国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

葉酸和鈷胺素對(duì)圍產(chǎn)期奶牛泌乳性能、養(yǎng)分消化和肝脂質(zhì)含量的影響

2024-12-18 00:00:00楊巧麗李福崗閆國(guó)駿劉強(qiáng)郭剛王聰
畜牧獸醫(yī)學(xué)報(bào) 2024年11期
關(guān)鍵詞:葉酸

摘 要: 旨在研究包被葉酸(CFA)和包被鈷胺素(CCA)對(duì)圍產(chǎn)期奶牛泌乳性能、養(yǎng)分消化、瘤胃發(fā)酵和肝脂質(zhì)含量的影響。選取48頭胎次、上一泌乳期產(chǎn)奶量和體重相近的圍產(chǎn)期荷斯坦奶牛,按2×2因子、隨機(jī)區(qū)組設(shè)計(jì)分為4組,對(duì)照組飼喂基礎(chǔ)日糧,其余3組分別在基礎(chǔ)日糧中添加CFA 6.75 g·d-1、CCA 0.6 g·d-1和CFA 6.75 g·d-1+CCA 0.6 g·d-1。試驗(yàn)從奶牛產(chǎn)前21 d開(kāi)始,產(chǎn)后21 d結(jié)束。奶牛產(chǎn)后,測(cè)定體重變化(BWC)、產(chǎn)奶性能,采集血液、瘤胃液和肝樣品。結(jié)果發(fā)現(xiàn):1)補(bǔ)充CFA,奶牛BWC顯著降低(Plt;0.05),飼料效率顯著提高(Plt;0.05)。補(bǔ)充CFA或CCA,實(shí)際乳、乳脂校正乳(FCM)、乳脂肪和乳蛋白質(zhì)產(chǎn)量顯著提高(Plt;0.05)。2)補(bǔ)充CFA,干物質(zhì)(DM)和中性洗滌纖維(NDF)表觀消化率顯著提高(Plt;0.05)。補(bǔ)充CCA,DM、有機(jī)物(OM)、粗蛋白質(zhì)(CP)、NDF和酸性洗滌纖維(ADF)表觀消化率顯著提高(Plt;0.05)。3)補(bǔ)充CFA或CCA,瘤胃pH無(wú)顯著變化(Pgt;0.05),總揮發(fā)性脂肪酸(TVFA)濃度顯著增加(Plt;0.05)。補(bǔ)充CFA,瘤胃乙酸濃度和乙酸/丙酸顯著增加(Plt;0.05)。補(bǔ)充CCA,瘤胃丙酸濃度顯著增加(Plt;0.05),乙酸/丙酸顯著降低(Plt;0.05)。4)補(bǔ)充CFA,血液非酯化脂肪酸、β-羥丁酸(BHB)和同型半胱氨酸(Hcy)濃度顯著降低,血液葡萄糖濃度無(wú)顯著變化(Pgt;0.05),葉酸(FA)濃度顯著增加(Plt;0.05)。補(bǔ)充CCA,血液葡萄糖和鈷胺素(CA)濃度顯著增加(Plt;0.05)。5)補(bǔ)充CFA,奶牛肝中FA含量顯著提高,總脂和甘油三酯(TG)含量顯著降低(Plt;0.05);補(bǔ)充CCA,肝中CA含量顯著提高,總脂和TG含量無(wú)顯著變化(Pgt;0.05)。6)與單獨(dú)補(bǔ)充CFA或CCA相比,二者聯(lián)合補(bǔ)充,奶牛FCM產(chǎn)量、NDF消化率和瘤胃TVFA濃度較高(Plt;0.05),血液Hcy和肝TG含量較低(Plt;0.05)。綜上表明,CFA和CCA聯(lián)合補(bǔ)充對(duì)改善圍產(chǎn)期奶牛泌乳性能和降低肝脂質(zhì)含量比單獨(dú)補(bǔ)充更有效。

關(guān)鍵詞: 葉酸;鈷胺素;泌乳性能;脂質(zhì)代謝;圍產(chǎn)期奶牛

中圖分類(lèi)號(hào):S823.911.5

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)11-5114-10

收稿日期:2024-01-05

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32272824);中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(YDZJSX2022A039);山西省現(xiàn)代農(nóng)業(yè)牛產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(2024CYJSTX13-07)

作者簡(jiǎn)介:楊巧麗(1999-),女,山西運(yùn)城人,碩士生,主要從事反芻動(dòng)物營(yíng)養(yǎng)研究,E-mail: 1215775808@qq.com

*通信作者:劉 強(qiáng),主要從事反芻動(dòng)物營(yíng)養(yǎng)研究,E-mail: liuqiangabc@163.com

Effects of Folic Acid and Cobalamin on Lactation Performance,Nutrient Digestion and

Hepatic Lipid Content in Dairy Cows during Perinatal Period

YANG" Qiaoli1, LI" Fugang1, YAN" Guojun2, LIU" Qiang1*, GUO" Gang1, WANG" Cong1

(1.College of Animal Science, Shanxi Agricultural University, Taigu 030801," China;

2.China

Development Center of Rural Industry Integration, Department of Agriculture and

Rural Affairs of Shanxi Province, Taiyuan 030001," China)

