摘 要: 反芻動物胃腸道的葡萄糖感應受體(T1R2/T1R3)能感應葡萄糖的存在,傳導甜味信號至中樞神經(jīng),同時促進胃腸激素的分泌并通過胃腸激素上調葡萄糖轉運載體的表達。葡萄糖轉運載體主要有SGLT1和GLUT2,前者主要功能是將葡萄糖轉運至胃腸道上皮細胞內,后者主要功能是將胃腸道上皮細胞中的葡萄糖轉運進臨近血管中。葡萄糖感應受體與轉運載體相互協(xié)調,共同完成胃腸道的葡萄糖吸收過程。本文就反芻動物胃腸道的葡萄糖感應受體和轉運載體的功能特征及其相關調控機制研究進展進行綜述,以期為提高反芻動物對葡萄糖利用效率的相關研究提供參考。
關鍵詞: 反芻動物胃腸道;T1R2/T1R3;SGLT1;GLUT2;胃腸激素
中圖分類號:S852
文獻標志碼:A
文章編號:0366-6964(2024)11-4819-10
收稿日期:2024-01-26
基金項目:國家自然科學基金青年項目(32302764);湖南省自然科學基金面上項目(2024JJ5179);新疆自治區(qū)科技計劃項目(2022A02001-1);湖南省科技廳創(chuàng)新團隊項目(2021RC4060);國家重點研發(fā)計劃(2022YFD1301101-1);國家自然科學基金面上項目(32172758)
作者簡介:陳權?。?000-),男,湖南岳陽人,碩士,主要從事反芻動物胃腸道葡萄糖感應受體和轉運載體的功能特征及其相關調控研究,E-mail:2766272687@qq.com
*通信作者:王 祚,主要從事反芻動物營養(yǎng)及生理研究,E-mail:zuowang@hunau.edu.cn
Functional Characteristics and Related Regulation of Glucose Sensing Receptors and Transporters
in the Gastrointestinal Tract of Ruminants
CHEN" Quanjun, WANG" Zuo*, WAN" Fachun, SHEN" Weijun
(College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128," China)
Abstract:" The glucose sensing receptor (T1R2/T1R3) in the gastrointestinal tract of ruminants can detect the presence of glucose, transmit sweet signals to the central nervous system, and promote the secretion of gastrointestinal hormones and up-regulate the expression of glucose transporters through gastrointestinal hormones. Glucose transporters mainly consist of SGLT1 and GLUT2. The former one is primarily responsible for transporting glucose into gastrointestinal epithelial cells, while the latter one basically involves in transporting glucose from gastrointestinal epithelial cells into adjacent blood vessels. Glucose sensing receptors and transporters work together to fulfill the glucose absorption process in the gastrointestinal tract. In this paper, the functional characteristics of glucose sensing receptors and transporters in the gastrointestinal tract of ruminants and their relevant regulatory mechanisms were reviewed, in order to provide insights and references for improving the utilization efficiency of glucose in ruminants.
Key words: ruminant gastrointestinal tract; T1R2/T1R3; SGLT1; GLUT2; gastrointestinal hormone
