in vitrified rat oocytes[J].Cryobiology, 2024,115:104882.
[22] DI GUARDO F,RACCA A,COTICCHIO G,et al.Impact of cell loss after warming of human vitrified day 3 embryos on obstetric outcome in single frozen embryo transfers[J].J Assist Reprod Genet,2022,39(9):2069-2075.
[23] HOCHI S.Cryodevices developed for minimum volume cooling vitrification of bovine oocytes[J].Anim Sci J,2022,93(1):e13683.
[24] MORADO S,APARICIO A,PINCHETTI D,et al.Variations in metabolic parameters of in vitro matured porcine oocytes after vitrification-warming[J].Open Vet J,2023,13(11):1416-1424.
[25] MARCANTONINI G,BARTOLINI D,ZATINI L,et al.Natural cryoprotective and cytoprotective agents in cryopreservation:a focus on melatonin[J].Molecules,2022,27(10):3254.
[26] GONZALEZ-PLAZA A,CAMBRA J M,GARCIA-CANOVAS M,et al.Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression[J].Theriogenology, 2023,206:1-10.
[27] VAN NGUYEN T,DO L T K,NGUYEN N A T,et al.The effects of an in vitro oocyte maturation system and chlorogenic acid supplementation during embryo culture on the development of porcine cloned embryos derived from native vietnamese ban pigs[J].Vet Med Int,2023,2023(1):5702970.
[28] WIESAK T,GORYSZEWSKA-SZCZUREK E.Effect of vitrification on the expression of genes in porcine blastocysts derived from in vitro matured oocytes[J].Syst Biol Reprod Med,2022,68(4):239-246.
[29] RIENZI L,GRACIA C,MAGGIULLI R,et al.Oocyte,embryo and blastocyst cryopreservation in ART:systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance[J].Hum Reprod Update,2017,23(2):139-155.
[30] XIANG D C,JIA B Y,GUO J X,et al.Transcriptome analysis of mRNAs and long non-coding RNAs during subsequent embryo development of porcine cloned zygotes after vitrification[J].Front Genet,2021,12:753327.
[31] SOMFAI T,HARAGUCHI S,DANG-NGUYEN T Q,et al.Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage[J].PLoS One,2023,18(3):e0282959.
[32] GOMIS J,CUELLO C,SANCHEZ-OSORIO J,et al.Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods[J].Cryobiology,2013,66(2):144-150.
[33] XU H X,WANG X G,TAO R X,et al.Optimal stage for cryotop vitrification of porcine embryos[J].Cell Reprogram, 2022, 24(3):132-141.
[34] USHIJIMA H,YOSHIOKA H,ESAKI R,et al.Improved survival of vitrified in vivo-derived porcine embryos[J].J Reprod Dev,2004,50(4):481-486.
[35] HOCHI S, IDE M, UENO S, et al. High survival of bovine mature oocytes after nylon mesh vitrification, as assessed by intracytoplasmic sperm injection.[J]. J Reprod Dev. 2022;68(5):335-339.
[36] CUELLO C,MARTINEZ C A,CAMBRA J M,et al.Effects of vitrification on the blastocyst gene expression profile in a porcine model[J].Int J Mol Sci,2021,22(3):1222.
[37] TU C F,PENG S H,CHUANG C K,et al.Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm[J].Anim Biosci,2023,36(2):339-349.
[38] LPEZ A,BETANCOURT M,DUCOLOMB Y,et al.DNA damage in cumulus cells generated after the vitrification of in vitro matured porcine oocytes and its impact on fertilization and embryo development[J].Porc Health Manag,2021,7(1):56.
[39] KAWAKAMI M,KATO Y,TSUNODA Y.The effects of time of first cleavage,developmental stage,and delipidation of nuclear-transferred porcine blastocysts on survival following vitrification[J].Anim Reprod Sci,2008,106(3-4):402-411.
[40] GAO M,CHEN M J,CHEN Q Z,et al.Integration of parallel metabolomics and transcriptomics reveals metabolic patterns in porcine oocytes during maturation[J].Front Endocrinol (Lausanne),2023,14:1131256.