Abstract:" The study evaluated the effects of coated folic acid (CFA) and coated cobalamin (CCA) on the lactation performance, nutrient digestion, rumen fermentation and hepatic lipid content of dairy cows during perinatal period. Forty-eight Holstein dairy cows during perinatal period with similar parity, previous 305-d milk yield and body weight were assigned in a 2×2 factorial and randomized block design to 4 groups: cows in the control group were fed a basal diet, and those in other 3 groups were fed basal diets supplemented with CFA 6.75 g·d-1, CCA 0.6 g·d-1, and CFA 6.75 g·d-1+CCA 0.6 g·d-1, respectively. The study started at 21 days before the excepted calving date and ended at 21 days after calving. During the postpartum 21 days, body weight change (BWC) and lactation performance were determined, and samples of blood, rumen fluid and liver tissue were collected. The results showed as follows: 1) CFA addition significantly decreased the BWC (Plt;0.05) and significantly increased feed efficiency (Plt;0.05). The yields of actual milk, 4% fat-corrected milk (FCM), milk fat and milk protein significantly increased (Plt;0.05) with CFA or CCA addition. 2) The apparent digestibility of dry matter (DM) and neutral detergent fiber (NDF) increased significantly (Plt;0.05) with CFA addition. The apparent digestibility of DM, organic matter (OM), crude protein (CP), NDF and acid detergent fiber (ADF) significantly increased with CCA addition (Plt;0.05). 3) Rumen pH was not significantly changed (Pgt;0.05), but total volatile fatty acids (TVFA) concentration increased (Plt;0.05) with CFA or CCA addition. Rumen acetate concentration and acetate to propionate ratio increased significantly (Plt;0.05) with CFA addition. Rumen propionate concentration increased significantly (Plt;0.05), while acetate to propionate ratio decreased significantly (Plt;0.05) with CCA addition. 4) Blood nonesterified fatty acids, β-hydroxybutyrate (BHB) and homocysteine (Hcy) contents decreased (Plt;0.05) with CFA addition. Blood glucose content was not significantly changed (Pgt;0.05), but folate (FA) content increased significantly (Plt;0.05) with CFA addition. Blood glucose and cobalamin (CA) contents increased significantly (Plt;0.05) with CCA addition. 5) Hepatic FA content increased significantly (Plt;0.05), and total lipid and triglyceride (TG) contents decreased significantly (Plt;0.05) with CFA addition. Hepatic CA content increased significantly (Plt;0.05), but total lipid and TG contents were not significantly changed (Pgt;0.05) with CCA addition. 6) When compared with CFA or CCA addition alone, the FCM yield, NDF digestibility and rumen TVFA concentration were greater (Plt;0.05), and blood Hcy and hepatic TG contents were lower for cows receiving CFA and CCA together. In conclusion, addition of CFA and CCA together is more effective in improving lactation performance and reducing hepatic lipid content compared with CFA or CCA addition alone.

Key words: folic acid; cobalamin; lactation performance; lipid metabolism; dairy cows during perinatal period

*Corresponding author: LIU Qiang,E-mail: liuqiangabc@163.com

奶牛產(chǎn)后采食的能量不能滿(mǎn)足泌乳需要,分解體儲(chǔ)備供能,血液非酯化脂肪酸(NEFA)和肝臟甘油三酯(TG)含量增加,對(duì)產(chǎn)奶、健康和繁殖造成負(fù)面影響[1]。葉酸(FA)和鈷胺素(CA)是一碳代謝的必需因子,對(duì)奶牛能量與脂質(zhì)代謝有重要調(diào)控作用[2]。研究發(fā)現(xiàn),奶牛產(chǎn)后血液NEFA和β-羥丁酸(BHB)含量與血液中FA含量呈負(fù)相關(guān)[3];補(bǔ)充包被FA(CFA),圍產(chǎn)期奶牛乳、乳脂肪和乳蛋白質(zhì)產(chǎn)量提高,血液NEFA和BHB含量降低[4];荷斯坦公牛肝中總脂和TG含量降低[5]。另外,補(bǔ)充FA能促進(jìn)泌乳早期奶牛肝組織再生,減少體脂分解[6]。一碳代謝中,CA依賴(lài)的蛋氨酸合成酶(MS)催化FA活性形式四氫葉酸的形成,保障FA代謝的正常運(yùn)行[2]。已有報(bào)道,圍產(chǎn)期奶牛補(bǔ)充CA,泌乳早期產(chǎn)奶量和乳成分產(chǎn)量增加,體重?fù)p失減少、血液NEFA和BHB含量降低[7]。FA對(duì)圍產(chǎn)期奶牛脂質(zhì)代謝的調(diào)控可能受CA供應(yīng)的影響。研究發(fā)現(xiàn),奶牛產(chǎn)后血液NEFA和BHB含量與血液中CA/FA呈正相關(guān)[3]。聯(lián)合補(bǔ)充FA和CA,圍產(chǎn)期奶牛肝脂質(zhì)含量減少[8]。但是,也有研究發(fā)現(xiàn),F(xiàn)A和CA聯(lián)合補(bǔ)充,泌乳早期奶牛體重?fù)p失增加,血液NEFA濃度有增加的趨勢(shì)[9-10](該研究沒(méi)有設(shè)計(jì)單獨(dú)補(bǔ)充FA的試驗(yàn)組)。因此,需要探究單獨(dú)補(bǔ)充FA或CA以及聯(lián)合補(bǔ)充FA與CA對(duì)圍產(chǎn)期奶牛泌乳性能和脂質(zhì)代謝的影響。飼糧中添加的FA或CA在瘤胃中約98%或62.9%被微生物降解[11],因此,本研究選用CFA和包被CA(CCA)添加劑,探究CFA或/和CCA對(duì)圍產(chǎn)期奶牛產(chǎn)奶性能、養(yǎng)分消化、瘤胃發(fā)酵、血液指標(biāo)和肝脂質(zhì)含量的影響,以明確CFA或/和CCA對(duì)奶牛產(chǎn)奶性能和肝脂質(zhì)含量的調(diào)控特點(diǎn),為營(yíng)養(yǎng)調(diào)控技術(shù)在奶牛健康養(yǎng)殖中的應(yīng)用提供依據(jù)。