*Corresponding author: WANG Zuo,E-mail:zuowang@hunau.edu.cn
反芻動物胃腸道葡萄糖感應受體及轉運載體是反芻動物主動轉運葡萄糖的功能主體,其表達量越高代表動物胃腸道吸收葡萄糖的能力越強,因此對葡萄糖感應受體及轉運載體相關研究的深入開展可以幫助人們調控反芻動物的葡萄糖吸收,以增加反芻動物對日糧中葡萄糖的利用效率。然而目前大部分關于動物消化道葡萄糖感應受體與轉運載體的研究均集中于小鼠當中,而針對反芻動物的相關研究非常有限。但有研究表明,綿羊T1R2基因的兩條特異性片段與小鼠的序列同源性分別為77.1%和84.2%,T1R3基因一條特異性片段與小鼠的序列同源性為74.4%[1],綿羊的T1R2/T1R3基因與小鼠的T1R2/T1R3基因有較高同源性。因此,本文主要結合小鼠上的相關研究,介紹并探討反芻動物胃腸道葡萄糖感應受體和轉運載體的功能特征及相關調控機制,以期為提高反芻動物對日糧中葡萄糖的吸收利用提供思路和參考。
畜 牧 獸 醫(yī) 學 報55卷
11期
陳權俊等:反芻動物胃腸道葡萄糖感應受體與轉運載體的功能特征及相關調控
1 葡萄糖感應受體功能特征
反芻動物胃腸道中的葡萄糖感應分別由瘤胃上皮細胞和腸內分泌細胞上的甜味受體(taste 1 receptor 2 and 3, T1R2/T1R3)實現(xiàn)[2]。T1R2/T1R3被葡萄糖等甜味劑激活后,其構象會發(fā)生改變,然后通過甜味受體的下游信號通路將甜味信號傳達給大腦,并促進腸內分泌細胞分泌胃腸激素調控葡萄糖的吸收[3]。
1.1 T1R2/T1R3的結構
甜味受體是T1R2和T1R3的異二聚體,它們通過非共價鍵結合在一起,共同起到感應葡萄糖的作用[4]。T1R2和T1R3都屬于G蛋白偶聯(lián)受體(G protein-coupled receptors,GPCR)家族C亞型的成員,由N末端胞外結構域、7個α螺旋跨膜結構域(transmembrane domain, TMD)、C末端胞內結構域組成[5-6]。TMD上存在著T1R2和T1R3結合成異二聚體的位點;而N末端胞外結構域由捕蟲草結構域(venus flytrap module, VFTM)與半胱氨酸富集(cysteine rich domain, CRD)結構單元組成,VFTM是葡萄糖等大部分甜味物質的結合位點[7],當葡萄糖與VFTM結合后,會使VFTM的兩葉關閉,T1R2/T1R3的構象發(fā)生改變,激活其下游信號通路[8]。
1.2 T1R2/T1R3的信號傳導通路
胃腸道和舌頭上的甜味受體都可以感受到甜味信號并傳導到神經(jīng),并通過控制胃腸激素的釋放激活腦-腸軸進而控制食欲[9-10]。T1R2/T1R3有兩種不同但又相互依賴的信號傳導模式,分別是天然甜味劑利用的環(huán)腺苷酸(cyclic AMP,cAMP)途徑和人工甜味劑利用的三磷酸肌醇(inositol trisphosphate,IP3)與二酯酰甘油(diacylglycer,DAG)途徑[11]。
葡萄糖等天然甜味劑與T1R2/T1R3的結合會使α-味移導素(α-gustducin)活化,并產生活性的G蛋白α亞基和游離β、γ亞基[12]。α亞單位活化會激活胞內的腺苷酸環(huán)化酶(adenylate cyclase,AC)產生 cAMP,導致細胞內cAMP濃度上升。cAMP能直接通過cNMP-門控通道(cNMP-gated channels)引起Ca2+內流,或者激活蛋白激酶A(protein kinase A,PKA)引起味覺細胞外側K+通道的磷酸化導致離子通道關閉抑制K+外流,引起細胞膜去極化,電壓依賴性Ca2+流入細胞,進而引起神經(jīng)遞質5-羥色胺(5-hydroxy tryptamine, 5-HT)的釋放,使味覺細胞活化[13],產生甜味信號至神經(jīng)中樞。
在人工甜味劑激活的IP3/DAG途徑中,同樣是活化α-味導素產生活性的G蛋白α、β、γ亞基,但發(fā)揮作用的是β和γ亞基[14]。β和γ亞基能激活磷脂酶 C-β2 (phospholipase C-β2, PLC-β2),隨后PLC-β2將4,5-二磷酸磷脂酰肌醇(phosphatidylinositol-4, 5-bisphosphate,PIP2)分解產生IP3和DAG。細胞液中IP3 和 DAG濃度的上升會導致內質網(wǎng)膜上的IP3-門控Ca2+通道開放,內質網(wǎng)中的Ca2+通過該通道進入細胞質中,細胞質內Ca2+濃度上升進而激活蛋白激酶C(protein kinase C,PKC)和瞬時受體電位離子通道蛋白M型5(transient receptor potential melastatin, TRPM5)[15]。PKC和TRPM5分別起關閉K+通道和激活Na+通道的作用,使K+無法外流的同時Na+內流,K+和Na+的流動變化引起味覺細胞去極化,使該細胞釋放出5-HT后被活化,從而產生甜味信號[16]。