[41] MARCO-JIMNEZ F, GARCIA-DOMINGUEZ X, GARCA-VALERO L,et al. A 3D-Printed Large Holding Capacity Device for Minimum Volume Cooling Vitrification of Embryos in Prolific Livestock Species[J]. Animals (Basel). 2023;13(5):791.
[42] HLKER M, PETERSEN B, HASSEL P, et al. Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos[J]. Cloning Stem Cells. 2005;7(1):35-44.
[43] TAJIMA S, MOTOYAMA S, WAKIYA Y, et al. Piglet production by non-surgical transfer of vitrified embryos, transported to commercial swine farms and warmed on site[J]. Anim Sci J. 2021 Dec;92(1):e13588.
[44] NGUYEN V K,VU H,NGUYEN H T T,et al.Comparison of the microdrop and minimum volume cooling methods for vitrification of porcine in vitro-produced zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents[J].J Reprod Dev,2018,64(5):457-462.
[45] NAJAFZADEH V,SECHER J B M,PIHL M,et al.Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J].Theriogenology,2021,171:44-54.
[46] KAJDASZ A,WARZYCH E,DEREBECKA N,et al.Lipid stores and lipid metabolism associated gene expression in porcine and bovine parthenogenetic embryos revealed by fluorescent staining and RNA-seq[J].Int J Mol Sci,2020,21(18):6488.
[47] IBAYASHI M,AIZAWA R,MITSUI J,et al.Homeostatic regulation of lipid droplet content in mammalian oocytes and embryos[J].Reproduction,2021,162(6):R99-R109.
[48] DUNNING K R,RUSSELL D L,ROBKER R L.Lipids and oocyte developmental competence:the role of fatty acids and β-oxidation[J].Reproduction,2014,148(1):R15-R27.
[49] WANG C,NIU Y,CHI D,et al.Influence of delipation on the energy metabolism in pig parthenogenetically activated embryos[J]. Reprod Domest Anim,2015,50(5):826-833.
[50] RAZA S H A,ABD EL-AZIZ A H,ABDELNOUR S A,et al.The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock[J].Reprod Domest Anim,2021,56(12):1486-1496.
[51] AMSTISLAVSKY S,MOKROUSOVA V,BRUSENTSEV E,et al.Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos:a review[J].Biopreserv Biobank,2019,17(1):76-83.
[52] CASTILLO-MARTN M,BONET S,MORAT R,et al.Supplementing culture and vitrification-warming media with L-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression[J].Cryobiology, 2014,68(3):451-458.
[53] LI J, XIONG S, ZHAO Y, et al. Effect of the re-vitrification of embryos at different stages on embryonic developmental potential[J]. Front Endocrinol (Lausanne). 2021;12:653310.
[54] MENEZO Y,CLEMENT P,DALE B,et al.Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos[J].Zygote,2022,30(2):149-158.
[55] MENEZO Y,ELDER K,CLEMENT P,et al.Biochemical hazards during three phases of assisted reproductive technology:repercussions associated with epigenesis and imprinting[J].Int J Mol Sci,2022,23(16):8916.
[56] PAVANELI A P P,RECUERO S,CHAVES B R,et al.The presence of seminal plasma during liquid storage of pig spermatozoa at 17 ℃ modulates their ability to elicit in vitro capacitation and trigger acrosomal exocytosis[J].Int J Mol Sci,2020,21(12):4520.
[57] HARDY M L M,DAY M L,MORRIS M B.Redox regulation and oxidative stress in mammalian oocytes and embryos developed in vivo and in vitro[J].Int J Environ Res Public Health,2021,18(21):11374.
[58] SOTO-HERAS S,PARAMIO M T.Impact of oxidative stress on oocyte competence for in vitro embryo production programs[J].Res Vet Sci,2020,132:342-350.
[59] JIANG Y,HE Y T,PAN X C,et al.Advances in oocyte maturation in vivo and in vitro in mammals[J].Int J Mol Sci,2023,24(10):9059.