1 材料與方法

1.1 試驗(yàn)設(shè)計(jì)

試驗(yàn)于2023年4~7月在山西忻州市繁峙縣銀河牧業(yè)有限公司進(jìn)行,該公司飼養(yǎng)成年奶牛2 896頭。選取48頭妊娠日齡(248±6.9)d、胎次(3.07±0.48)胎、上一泌乳期產(chǎn)奶量(9 580±96.7)kg和體重(BW)(815.7±42.9)kg的荷斯坦奶牛,依據(jù)隨機(jī)區(qū)組設(shè)計(jì)分為4組,每組12頭。試驗(yàn)采用2×2因子設(shè)計(jì),CFA-CCA-組飼喂基礎(chǔ)日糧,CFA+CCA-、CFA-CCA+和CFA+CCA+組分別在基礎(chǔ)日糧中添加CFA 6.75 g·d-1、CCA 0.6 g·d-1和CFA 6.75 g·d-1+CCA 0.6 g·d-1?;A(chǔ)日糧依據(jù)NRC(2001)[12]配制(表1),CFA和CCA添加劑由山西某科技有限公司生產(chǎn),CFA中含F(xiàn)A 2%,在瘤胃和小腸中FA的釋放率分別為28.3%和69.7%;CCA中含CA 2%,在瘤胃和小腸中CA的釋放率分別為24.8%和70.5%。CFA的添加水平依據(jù)Zhang等[4]的試驗(yàn)結(jié)果確定,CCA的添加水平依據(jù)NRC(2001)[12]推薦的BW為650 kg的泌乳奶牛CA需要量為0.6 mg·d-1,CA的小腸吸收率為10%~15%[11]和CCA中CA在小腸的釋放率為70.5%計(jì)算得到。飼養(yǎng)試驗(yàn)從奶牛產(chǎn)前21 d開(kāi)始到產(chǎn)后21 d結(jié)束,共42 d。試驗(yàn)牛飼養(yǎng)于同一圈舍內(nèi),不同組之間用鐵柵欄隔開(kāi),每頭牛固定采食位,每日飼喂2次,自由采食和飲水,每日擠奶3次。每日晨飼前,將CFA和CCA添加劑與約500 g全混合日糧(TMR)混勻飼喂奶牛,待牛采食完后再飼喂其余日糧。

1.2 體重和采食量的測(cè)定

于奶牛產(chǎn)犢后第1和第21天,每次連續(xù)2 d,早晨擠奶后,測(cè)定每頭??崭笲W,計(jì)算試驗(yàn)期間體重變化(BWC)。奶牛產(chǎn)后第4天開(kāi)始,記錄每頭牛每天的喂料量和剩料量,采集第7、14和21天的TMR樣品和剩料樣品,測(cè)定干物質(zhì)(DM)含量[13],計(jì)算每頭牛每天干物質(zhì)采食量(DMI)。

1.3 奶樣的采集與測(cè)定

奶牛產(chǎn)后第4天開(kāi)始,記錄每頭牛每天的產(chǎn)奶量。采集每頭牛產(chǎn)后第7、14和21天3次擠奶的奶樣,以牛為單位按早、中和晚4∶3∶3的比例制成混合樣,置于裝有2-溴-2-硝基-1,3-丙二醇的奶樣瓶中,用紅外乳品分析儀(MK-120,丹麥)測(cè)定脂肪、蛋白質(zhì)和乳糖含量。

1.4 糞便樣品的采集與測(cè)定

奶牛產(chǎn)后第18~21天,采集每頭牛糞樣。糞樣通過(guò)直腸采集,每天4次,每次約150 g,-20℃保存,試驗(yàn)結(jié)束后,以牛為單位按濕重比制成混合樣,加入濕糞重25%的10%酒石酸溶液,65℃烘至恒重。TMR樣和糞樣,粉碎過(guò)1 mm篩,依據(jù)AOAC(2006)[13]的方法測(cè)定DM、有機(jī)物(OM)、粗蛋白質(zhì)(CP)和酸不溶灰分(AIA)的含量,依據(jù)Van Soest等[14]的方法測(cè)定中性洗滌纖維(NDF)和酸性洗滌纖維(ADF)含量。把AIA作為內(nèi)源指示劑,計(jì)算各養(yǎng)分消化率,某養(yǎng)分表觀消化率=100%-[TMR中AIA含量×糞中某養(yǎng)分含量/(糞中AIA含量×TMR中某養(yǎng)分含量)]×100%。

1.5 瘤胃液樣品的采集與測(cè)定

奶牛產(chǎn)后第19、20和21天,早飼后3~4 h,用胃管采樣器采集每頭牛瘤胃液樣品約100 mL。為避免唾液污染,棄掉先采集的約200 mL瘤胃液。瘤胃液樣品立即用酸度計(jì)(PHS-3C,中國(guó)山東)測(cè)定pH,然后用紗布(4層)過(guò)濾,濾液保存于-20℃,用氣相色譜儀(Trace 1300,中國(guó)四川),采用內(nèi)標(biāo)法測(cè)定揮發(fā)性脂肪酸(VFA)含量[13]。