1.3 T1R2/T1R3介導胃腸激素分泌
T1R2/T1R3除了能將甜味信號傳導至神經(jīng)系統(tǒng),還具有介導胃腸激素分泌的功能[17]。腸內分泌細胞在腸腔內感知到葡萄糖后,腸內分泌L細胞會分泌胰高血糖素樣肽1(glucagon-like peptide-1,GLP-1)[18]和胰高血糖素樣肽2(glucagon-like peptide-2,GLP-2)[19],K細胞則分泌葡萄糖依賴性胰島素肽(glucose-dependent insulinotropic peptide,GLP),GLP和GLP-1是腸促胰島素,能促進胰島素的分泌,而GLP-2起促進腸道生長和葡萄糖吸收的作用[20]。
Moran等[21]研究發(fā)現(xiàn),在被T1R3抑制劑處理后的小鼠中,葡萄糖無法提高GLP-2的分泌量。又有研究發(fā)現(xiàn)在缺乏α-味導素或T1R3基因被敲除的小鼠中,GLP和GLP-1的分泌同樣無法被葡萄糖誘導[22]。以上的結果說明T1R2/T1R3能介導GLP、GLP-1、GLP-2的釋放,且可能通過上述的信號傳導通路發(fā)揮作用。
2 葡萄糖轉運載體功能特征
反芻動物對葡萄糖的吸收方式主要是主動轉運,該過程依賴于胃腸道上皮細胞上的葡萄糖轉運載體的功能。葡萄糖轉運載體分為鈉/葡萄糖共轉運載體家族(sodium-coupled glucose transporter,SGLTs)和易化萄萄糖轉運載體家族(facilitative glucose transporter,GLUTs)家族,前者有主要在腸道中表達的SGLT1和主要在腎臟中表達的SGLT2[23],后者包括轉運葡萄糖的GLUT1、GLUT2、GLUT3和轉運果糖的GLUT5和GLUT9[24]。在反芻動物胃腸道吸收葡萄糖的過程中發(fā)揮主要作用的是SGLT1和GLUT2[25]。反芻動物小腸葡萄糖轉運載體的表達量跟瘤胃的發(fā)育程度有關。哺乳期的反芻動物小腸葡萄糖轉運載體表達量最大;但隨著瘤胃的發(fā)育使得到達小腸的葡萄糖減少,因而小腸中葡萄糖轉運載體表達量會顯著降低[26-27]。由于小腸是吸收葡萄糖的主要部位,因此對小腸葡萄糖轉運載體的研究報道較多,故以下以小腸葡萄糖轉運載體為主要參考介紹葡萄糖轉運載體的功能特征。
2.1 SGLT1的功能特征
小腸上皮細胞刷狀緣膜上的SGLT1主要功能是將腸道的葡萄糖轉運進上皮細胞內,這是一個耗能的過程,動力來自于小腸上皮細胞基底外側的Na+-K+-ATP酶維持的Na+濃度梯度[28]。Na+與葡萄糖以2∶1的比例耦合,然后耦合物與SGLT1上的結合位點結合,導致SGLT1的構象改變,進而打開Na+通道,耦合物順著Na+梯度通過該通道進入細胞內,釋放出Na+和葡萄糖[23]。
除了轉運葡萄糖,SGLT1的激活還能促進GLP-1的分泌[29]和減少采食。SGLT1促進GLP-1的分泌的過程可能是因為轉運葡萄糖時耦合的Na+會引起鄰近腸內分泌L細胞的去極化,使L細胞上的電壓門控Ca2+通道打開,Ca2+通過該通道順著濃度梯度內流,導致該L細胞分泌GLP-1[30]??刂撇墒车墓δ軇t與下丘腦上有關饑餓感的神經(jīng)元刺鼠相關肽(agouti-related protein,AgRP)神經(jīng)元有關。Goldstein等[31]的研究發(fā)現(xiàn),腸上皮細胞上SGLT1的激活能抑制AgRP神經(jīng)元的活性以減弱饑餓感,減少小鼠的采食。
2.2 GLUT2的功能特征
GLUT2主要在小腸上皮細胞基底膜上表達,能順濃度將小腸上皮細胞中的葡萄糖通過擴散作用轉運到臨近血管中,并且其轉運速度快于SGLT1[32-33]。在動物進食后,腸腔葡萄糖濃度快速升高,細胞質中的GLUT2會易位到細胞刷狀緣膜上,協(xié)助SGLT1把葡萄糖轉運進細胞中[34-36]。有研究表明,GLUT2的易位過程與T1R2/T1R3的下游信號通路被激活有關[37]。而Gorboulev等[38]用高濃度葡萄糖誘導SGLT1表達被抑制的小鼠,發(fā)現(xiàn)試驗小鼠小腸的GLUT2的易位程度低于正常小鼠,這說明SGLT1也參與了GLUT2的易位過程,其過程可能與腸道Ca2+的流通有關[39],但其詳細機制尚不清楚。
3 胃腸激素對葡萄糖轉運載體的調控
當腸腔葡萄糖濃度較高時,葡萄糖轉運載體的表達量會增加,以快速吸收葡萄糖[40],但在T1R2/T1R3表達受阻的小鼠中這種調控被消除[41]。有大量研究表明,胃腸激素能夠調控葡萄糖轉運載體的表達[42-43],而T1R2/T1R3能介導胃腸激素的分泌,因此T1R2/T1R3對葡萄糖轉運載體調控可能由胃腸激素實現(xiàn)。在反芻動物胃腸道中,瘤胃中的T1R2/T1R3感應到葡萄糖會通過胃腸激素調控瘤胃上皮細胞上的葡萄糖轉運載體吸收少量葡萄糖,同時可能會有部分胃腸激素轉移至小腸調控小腸的葡萄糖轉運載體[2]。因此,瘤胃上的T1R2/T1R3可能會通過促進胃腸激素的分泌協(xié)助小腸葡萄糖吸收。