[60] NIU Y J,ZHOU W J,NIE Z W,et al.Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos[J].J Pineal Res,2020,68(2):e12627.
[61] SUN M H,JIANG W J,LI X H,et al.ATF6 aggravates apoptosis in early porcine embryonic development by regulating organelle homeostasis under high-temperature conditions[J].Zool Res,2023,44(5):848-859.
[62] KAGEYAMA M,ITO J,SHIRASUNA K,et al.Mitochondrial reactive oxygen species regulate mitochondrial biogenesis in porcine embryos[J].J Reprod Dev,2021,67(2):141-147.
[63] YANG S G,BAE J W,PARK H J,et al.Mito-TEMPO protects preimplantation porcine embryos against mitochondrial fission-driven apoptosis through DRP1/PINK1-mediated mitophagy[J].Life Sci,2023,315:121333.
[64] LIU R P,WANG J,WANG X Q,et al.Xanthoangelol promotes early embryonic development of porcine embryos by relieving endoplasmic reticulum stress and enhancing mitochondrial function[J].Reprod BioMed Online,2023,47(2):103211.
[65] ZHOU D J,SUN M H,LEE S H,et al.ROMO1 is required for mitochondrial metabolism during preimplantation embryo development in pigs[J].Cell Div,2021,16(1):7.
[66] WANG C R,JI H W,HE S Y,et al.Chrysoeriol improves in vitro porcine embryo development by reducing oxidative stress and autophagy[J].Vet Sci,2023,10(2):143.
[67] NIU Y J,WANG C F,XIONG Q,et al.Distribution and content of lipid droplets and mitochondria in pig parthenogenetically activated embryos after delipation[J].Theriogenology,2015,83(1):131-138.
[68] TOSTI E,MNZO Y.Gamete activation:basic knowledge and clinical applications[J].Hum Reprod Update,2016,22(4):420-439.
[69] WASSARMAN P M,LITSCHER E S.Zona pellucida genes and proteins:essential players in mammalian oogenesis and fertility[J].Genes (Basel),2021,12(8):1266.
[70] NGUYEN N T,HIRATA M,TANIHARA F,et al.In vitro development of zona pellucida-free porcine zygotes cultured individually after vitrification[J].Cryo Letters,2020,41(2):86-91.
[71] SCIORIO R,MANNA C,F(xiàn)AUQUE P,et al.Can cryopreservation in Assisted Reproductive Technology (ART) induce epigenetic changes to gametes and embryos?[J].J Clin Med,2023,12(13):4444.
[72] ESTUDILLO E, JIMNEZ A,BUSTAMANTE-NIEVES P E,et al.Cryopreservation of gametes and embryos and their molecular changes[J].Int J Mol Sci,2021,22(19):10864.
[73] TIRGAR P,SARMADI F,NAJAFI M,et al.Toward embryo cryopreservation-on-a-chip:a standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries[J].Biomicrofluidics,2021,15(3):034104.
[74] ZHANG L,QI X,NING W,et al.Single-cell transcriptome profiling revealed that vitrification of somatic cloned porcine blastocysts causes substantial perturbations in gene expression[J].Front Genet,2020,11:640.
[75] PERO M E,ZULLO G,ESPOSITO L,et al.Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos[J].Theriogenology,2018,108:127-135.
[76] DENG D M,XIE J,TIAN Y,et al.Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence[J].Front Endocrinol (Lausanne),2023,14:1200051.
[77] TAJIMA S,MOTOYAMA S,WAKIYA Y,et al.Piglet production by non-surgical transfer of vitrified embryos,transported to commercial swine farms and warmed on site[J].Anim Sci J,2020,91(1):e13476.
[78] LEE K, UH K, FARRELL K. Current progress of genome editing in livestock[J]. Theriogenology. 2020;150:229-235.
[79] CHEN P R,REDEL B K,KERNS K C,et al.Challenges and considerations during in vitro production of porcine embryos[J].Cells,2021,10(10):2770.
[80] KHAJEDEHI N,F(xiàn)ATHI R,AKBARINEJAD V,et al.Oocyte vitrification reduces its capability to repair sperm DNA fragmentation and impairs embryonic development[J].Reprod Sci,2024,31(5):1256-1267.