1.6 血液樣品的采集與測(cè)定

奶牛產(chǎn)后第14和21天,擠奶后、晨飼前,采集每頭牛尾靜脈血液約20 mL,2 500×g離心20 min,分離血清,-20℃保存。血液中葡萄糖、TG、膽固醇(TC)和NEFA含量用分光光度計(jì)測(cè)定(UV759,中國(guó)上海),BHB、極低密度脂蛋白(VLDL)、載脂蛋白B100(ApoB100)、同型半胱氨酸(Hcy)、FA和CA含量用酶標(biāo)儀(DR200-Bn,中國(guó)山東)測(cè)定。指標(biāo)測(cè)定試劑盒均購(gòu)自上海篤瑪生物科技有限公司。

1.7 肝組織樣品的采集與測(cè)定

奶牛產(chǎn)后第21天,擠奶后、晨飼前,每組隨機(jī)選擇6頭奶牛,用活體穿刺采樣針采集每頭牛肝組織樣品約0.5 g。肝組織樣品用無(wú)菌濾紙吸凈表面的水分和血液,放入液氮中貯存,隨后轉(zhuǎn)入-80℃冰箱。肝組織樣品每克鮮組織中FA和CA含量依據(jù)試劑盒(上海篤瑪生物科技有限公司)說(shuō)明書(shū)測(cè)定;TG和TC的提取和測(cè)定依據(jù)Homan和Anderson[15]的方法;總脂、磷脂酰乙醇胺(PE)和磷脂酰膽堿(PC)的提取和測(cè)定依據(jù)Becart等[16]的方法。

1.8 數(shù)據(jù)統(tǒng)計(jì)分析

奶牛產(chǎn)后DMI和產(chǎn)奶量數(shù)據(jù)按照每頭牛全期平均值進(jìn)行統(tǒng)計(jì)分析。乳成分、瘤胃發(fā)酵參數(shù)和血液指標(biāo)測(cè)定值均按照每頭牛平均值進(jìn)行統(tǒng)計(jì)分析。所有數(shù)據(jù)均依據(jù)2×2因子設(shè)計(jì),采用SAS 9.0軟件中的混合模型進(jìn)行方差分析,Plt;0.05認(rèn)為差異顯著。

2 結(jié) 果

2.1 CFA和CCA對(duì)奶牛體重變化和產(chǎn)奶性能的影響

由表2可知,補(bǔ)充CFA或CCA,奶牛DMI、產(chǎn)后第1天BW、第21天BW、乳糖產(chǎn)量和乳成分含量(乳脂肪、乳蛋白質(zhì)和乳糖)無(wú)顯著變化(Pgt;0.05),實(shí)際乳、乳脂校正乳(FCM)、乳脂肪和乳蛋白質(zhì)產(chǎn)量顯著提高(Plt;0.05)。補(bǔ)充CFA,奶牛BWC顯著降低(Plt;0.05),飼料效率(FE)顯著提高(Plt;0.05)。補(bǔ)充CCA,奶牛BWC和FE無(wú)顯著變化(Pgt;0.05)。CFA和CCA共同補(bǔ)充組奶牛FCM產(chǎn)量顯著高于CFA或CCA單獨(dú)補(bǔ)充(Plt;0.05)。

2.2 CFA和CCA對(duì)奶牛養(yǎng)分表觀消化率的影響

由表3可知,補(bǔ)充CFA,DM和NDF表觀消化率顯著提高(Plt;0.05),OM、CP和ADF表觀消化率無(wú)顯著變化(Pgt;0.05)。補(bǔ)充CCA,DM、OM、CP、NDF和ADF表觀消化率顯著提高(Plt;0.05)。CFA和CCA共同添加組奶牛NDF表觀消化率顯著高于CFA或CCA單獨(dú)添加組(Plt;0.05)。

2.3 CFA和CCA對(duì)奶牛瘤胃發(fā)酵參數(shù)的影響

由表4可知,補(bǔ)充CFA或CCA,奶牛瘤胃pH、丁酸、戊酸、異丁酸和異戊酸濃度無(wú)顯著變化(Pgt; 0.05),總VFA(TVFA)濃度顯著增加(Plt;0.05)。補(bǔ)充CFA,瘤胃乙酸濃度和乙酸/丙酸顯著增加(Plt;0.05),丙酸濃度無(wú)顯著變化(Pgt;0.05)。補(bǔ)充CCA,瘤胃乙酸濃度無(wú)顯著變化(Pgt;0.05),丙酸濃度顯著增加(Plt;0.05),乙酸/丙酸顯著降低(Plt;0.05)。聯(lián)合補(bǔ)充CFA和CCA,瘤胃TVFA濃度顯著高于單獨(dú)補(bǔ)充CFA或CCA(Plt;0.05)。

2.4 CFA和CCA對(duì)奶牛血液指標(biāo)的影響

由表5可知,補(bǔ)充CFA或CCA,奶牛血液TG、TC、VLDL和ApoB100含量無(wú)顯著變化(Pgt;0.05),Hcy含量顯著降低(Plt;0.05)。補(bǔ)充CFA,血液葡萄糖和CA含量無(wú)顯著變化(Pgt;0.05),NEFA和BHB含量顯著降低(Plt;0.05),F(xiàn)A含量顯著提高(Plt;0.05)。補(bǔ)充CCA,血液葡萄糖和CA濃度顯著提高(Plt;0.05),NEFA、BHB和FA含量無(wú)顯著變化(Pgt;0.05)。聯(lián)合補(bǔ)充CFA和CCA組奶牛血液Hcy含量顯著低于CFA或CCA組(Plt;0.05)。