3.1 胃腸激素對SGLT1的調控
腸上皮細胞中cAMP的增加能夠通過增加SGLT1 mRNA的半衰期來提高SGLT1的表達[44]。Singh等[45]的研究表明,GLP能夠增加SGLT1的表達且可能通過增加cAMP來發(fā)揮作用。然而用高濃度葡萄糖分別喂養(yǎng)GLP受體敲除的小鼠和野生型小鼠后,SGLT1的表達量沒有差異[46],這可能是因為GLP對SGLT1的調控不起主要作用。許多研究表明,GLP-1對小腸SGLT1的表達沒有顯著影響,GLP-2才是胃腸激素中對SGLT1的調控發(fā)揮顯著作用的激素[47]。Moran等[48]的試驗表明,葡萄糖能被T1R2/T1R3感知,導致GLP-2的分泌,GLP-2與腸神經(jīng)元上的GLP-2受體結合,增強相鄰腸上皮細胞中SGLT1mRNA的半衰期,使SGLT1的表達和活性提高,增加葡萄糖的吸收。
3.2 胃腸激素對GLUT2的調控
胃腸激素對GLUT2的調控相較于SGLT1的研究較少,有限的研究表示,胃腸激素通過調控GLUT2的易位控制葡萄糖的吸收。Au等[49]很早就發(fā)現(xiàn)GLP-2可以促進GLUT2的易位,近期有研究表明,神經(jīng)抑制劑可以消除GLP-2對GLUT2易位的影響[50],證明了GLP-2與腸神經(jīng)元上的受體結合后,通過激活腸神經(jīng)元發(fā)揮作用。除了GLP-2對GLUT2易位的促進作用外,胰島素能減少GLUT2的易位[51],而GLP-1和GLP能夠促進胰島素的分泌,因此GLP-1和GLP的分泌能夠間接減少GLUT2的易位。因為GLP-1和GLP的作用路徑比GLP-2的作用路徑更長,導致作用速度較慢,這種作用效果的速度差可以在GLUT2易位完成葡萄糖吸收后,幫助其復位。
綜上所述,GLP-2是直接促進葡萄糖轉運載體的表達的主要胃腸激素,而GLP-1和GLP能夠促進胰島素的分泌,降低血糖,間接降低葡萄糖轉運載體的表達,T1R2/T1R3能通過介導胃腸激素的分泌調控完整的葡萄糖的吸收過程。
4 反芻動物胃腸道葡萄糖感應受體與轉運載體的相關調控
4.1 反芻動物瘤胃葡萄糖感應受體與轉運載體的相關調控
瘤胃中的葡萄糖轉運載體的表達量受到日糧中碳水化合物濃度的影響。Tian等[52]研究表明,用精粗比為9∶1的高谷物日糧飼喂1歲左右的成年瀏陽黑山羊28 d后,山羊瘤胃GLUT2的表達量顯著高于飼喂精粗比為5.5∶4.5日糧的山羊。該結果說明,高精粗比的日糧能提高反芻動物瘤胃中GLUT2的表達量。Sha等[53]的研究中,在寒冷季節(jié)對放牧的2到3歲的公牛-牦牛(母甘南牦牛和公澤西牛的雜交后代)連續(xù)補飼精粗比為7∶3的日糧5個月后,發(fā)現(xiàn)其瘤胃SGLT1的基因表達量顯著低于僅放牧的牛。Sha等[53]對這種結果做出的解釋是補飼的牛-牦牛通過揮發(fā)性脂肪酸(volatile fatty acid,VFA)獲得的能量已經(jīng)足夠滿足其需要,而僅放牧牛在VFA供應不足時要直接通過吸收葡萄糖獲得能量,因此補飼牛的瘤胃SGLT1反而會低于僅放牧牛。以上兩個研究結果呈現(xiàn)差異,推測有三個可能的原因,一是SGLT1和GLUT2表達調控的差異,前文提到SGLT1和GLUT2的表達量都會隨著葡萄糖濃度的上升而增加,但以上的結果都建立在單胃動物的基礎上,瘤胃上的葡萄糖轉運載體的調控機制到底與單胃動物有無差別還需要進一步研究;二是日糧精粗比的差異,7∶3的精粗比并未達到增加瘤胃SGLT1的閾值;三是試驗時間的差異,5個月的時間里可能前1個月左右補飼牛的瘤胃SGLT1表達上升,隨著補飼牛對補飼日糧的適應,這種變化消失了。在反芻動物中,通常認為瘤胃不是葡萄糖的主要吸收部位,因此絕大多數(shù)針對葡萄糖感應受體和轉運載體的研究均集中于小腸。
4.2 反芻動物小腸葡萄糖感應受體與轉運載體的相關調控
葡萄糖在反芻動物瘤胃中會被微生物降解生成VFA和甲烷,損失較多的能量,因此瘤胃利用葡萄糖的效率遠低于小腸[54],如何增加反芻動物小腸的葡萄糖感應受體和轉運載體的表達是提高飼料利用效率的一個重要途徑?,F(xiàn)有研究結果表明,日糧結構、日糧氮和人工甜味劑能夠顯著影響反芻動物腸道葡萄糖感應受體和轉運載體的表達量。
4.2.1 日糧結構
提高小腸葡萄糖感應受體和轉運載體表達量最直接的方法是提高日糧中淀粉含量,Lohrenz等[24]做過相關研究,在飼糧等能的基礎上提高了泌乳期奶牛日糧中的淀粉含量,試驗持續(xù)4周,結果顯示,高淀粉處理對小腸SGLT1和GLUT2的表達量均無顯著影響。同樣,燕愛飛等[55]的研究也表明,直接飼喂雄性成年黑山羊高淀粉含量日糧38 d對山羊小腸葡萄糖感應受體和轉運載體的表達量都沒有顯著影響。這種結果的出現(xiàn)可能因為試驗時長不夠;也可能是淀粉在瘤胃中已經(jīng)全部被降解生成了VFA,因此沒能順利到達小腸而影響小腸葡萄糖轉運載體的表達。在Liao等[56]的研究中,他們通過瘤胃導管往平均體重為260 kg的肉牛瘤胃灌注玉米淀粉,發(fā)現(xiàn)對小腸SGLT1和GLUT2的mRNA含量沒有顯著影響,而通過皺胃導管向同樣的肉牛皺胃中灌注玉米淀粉卻能顯著增加回腸SGLT1和GLUT2的mRNA含量。這說明,單純改變日糧中的淀粉含量不能影響小腸葡萄糖感應受體和轉運載體的表達,