HARA K, ABEE Y, KUMADA N, et al. Extrusion and removal of lipid from the cytoplasm of porcine oocytes at the germinal vesicle stage: centrifugation under hypertonic conditions influences vitrification[J]. Cryobiology, 2005,50(2):216-222.
[81] OECKL J,BAST-HABERSBRUNNER A,F(xiàn)ROMME T,et al.Isolation,culture,and functional analysis of murine thermogenic adipocytes[J].STAR Protoc,2020,1(3):100118.
[82] TATSUMI T,TAKAYAMA K,ISHII S,et al.Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse[J].Development,2018,145(4):dev161893.
[83] TIBBO A J,MIKA D,DOBI S,et al.Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins[J].J Mol Cell Cardiol,2022,165:86-102.
[84] ISA T,SOMFAI T,OYADOMARI M,et al.Production of Agu piglets after transfer of embryos produced in vitro[J].Anim Sci J,2022,93(1):e13685.
[85] NAGASHIMA H,HIRUMA K,SAITO H,et al.Production of live piglets following cryopreservation of embryos derived from in vitro-matured oocytes[J].Biol Reprod,2007,76(5):900-905.
[86] AIZAWA R,IBAYASHI M,TATSUMI T,et al.Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development[J].Development,2019,146(22):dev181925.
[87] LI R,LIU Y,PEDERSEN H S,et al.Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida[J].Theriogenology,2013,80(1):58-64.
[85] TATSUMI T, TAKAYAMA K, ISHII S, et al. Forced lipophagy reveals that lipid droplets are required for early embryonicdevelopment in mouse[J]. Development,2018,145(4):dev161893.
[86] EL-SOKARY M M M,EL-NABY A A H, HAMEED A R A E,et al. Impact of L-carnitine supplementation on the in vitro developmental competence and cryotolerance of buffalo embryos[J]. Vet World, 2021,14(12):3164-3169.
[87] RAKHMANOVA T, MOKROUSOVA V, OKOTRUB S, et al. Effects of forskolin on cryopreservation and embryo development in the domestic cat[J]. Theriogenology, 2023,210:192-198.
[88] NAMULA Z,HIRATA M,LE Q A,et al.Zona pellucida treatment before CRISPR/Cas9-mediated genome editing of porcine zygotes[J].Vet Med Sci,2022,8(1):164-169.
[89] ROMEK M,GAJDA B,KRZYSZTOFOWICZ E,et al.New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe[J].Theriogenology,2011,75(1):42-54.
[90] CAMBRA J M, GIL M A, CUELLO C, et al. Cytokine profile in peripheral blood mononuclear cells differs between embryo donor and potential recipient sows[J]. Front Vet Sci. 2024;11:1333941.
[91] FU X W,WU G Q,LI J J,et al.Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J].Theriogenology,2011,75(2):268-275.
[92] YANG C X, LIANG H, WU Z W, et al. Identification of lncRNAs involved in maternal-to-zygotic transition of in vitro-produced porcine embryos by single-cell RNA-seq[J]. Reprod Domest Anim. 2022;57(1):111-122.
[93] ZHUAN Q,MA H J,CHEN J,et al.Cytoplasm lipids can be modulated through hormone-sensitive lipase and are related to mitochondrial function in porcine IVM oocytes[J].Reprod Fertil Dev,2020,32(7):667-675.
[94] LI J Y,XIONG S,ZHAO Y H,et al.Effect of the re-vitrification of embryos at different stages on embryonic developmental potential[J].Front Endocrinol (Lausanne),2021,12:653310.
[95] SHI X Y,JIN X H,LIN J Y,et al.Idebenone relieves the damage of heat stress on the maturation and developmental competence of porcine oocytes[J].Reprod Domest Anim,2022,57(4):418-428.
CUELLO C, MARTINEZ C A, NOHALEZ A, et al. Effective vitrification and warming of porcine embryos using a pH-stable,chemically defined medium[J]. Sci Rep, 2016,6:33915.