2.5 CFA和CCA對(duì)奶牛肝中維生素和脂質(zhì)含量的影響

由表6可知,補(bǔ)充CFA或CCA對(duì)奶牛肝中TC、PC和PE含量無(wú)顯著影響(Pgt;0.05)。補(bǔ)充CFA,肝臟FA含量顯著提高(Plt;0.05),總脂和TG含量顯著降低(Plt;0.05)。補(bǔ)充CCA,奶牛肝臟FA、總脂和TG含量無(wú)顯著變化(Pgt;0.05),CA含量顯著提高(Plt;0.05)。聯(lián)合補(bǔ)充CFA和CCA組奶牛肝臟TG含量顯著低于單獨(dú)補(bǔ)充CFA或CCA組(Plt;0.05)。

3 討 論

3.1 CFA添加效果

本試驗(yàn)中,奶牛補(bǔ)充CFA,DMI無(wú)顯著變化、BWC減少,因此,產(chǎn)奶量、乳脂肪和乳蛋白質(zhì)產(chǎn)量提高歸因于DM消化率與瘤胃TVFA和乙酸濃度增加,表明補(bǔ)充CFA提高了養(yǎng)分利用率,為奶牛乳合成過(guò)程提供了更多的能量和前體物質(zhì)。其中,乳脂肪產(chǎn)量增加可歸因于瘤胃乙酸濃度增加。乙酸是乳脂肪酸合成的前體,增加奶牛乙酸供應(yīng)能促進(jìn)乳脂肪酸合成[17]。另外,F(xiàn)A作為一碳基團(tuán)的載體,能促進(jìn)細(xì)胞蛋白質(zhì)合成和能量利用[2]。補(bǔ)充CFA,血液和肝FA水平提高,表明奶牛FA狀態(tài)改善,也是泌乳性能提高的原因。其他試驗(yàn)發(fā)現(xiàn),圍產(chǎn)期奶牛補(bǔ)充CFA上調(diào)了與能量利用和泌乳相關(guān)的基因的表達(dá)[18]。圍產(chǎn)期奶牛日糧中補(bǔ)充CFA或FA,泌乳早期DMI和BW無(wú)顯著變化,乳和乳蛋白質(zhì)產(chǎn)量提高[4,8]。然而,Preynat等[19]發(fā)現(xiàn),奶牛產(chǎn)前21 d開(kāi)始,每周肌肉注射FA 160 mg,泌乳早期DMI、乳和乳成分產(chǎn)量無(wú)顯著變化。試驗(yàn)結(jié)果的不一致與FA的補(bǔ)充方式不同有關(guān)。本試驗(yàn)用的CFA添加劑中約28.3%的FA在瘤胃中釋放,69.7%的FA在小腸中釋放,因此能實(shí)現(xiàn)對(duì)瘤胃和腸道養(yǎng)分消化的調(diào)控。

本試驗(yàn)中,補(bǔ)充CFA提高了DM和NDF表觀消化率,與CFA對(duì)瘤胃和小腸養(yǎng)分消化的正向調(diào)控有關(guān),和Zhang等[4]的試驗(yàn)結(jié)果一致。試驗(yàn)用CFA中的FA既能在瘤胃中釋放,又能有效到達(dá)小腸,實(shí)現(xiàn)對(duì)腸道養(yǎng)分消化的調(diào)控。本試驗(yàn)中,補(bǔ)充CFA奶牛瘤胃TVFA和乙酸濃度、乙酸/丙酸增加,表明瘤胃發(fā)酵模式轉(zhuǎn)化為產(chǎn)生更多的乙酸,與NDF表觀消化率提高的結(jié)果一致。試驗(yàn)結(jié)果表明,補(bǔ)充CFA促進(jìn)了瘤胃中纖維分解菌的生長(zhǎng)和養(yǎng)分的降解,與Zhang等[4]的結(jié)果一致。在瘤胃中,飼糧中的NDF被纖維分解菌降解產(chǎn)生乙酸。FA參與微生物的一碳代謝過(guò)程,是纖維分解菌生長(zhǎng)的必需因子[20]。已有報(bào)道,公牛補(bǔ)充CFA,瘤胃纖維分解菌數(shù)量和纖維酶活性增加[21],DM和NDF降解率提高[22]。另外,F(xiàn)A也是維持小腸和胰腺功能正常的必需因子[23]。據(jù)報(bào)道,公牛飼糧中補(bǔ)充CFA,小腸蛋白酶和淀粉酶活性提高[21],體外培養(yǎng)液中補(bǔ)充FA,DM在腸道的消化率提高[24]。