增加日糧中過瘤胃淀粉的含量才是有效的方法。增加日糧的粒度可以提高日糧中過瘤胃淀粉的含量。Liang等[57]用含未粉碎玉米的日糧飼喂3月齡雄性山羊28周,發(fā)現(xiàn)顯著提高了山羊小腸SGLT1和GLUT2表達量,同時提高了山羊的生長性能和胴體性狀。此外,用玉米替代日糧中的小麥[58]或者用氫氧化鈉、甲醛等化學試劑對飼料進行化學加工[59]等增加過瘤胃淀粉含量的方式都可能產生類似的效果,但目前并沒有研究驗證這些增加過瘤胃淀粉的方法對小腸葡萄糖轉運載體作用。
4.2.2 日糧氮
Muscher-Banse等[60]通過在生長期的山羊的日糧中添加尿素調整日糧中的總含氮量(20%、16%、10%、9%和7%)后進行為期7周的山羊飼養(yǎng)試驗,試驗結果顯示,隨著日糧氮含量的減少山羊小腸SGLT1的mRNA和蛋白的豐度均顯著降低,而GLUT2的表達不受影響,同時血漿葡萄糖含量和胰島素含量均顯著降低。這種結果的出現(xiàn)可能是反芻動物攝入氮的減少影響到了蛋白質的合成,而GLP-2的化學本質是蛋白質,GLP-2分泌受阻會減少SGLT1 mRNA的表達;GLUT2不受影響可能是因為在減少日糧氮之前小腸上皮細胞質中就合成了足夠的GLUT2,GLP-2分泌受阻只能影響到GLUT2的易位,不能影響到其表達。綜上所述,日糧氮含量不僅會影響反芻動物的蛋白質合成,也會通過降低小腸葡萄糖轉運載體的表達減少葡萄糖的吸收。
4.2.3 人工甜味劑
人工甜味劑作為T1R2/T1R3的激活劑,具有增加葡萄糖轉運載體表達量的作用。Moran等[1]的研究發(fā)現(xiàn),將人工甜味劑Sucram(由糖精和新橙皮苷二氫查爾酮組成)添加進10日齡左右的公荷斯坦犢牛代乳料中(400 mg·kg-1)飼喂40 d后,犢牛小腸SGLT1的基因表達量有增加的趨勢;將Sucram添加進50日齡犢牛開食料中(200 mg·kg-1)飼喂60 d后,犢牛小腸SGLT1的表達量沒有顯著差異,但SGLT1的吸收速率有了顯著提高;將Sucram添加進處于干奶期荷斯坦奶牛的日糧中(2 g·d-1)飼喂5 d后,奶牛小腸SGLT1的蛋白豐度顯著增加。不同生長期的反芻動物對人工甜味劑表現(xiàn)出差異性,可能是幼年反芻動物小腸SGLT1表達量已經(jīng)比較高了,因此人工甜味劑不能顯著促進其小腸SGLT1的表達;也有可能是人工甜味劑處理時間較長,反芻動物已經(jīng)適應了人工甜味劑的刺激。同樣在以上研究中,Moran等[1]還發(fā)現(xiàn),T1R2/T1R3和GLP-2共同在牛小腸上的腸內分泌L細胞中表達;并且葡萄糖、三氯蔗糖、糖精和新橙皮苷二氫查爾酮能顯著增加綿羊小腸組織中GLP-2的分泌。綜上所述,人工甜味劑能刺激T1R2/T1R3,促進GLP-2的分泌,從而增加葡萄糖轉運載體表達量。
5 小 結
葡萄糖感應受體T1R2/T1R3能識別葡萄糖,生成甜味信號傳遞給神經(jīng)系統(tǒng),并介導胃腸激素的分泌調控葡萄糖轉運載體。葡萄糖轉運載體SGLT1和GLUT2在功能上相互補足,共同完成葡萄糖的吸收過程。反芻動物的葡萄糖吸收主要靠小腸上的葡萄糖感應受體和轉運載體,而瘤胃中的葡萄糖感應受體和轉運載體可能更多的是協(xié)助小腸的葡萄糖吸收。以往研究發(fā)現(xiàn)增加過瘤胃淀粉含量和添加人工甜味劑是促進反芻動物小腸葡萄糖轉運載體表達的有效手段,今后有必要針對這兩項調控手段開展深入研究與應用,以有效提升反芻動物胃腸道葡萄糖的吸收利用效率。
參考文獻(References):
[1] MORAN A W,AL-RAMMAHI M,ZHANG C,et al.Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption[J].J Dairy Sci,2014,97(8):4955-4972.
[2] RAN T,LI H Z,LIU Y,et al.Expression of genes related to sweet taste receptors and monosaccharides transporters along the gastrointestinal tracts at different development stages in goats[J].Livest Sci,2016,188:111-119.