[96] SANCHEZ-OSORIO J,CUELLO C,GIL M A,et al.Vitrification and warming of in vivo-derived porcine embryos in a chemically defined medium[J].Theriogenology,2010,73(3):300-308.
[97] MARTINEZ C A,CUELLO C,PARRILLA I,et al.Exogenous melatonin in the culture medium does not affect the development of in vivo-derived pig embryos but substantially improves the quality of in vitro-produced embryos[J].Antioxidants (Basel),2022, 11(6):1177.
[98] CUELLO C,MARTINEZ C A,CAMBRA J M,et al.Vitrification effects on the transcriptome of in vivo-derived porcine morulae[J].Front Vet Sci,2021,8:771996.
[99] XIANG D C,JIA B Y,QUAN G B,et al.Effect of knockout serum replacement during postwarming recovery culture on the development and quality of vitrified parthenogenetic porcine blastocysts[J].Biopreserv Biobank,2019,17(4):342-351.
[99] CUELLO C,MARTINEZ C A,CAMBRA J M,et al.Vitrification effects on the transcriptome of in vivo-derived porcine morulae[J].Front Vet Sci,2021,8:771996.
[100] BUDANI M C,TIBONI G M.Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos[J]. Antioxidants (Basel),2020,9(7):612.
[101] GAO L,DU M,ZHUAN Q,et al.Melatonin rescues the aneuploidy in mice vitrified oocytes by regulating mitochondrial heat product[J].Cryobiology,2019,89:68-75.
[102] YOON S Y,EUM J H,CHA S K,et al.Prematuration culture with phosphodiesterase inhibitors after vitrification may induce recovery of mitochondrial activity in vitrified mouse immature oocytes[J].Biopreserv Biobank,2018,16(4):296-303.
[103] PAN B,QAZI I H,GUO S C,et al.Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression[J].J Anim Sci Biotechnol,2021,12(1):84.
[104] LIN Q Y,LE Q A,TAKEBAYASHI K,et al.Short-term preservation of porcine zygotes at ambient temperature using a chemically defined medium[J].Anim Sci J,2022,93(1):e13711.
[105] KIKUCHI K,KASHIWAZAKI N,NAGAI T,et al.Selected aspects of advanced porcine reproductive technology[J].Reprod Domest Anim,2008,43(S2):401-406.
[106] WHALEY D,DAMYAR K,WITEK R P,et al.Cryopreservation:an overview of principles and cell-specific considerations[J].Cell Transplant,2021,30:963689721999617.
[107] CZERNIK M,WINIARCZYK D,SAMPINO S,et al.Author correction:mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos[J].Sci Rep,2022,12(1):21276.
[108] NGUYEN H T,NGUYEN N T,NGUYEN L V,et al.The effects of pretreatment with Cyclosporin A and Docetaxel before vitrification of porcine immature oocytes on subsequent embryo development[J].Reprod Biol,2023,23(4):100798.
[109] DUARTE F V,CIAMPI D,DUARTE C B.Mitochondria as central hubs in synaptic modulation[J].Cell Mol Life Sci,2023,80(6):173.
[110] FUJINO Y, KOJIMA T, NAKAMURA Y, et al. Metal mesh vitrification (MMV) method for cryopreservation of porcine embryos[J]. Theriogenology, 2008,70(5):809-817.
[110] ZHAN L,HAN Z H,SHAO Q,et al.Rapid joule heating improves vitrification based cryopreservation[J].Nat Commun,2022, 13(1):6017.
[111] PANG Y W, AN L, WANG P, et al. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency[J]. J Pineal Res. 2013;54(4):389-397.
[112] JOE S Y,YANG S G,LEE J H,et al.Stabilization of F-actin cytoskeleton by paclitaxel improves the blastocyst developmental competence through P38 MAPK activity in porcine embryos[J].Biomedicines,2022,10(8):1867.
[113] PARRILLA I,GIL M A,CUELLO C,et al.Immunological uterine response to pig embryos before and during implantation[J]. Reprod Domest Anim,2022,57(S5):4-13.
(編輯 郭云雁)