本試驗(yàn)中,補(bǔ)充CFA對(duì)奶牛血液葡萄糖水平無(wú)顯著影響,與瘤胃丙酸濃度、乳糖產(chǎn)量和含量無(wú)顯著變化的結(jié)果一致。奶牛血液中的葡萄糖約80%來(lái)源于丙酸糖異生作用,是乳糖合成的前體[12]。肝內(nèi)合成的TG、TC、PE、PC與ApoB100等載脂蛋白結(jié)合形成VLDL轉(zhuǎn)運(yùn)出肝,其中ApoB100是調(diào)控VLDL合成和分泌的關(guān)鍵因子[25]。補(bǔ)充CFA對(duì)奶牛血液TG、TC、VLDL和ApoB100水平無(wú)顯著影響,與肝臟中TC、PC和PE含量無(wú)顯著變化的結(jié)果一致,表明肝臟VLDL的合成和分泌無(wú)顯著變化。血液中NEFA和BHB水平可反映奶牛的能量狀態(tài),其中NEFA主要來(lái)源于體脂肪分解,是肝TG的主要來(lái)源,BHB是NEFA在肝臟中不完全氧化的產(chǎn)物[1]。因此,補(bǔ)充CFA,奶牛血液NEFA和BHB水平顯著降低,與BWC減少的結(jié)果一致,表明奶牛能量利用改善,體脂分解減少。其他研究同樣發(fā)現(xiàn),圍產(chǎn)期奶牛飼糧中補(bǔ)充FA,泌乳早期血液葡萄糖水平無(wú)顯著變化,BHB水平顯著降低[5,19]。Duplessis等[3]分析了5項(xiàng)研究的數(shù)據(jù)后發(fā)現(xiàn),泌乳早期奶牛血液NEFA和BHB水平與血液FA含量呈負(fù)相關(guān)。補(bǔ)充CFA奶牛肝總脂和TG含量降低,可歸因于奶牛體脂分解減少,同時(shí)也與FA對(duì)肝脂質(zhì)代謝的調(diào)控有關(guān)。據(jù)報(bào)道,飼糧中補(bǔ)充CFA,荷斯坦公牛肝組織中脂肪酸β-氧化通路關(guān)鍵基因表達(dá)上調(diào),TG合成代謝關(guān)鍵基因表達(dá)下調(diào)[5],泌乳早期奶牛肝組織的再生和脂質(zhì)分解增強(qiáng)[6]。但是,Graulet等[8]發(fā)現(xiàn),飼糧中補(bǔ)充2.5 g·d-1的FA,泌乳早期奶牛肝中總脂和TG含量增加。試驗(yàn)結(jié)果的不同可能與FA添加水平或日糧組成不同有關(guān)。

3.2 CCA添加效果

本試驗(yàn)中,飼糧中補(bǔ)充CCA,奶牛DMI和BWC無(wú)顯著變化,與血液NEFA和BHB水平無(wú)顯著變化的結(jié)果一致。試驗(yàn)結(jié)果表明,補(bǔ)充CCA沒(méi)有增加奶牛體脂動(dòng)員,因此產(chǎn)奶量和乳脂肪與乳蛋白質(zhì)產(chǎn)量提高,歸因于養(yǎng)分消化率和瘤胃TVFA濃度的增加,以及CA在蛋白質(zhì)合成代謝中的營(yíng)養(yǎng)生理功能。一碳循環(huán)中,CA依賴(lài)的MS催化Hcy轉(zhuǎn)化為蛋氨酸,蛋氨酸是奶牛乳蛋白質(zhì)合成的必需氨基酸[2,12]。本試驗(yàn)中,補(bǔ)充CCA,奶牛血液和肝CA含量增加,血液Hcy水平降低,表明奶牛CA狀態(tài)改善,更多的Hcy被轉(zhuǎn)化為蛋氨酸。然而,Graulet等[8]報(bào)道,圍產(chǎn)期奶牛飼糧中補(bǔ)充CA 0.5 g·d-1,產(chǎn)后21 d DMI、BWC、泌乳性能和血液NEFA含量無(wú)顯著變化。Wang等[7]發(fā)現(xiàn),圍產(chǎn)期奶牛每周肌肉注射1次10 mg CA,泌乳早期DMI、乳、乳蛋白質(zhì)和乳糖產(chǎn)量提高,BWC與血液NEFA和BHB水平降低。試驗(yàn)結(jié)果的不一致可能與各試驗(yàn)采用的CA補(bǔ)充形式和水平不同有關(guān)。本試驗(yàn)用的CCA添加劑中約24.8%的CA在瘤胃中釋放,70.5%的CA在小腸中釋放,因此能實(shí)現(xiàn)對(duì)瘤胃和腸道養(yǎng)分消化的調(diào)控。

本試驗(yàn)中,奶牛補(bǔ)充CCA,日糧養(yǎng)分表觀消化率提高,與瘤胃TVFA和丙酸濃度增加的結(jié)果一致,表明養(yǎng)分在瘤胃的降解增加,與CCA對(duì)瘤胃微生物生長(zhǎng)的促進(jìn)作用有關(guān)。研究表明,CA是瘤胃微生物的必需營(yíng)養(yǎng)因子,參與微生物DNA、乙酰CoA和丙酰CoA的合成,在丙酸生成過(guò)程中,CA依賴(lài)的甲基丙二酰CoA變位酶(MCM)催化琥珀酰CoA轉(zhuǎn)化為甲基丙二酰CoA[26]。體外試驗(yàn)同樣發(fā)現(xiàn),補(bǔ)充CA 2 mg·g-1 DM,奶牛瘤胃TVFA和丙酸濃度增加[27];不同精粗比底物添加CA 40或90 ng·mL-1,羊瘤胃TVFA濃度增加[28]。另外,CCA也能促進(jìn)養(yǎng)分在腸道的消化。體外試驗(yàn)發(fā)現(xiàn),補(bǔ)充CA,DM在全消化道、瘤胃和小腸的消化率均提高[24]。本試驗(yàn)中,補(bǔ)充CCA,瘤胃乙酸濃度無(wú)顯著變化,丙酸濃度增加,導(dǎo)致乙酸/丙酸降低,表明瘤胃發(fā)酵模式轉(zhuǎn)化為產(chǎn)生更多的丙酸。CA是瘤胃丙酸產(chǎn)生的必需因子,在肝中,CA依賴(lài)的MCM催化丙酰CoA異構(gòu)化生成琥珀酰CoA,是丙酸進(jìn)入糖異生代謝的關(guān)鍵步驟[29]。本試驗(yàn)發(fā)現(xiàn),補(bǔ)充CCA奶牛血液葡萄糖含量提高,表明奶牛糖異生代謝被促進(jìn),能量供應(yīng)改善,這是補(bǔ)充CCA奶牛泌乳性能提高的另一個(gè)原因。另外,本試驗(yàn)發(fā)現(xiàn),飼糧中補(bǔ)充CCA,奶牛血液和肝組織中脂質(zhì)代謝相關(guān)指標(biāo)無(wú)顯著變化,表明單獨(dú)補(bǔ)充CCA對(duì)緩減圍產(chǎn)期奶牛體脂動(dòng)員和肝脂質(zhì)沉積無(wú)顯著影響。