[3] DALY K,MORAN A W,AL-RAMMAHI M,et al.Non-nutritive sweetener activation of the pig sweet taste receptor T1R2-T1R3 in vitro mirrors sweetener stimulation of the gut-expressed receptor in vivo[J].Biochem Biophys Res Commun,2021,542:54-58.
[4] 劉秋蕾,王 飛,李 磊,等.甜味分子與G蛋白偶聯(lián)受體Tas1R2/3的相互作用及激活機制[J].生命的化學,2014,34(4):500-505.
LIU Q L,WANG F,LI L,et al.The interaction and activation mechanism between G protein coupled receptor (GPCR) Tas1R2/3 and various sweeteners[J].Chemistry of life,2014,34(4):500-505.(in Chinese)
[5] PEREZ-AGUILAR J M,KANG S G,ZHANG L L,et al.Modeling and structural characterization of the sweet taste receptor heterodimer[J].ACS Chem Neurosci,2019,10(11):4579-4592.
[6] SUKUMARAN S K,PALAYYAN S R.Sweet taste signaling:the core pathways and regulatory mechanisms[J].Int J Mol Sci,2022,23(15):8225.
[7] LAFFITTE A,BELLOIR C,NEIERS F,et al.Functional characterization of the Venus flytrap domain of the human TAS1R2 sweet taste receptor[J].Int J Mol Sci,2022,23(16):9216.
[8] VON MOLITOR E,RIEDEL K,KROHN M,et al.An alternative pathway for sweet sensation:possible mechanisms and physiological relevance[J].Pflugers Arch,2020,472(12):1667-1691.
[9] DEPOORTERE I.Taste receptors in the gut tune the release of peptides in response to nutrients[J].Peptides,2015,66:9-12.
[10] RAKA F,F(xiàn)ARR S,KELLY J,et al.Metabolic control via nutrient-sensing mechanisms:role of taste receptors and the gut-brain neuroendocrine axis[J].Am J Physiol Endocrinol Metab,2019,317(4):E559-E572.
[11] GERSPACH A C,STEINERT R E,SCHNENBERGER L,et al.The role of the gut sweet taste receptor in regulating GLP-1,PYY,and CCK release in humans[J].Am J Physiol Endocrinol Metab,2011,301(2):E317-E325.
[12] NAKAGAWA Y,OHTSU Y,NAGASAWA M,et al.Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3[J].Endocr J,2014,61(2):119-131.
[13] 李蕾蕾,張根華,鄧少平.甜味識別與轉導機理[J].動物醫(yī)學進展,2006,27(8):12-14.
LI L L,ZHANG G H,DENG S P.Sweet perception and transduction mechanism[J].Progress in Veterinary Medicine,2006,27(8):12-14.(in Chinese)
[14] LIU B,HA M,MENG X Y,et al.Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins[J].Biochem Biophys Res Commun,2012,427(2):431-437.
[15] THOMPSON M D,COLE D E C,JOSE P A,et al.G protein-coupled receptor accessory proteins and signaling:pharmacogenomic insights[J].Methods Mol Biol,2014,1175:121-152.
[16] KREUCH D,KEATING D J,WU T Z,et al.Gut Mechanisms linking intestinal sweet sensing to glycemic control[J].Front Endocrinol (Lausanne),2018,9:741.
[17] DEPOORTERE I.Taste receptors of the gut:emerging roles in health and disease[J].Gut,2014,63(1):179-190.
[18] YANG Z M,WANG Y,CHEN S Y.Astragalus polysaccharide alleviates type 2 diabetic rats by reversing the glucose transporters and sweet taste receptors/GLP-1/GLP-1 receptor signaling pathways in the intestine-pancreatic axis[J].J Funct Foods,2021,76:104310.
[19] MORAN A W,AL-RAMMAHI M A,DALY K,et al.Consumption of a natural high-intensity sweetener enhances activity and expression of rabbit intestinal Na+/glucose cotransporter 1 (SGLT1) and improves Colibacillosis-induced enteric disorders[J].J Agric Food Chem,2020,68(2):441-450.
[20] SHIRAZI-BEECHEY S P,DALY K,AL-RAMMAHI M,et al.Role of nutrient-sensing taste 1 receptor (T1R) family members in gastrointestinal chemosensing[J].Br J Nutr,2014,111(S1):S8-S15.
[21] MORAN A W,DALY K,AL-RAMMAHI M A,et al.Nutrient sensing of gut luminal environment[J].Proc Nutr Soc,2021,80(1):29-36.
[22] KOKRASHVILI Z,MOSINGER B,MARGOLSKEE R F.Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones[J].Am J Clin Nutr,2009,90(3):822S-825S.
[23] ABBAS Z,SAMMAD A,HU L R,et al.Glucose Metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle[J].Metabolites,2020,10(8):312.
[24] LOHRENZ A K,DUSKE K,SCHNHUSEN U,et al.Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch[J].J Dairy Sci,2011,94(9):4546-4555.
[25] SHIRAZI-BEECHEY S P,HIRAYAMA B A,WANG Y,et al.Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet[J].J Physiol,1991,437:699-708.
[26] LESCALE-MATYS L,DYER J,SCOTT D,et al.Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance[J].Biochem J,1993,291:435-440.
[27] CHEN L Q,CHEUNG L S,F(xiàn)ENG L,et al.Transport of Sugars[J].Annu Rev Biochem,2015,84:865-894.
[28] KOEPSELL H.Glucose transporters in the small intestine in health and disease[J].Pflugers Arch,2020,472(9):1207-1248.
[29] RDER P V,GEILLINGER K E,ZIETEK T S,et al.The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing[J].PLoS One,2014,9(2):e89977.
[30] KUHRE R E,F(xiàn)ROST C R,SVENDSEN B,et al.Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine[J].Diabetes,2015,64(2):370-382.
[31] GOLDSTEIN N,MCKNIGHT A D,CARTY J R E,et al.Hypothalamic detection of macronutrients via multiple gut-brain pathways[J].Cell Metab,2021,33(3):676-687.e5.
[32] 盧 垚,孫佩佩,宋代軍.腸道上皮主要葡萄糖轉運載體及其作用機制[J].動物營養(yǎng)學報,2018,30(1):50-58.
LU Y,SUN P P,SONG D J.Intestinal epithelium major glucose transporters and their action mechanisms[J].Chinese Journal of Animal Nutrition,2018,30(1):50-58.(in Chinese)
[33] KELLETT G L,BROT-LAROCHE E,MACE O J,et al.Sugar absorption in the intestine:the role of GLUT2[J].Annu Rev Nutr,2008,28:35-54.
[34] DANIEL H,ZIETEK T.Taste and move:glucose and peptide transporters in the gastrointestinal tract[J].Exp Physiol,2015,100(12):1441-1450.
[35] 譚碧娥,印遇龍.胃腸營養(yǎng)化學感應及其生理效應[J].動物營養(yǎng)學報,2013,25(2):231-241.
TAN B E,YIN Y L.Gut nutrient chemosensing and its physiology effects[J].Chinese Journal of Animal Nutrition,2013,25(2):231-241.(in Chinese)
[36] STEINHOFF-WAGNER J,ZITNAN R,SCHNHUSEN U,et al.Diet effects on glucose absorption in the small intestine of neonatal calves:importance of intestinal mucosal growth,lactase activity,and glucose transporters[J].J Dairy Sci,2014,97(10):6358-6369.
[37] ZHANG M,YANG H Y,YANG E W,et al.Berberine decreases intestinal GLUT2 translocation and reduces intestinal glucose absorption in mice[J].Int J Mol Sci,2021,23(1):327.
[38] GORBOULEV V,SCHRMANN A,VALLON V,et al.Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion[J].Diabetes,2012,61(1):187-196.