3.3 CFA和CCA互作效應(yīng)

依據(jù)本研究目的,在此只對(duì)CCA和CFA互作效應(yīng)顯著的結(jié)果進(jìn)行討論分析。與單獨(dú)補(bǔ)充相比,CFA和CCA聯(lián)合補(bǔ)充,奶牛FCM產(chǎn)量、NDF消化率和瘤胃TVFA濃度較高,血液Hcy濃度、肝TG含量較低,表明CFA和CCA聯(lián)合補(bǔ)充對(duì)提高奶牛泌乳性能和養(yǎng)分消化、減少肝脂質(zhì)沉積比二者單獨(dú)補(bǔ)充更有效。試驗(yàn)結(jié)果的產(chǎn)生與FA和CA在一碳代謝中的營(yíng)養(yǎng)生理功能有關(guān)。一碳循環(huán)對(duì)動(dòng)物蛋白質(zhì)合成和能量代謝起重要調(diào)控作用[2]。一碳代謝中,Hcy和5-甲基四氫葉酸在CA依賴(lài)的MS催化下,轉(zhuǎn)化為蛋氨酸和四氫葉酸(FA的活性形式),這是維持一碳循環(huán)正常高效進(jìn)行的關(guān)鍵[2],補(bǔ)充CCA有助于FA功能的發(fā)揮。本試驗(yàn)中,奶牛血液Hcy濃度的變化結(jié)果表明,CFA和CCA聯(lián)合補(bǔ)充對(duì)一碳循環(huán)效率的改善優(yōu)于二者單獨(dú)補(bǔ)充。體外試驗(yàn)發(fā)現(xiàn),與單獨(dú)添加FA相比,F(xiàn)A和CA共同添加組CP 12 h瘤胃消化率較高[24]。Graulet等[8]發(fā)現(xiàn),聯(lián)合補(bǔ)充FA和CA可以緩減單獨(dú)補(bǔ)充FA造成的泌乳早期奶牛肝脂質(zhì)增加。Duplessis等[3]報(bào)道,泌乳早期奶牛血液NEFA和BHB水平與血液CA/FA呈正相關(guān)。

4 結(jié) 論

圍產(chǎn)期奶牛單獨(dú)補(bǔ)充CFA或CCA,泌乳性能、養(yǎng)分消化和瘤胃發(fā)酵改善。補(bǔ)充CFA,奶牛BWC和肝脂質(zhì)沉積減少。聯(lián)合補(bǔ)充CFA和CCA對(duì)提高奶牛泌乳性能、養(yǎng)分消化和瘤胃TVFA產(chǎn)量,以及降低肝脂質(zhì)含量,比二者單獨(dú)補(bǔ)充更有效。

參考文獻(xiàn)(References):

[1] BOBE G,YOUNG J W,BEITZ D C.Invited review:pathology,etiology,prevention,and treatment of fatty liver in dairy cows[J].J Dairy Sci,2004,87(10):3105-3124.

[2] BROSNAN M E,MACMILLAN L,STEVENS J R,et al.Division of labour:how does folate metabolism partition between one-carbon metabolism and amino acid oxidation?[J] Biochem J,2015,47(2):135-146.

[3] DUPLESSIS M,CHORFI Y,GIRARD C L.Longitudinal data to assess relationships among plasma folate,vitamin B12,non-esterified fatty acid,and β-hydroxybutyrate concentrations of Holstein cows during the transition period[J].Metabolites,2023,13(4):547.

[4] ZHANG Z,LA S K,ZHANG G W,et al.Diet supplementation of palm fat powder and coated folic acid on performance,energy balance,nutrient digestion,ruminal fermentation and blood metabolites of early lactation dairy cows[J].Anim Feed Sci Technol,2020,265:114520.

[5] ZHANG Z,LIU Q,WANG C,et al.Effects of palm fat powder and coated folic acid on growth performance,ruminal fermentation,nutrient digestibility and hepatic fat accumulation of Holstein dairy bulls[J].J Integr Agr,2020,19(4):1074-1084.

[6] OUATTARA B,BISSONNETTE N,DUPLESSIS M,et al.Supplements of vitamins B9 and B12 affect hepatic and mammary gland gene expression profiles in lactating dairy cows[J].BMC Genomics,2016,17(1):640.

[7] WANG D M,ZHANG B X,WANG J K,et al.Effect of dietary supplements of biotin,intramuscular injections of vitamin B12,or both on postpartum lactation performance in multiparous dairy cows[J].J Dairy Sci,2018,101(9):7851-7856.

[8] GRAULET B,MATTE J J,DESROCHERS A,et al.Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation[J].J Dairy Sci,2007,90(7):3442-3455.

[9] DUPLESSIS M,LAPIERRE H,SAUERWEIN H,et al.Combined biotin,folic acid,and vitamin B12 supplementation given during the transition period to dairy cows:part I.Effects on lactation performance,energy and protein metabolism,and hormones[J].J Dairy Sci,2022,105(8):7079-7096.