[39] CHEN L H,TUO B G,DONG H.Regulation of intestinal glucose absorption by ion channels and transporters[J].Nutrients,2016,8(1):43.
[40] STEARNS A T,BALAKRISHNAN A,RHOADS D B,et al.Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation[J].Ann Surg,2010,251(5):865-871.
[41] MARGOLSKEE R F,DYER J,KOKRASHVILI Z,et al.T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1[J].Proc Natl Acad Sci U S A,2007,104(38):15075-15080.
[42] RAMSANAHIE A,DUXBURY M S,GRIKSCHEIT T C,et al.Effect of GLP-2 on mucosal morphology and SGLT1 expression in tissue-engineered neointestine[J].Am J Physiol Gastrointest Liver Physiol,2003,285(6):G1345-G1352.
[43] DALY K,AL-RAMMAHI M,ARORA D K,et al.Expression of sweet receptor components in equine small intestine:relevance to intestinal glucose transport[J].Am J Physiol Regul Integr Comp Physiol,2012,303(2):R199-R208.
[44] LEE W Y,LOFLIN P,CLANCEY C J,et al.Cyclic nucleotide regulation of Na+/glucose cotransporter (SGLT1) mRNA stability.Interaction of a nucleocytoplasmic protein with a regulatory domain in the 3′-untranslated region critical for stabilization[J].J Biol Chem,2000,275(43):33998-34008.
[45] SINGH S K,BARTOO A C,KRISHNAN S,et al.Glucose-dependent Insulinotropic Polypeptide (GIP) stimulates transepithelial glucose transport[J].Obesity (Silver Spring),2008,16(11):2412-2416.
[46] SHIRAZI-BEECHEY S P,MORAN A W,BATCHELOR D J,et al.Glucose sensing and signalling;regulation of intestinal glucose transport[J].Proc Nutr Soc,2011,70(2):185-193.
[47] MCCAULEY H A.Enteroendocrine regulation of nutrient absorption[J].J Nutr,2020,150(1):10-21.
[48] MORAN A W,AL-RAMMAHI M A,BATCHELOR D J,et al.Glucagon-like peptide-2 and the enteric nervous system are components of cell-cell communication pathway regulating intestinal Na+/Glucose Co-transport[J].Front Nutr,2018,5:101.
[49] AU A,GUPTA A,SCHEMBRI P,et al.Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2[J].Biochem J,2002,367:247-254.
[50] SMITH K,AZARI E K,LAMOIA T E,et al.T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways[J].Mol Metab,2018,17:98-111.
[51] TOBIN V,LE GALL M,F(xiàn)IORAMONTI X,et al.Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice[J].Diabetes,2008,57(3):555-562.
[52] TIAN C X,WU J,JIAO J Z,et al.Short communication:a high-grain diet entails alteration in nutrient chemosensing of the rumen epithelium in goats[J].Anim Feed Sci Technol,2020,262:114410.
[53] SHA Y Z,HU J,SHI B G,et al.Supplementary feeding of cattle-yak in the cold season alters rumen microbes,volatile fatty acids,and expression of SGLT1 in the rumen epithelium[J].PeerJ,2021,9:e11048.
[54] HARMON D L.Understanding starch utilization in the small intestine of cattle[J].Asian-Australas J Anim Sci,2009,22(7):915-922.
[55] 燕愛飛,周芳芳,康勁翮,等.高、低淀粉飼糧對山羊小腸甜味受體信號通路基因表達的影響[J].動物營養(yǎng)學報,2021,33(4):2278-2289.
YAN A F,ZHOU F F,KANG J H,et al.Effects of high and low starch diets on gene expressions of key elements of sweet taste receptor signaling pathway in goats[J].Chinese Journal of Animal Nutrition,2021,33(4):2278-2289.(in Chinese)
[56] LIAO S F,HARMON D L,VANZANT E S,et al.The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate[J].J Anim Sci,2010,88(1):306-314.
[57] LIANG Z Q,JIN C J,BAI H X,et al.Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway[J].Anim Nutr,2023,13:1-8.
[58] HAN X Y,LEI X J,YANG X X,et al.A Metagenomic insight into the hindgut microbiota and their metabolites for dairy goats fed different rumen degradable starch[J].Front Microbiol,2021,12:651631.
[59] RAHMADANI M,SUSANTO I,PRASETYA R D D,et al.Modification of dietary rumen degradable starch content by chemical processing of feed ingredients:a meta-analysis[J].Anim Sci J,2023,94(1):e13834.
[60] MUSCHER-BANSE A S,PIECHOTTA M,SCHRDER B,et al.Modulation of intestinal glucose transport in response to reduced nitrogen supply in young goats[J].J Anim Sci,2012,90(13):4995-5004.
(編輯 范子娟)