[10] DUPLESSIS M,GERVAIS R,LAPIERRE H,et al.Combined biotin,folic acid,and vitamin B12 supplementation given during the transition period to dairy cows:part II.Effects on energy balance and fatty acid composition of colostrum and milk[J].J Dairy Sci,2022,105(8):7097-7110.

[11] SANTSCHI D E,BERTHIAUME R,MATTE J J,et al.Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows[J].J Dairy Sci,2005,88(6):2043-2054.

[12] NRC.Nutrient Requirements of dairy cattle[M].7th rev ed.Washington:National Academy Press,2001.

[13] AOAC.Official methods of analysis of the association of official analytical chemists[M].18th ed.Gaithersburg:Association of Official Analytical Chemists,2005.

[14] VAN SOEST P J,ROBERTSON J B,LEWIS B A.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J].J Dairy Sci,1991,74(10):3583-3597.

[15] HOMAN R,ANDERSON M K.Rapid separation and quantitation of combined neutral and polar lipid classes by high-performance liquid chromatography and evaporative light-scattering mass detection[J].J Chromatogr B,1998,708(1-2):21-26.

[16] BECART J,CHEVALIER C,BIESSE J P.Quantitative analysis of phospholipids by HPLC with a light scattering evaporating detector-application to raw materials for cosmetic use[J].J High Resolut Chromatogr,1990,13(2):126-129.

[17] MATAMOROS C,CAI J,PATTERSON A D,et al.Comparison of the effects of short-term feeding of sodium acetate and sodium bicarbonate on milk fat production[J] J Dairy Sci,2021,104(7):7572-7582.

[18] KHAN M Z,LIU L,ZHANG Z C,et al.Folic acid supplementation regulates milk production variables,metabolic associated genes and pathways in perinatal Holsteins[J].J Anim Physiol Anim Nutr,2020,104(2):483-492.

[19] PREYNAT A,LAPIERRE H,THIVIERG M C,et al.Influence of methionine supply on the response of lactational performance of dairy cows to supplementary folic acid and vitamin B12[J].J Dairy Sci,2009,92(4):1685-1695.

[20] SLYTER L L,WEAVER J M.Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens[J].Appl Environ Microbiol,1977,33(2):363-369.

[21] LIU Y Q,WANG C,LIU C,et al.Effects of coated folic acid and coated methionine on growth performance,nutrient digestibility and rumen fermentation in Simmental bulls[J].Anim Feed Sci Technol,2023,298:115596.

[22] WANG C,LIU Q,GUO G,et al.Effects of rumen-protected folic acid on ruminal fermentation,microbial enzyme activity,cellulolytic bacteria and urinary excretion of purine derivatives in growing beef steers[J].Anim Feed Sci Technol,2016,221:185-194.

[23] LONGNECKER D S.Abnormal methyl metabolism in pancreatic toxicity and diabetes[J].J Nutr,2002,132(8):2373S-2376S.

[24] PARNIAN-KHAJEHDIZAJ F,TAGHIZADEH A,HOSSEINKHANI A,et al.Evaluation of dietary supplementation of B vitamins and HMBi on fermentation kinetics,ruminal or post-ruminal diet digestibility using modified in vitro techniques[J].J Biosci Biotechnol,2018,7(2-3):125-133.

[25] BERNABUCCI U B,RONCHI L,BASIRICO D,et al.Abundance of mRNA of apolipoprotein B100,apolipoprotein E,and microsomal triglyceride transfer protein in liver from periparturient dairy cows[J].J Dairy Sci,2004,87(9):2881-2888.

[26] MARTENS J H,BARG H,WARREN M,et al.Microbial production of vitamin B12[J].Appl Microbiol Biotechnol,2002,58(3):275-285.

[27] LIU Z H,WANG K,NAN X M,et al.Effects of combined addition of 3-nitrooxypropanol and vitamin B12 on methane and propionate production in dairy cows by in vitro-simulated fermentation[J].J Dairy Sci,2023,106(1):219-232.

[28] 李亞學(xué),王佳堃,孫 華,等.不同精粗比下添加維生素B12對(duì)體外瘤胃發(fā)酵和微生物酶活力的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2012,24(10):1888-1896.

LI Y X,WANG J K,SUN H,et al.In vitro rumen fermentation and microbial enzyme activities influenced by vitamin B12 supplementation in different concentrate to forage ratios[J].Chinese Journal of Animal Nutrition,2012,24(10):1888-1896.(in Chinese)

[29] ASCHENBACH J R,KRISTENSEN N B,DONKIN S S,et al.Gluconeogenesis in dairy cows:the secret of making sweet milk from sour dough[J].IUBMB Life,2010,62(12):869-877.

(編輯 范子娟)

猜你喜歡
葉酸
我國(guó)科學(xué)家成功研發(fā)富葉酸雞蛋質(zhì)控技術(shù)
常喝酒的人 要補(bǔ)葉酸
準(zhǔn)備懷孕前3個(gè)月還不補(bǔ)葉酸就晚了
關(guān)于葉酸的一些疑惑
正在備孕的你,葉酸補(bǔ)對(duì)了嗎
準(zhǔn)備懷孕前3個(gè)月還不補(bǔ)葉酸就晚了
綠葉蔬菜富含葉酸
益壽寶典(2018年8期)2018-10-22 05:25:28
缺葉酸 多吃蔬菜和豆類(lèi)
中老年人補(bǔ)葉酸可防卒中
用獼猴桃補(bǔ)葉酸?未必適合你
媽媽寶寶(2017年4期)2017-02-25 07:01:16
通州市| 南川市| 上思县| 屏东县| 南丹县| 抚顺市| 柳州市| 隆回县| 共和县| 林甸县| 横峰县| 九寨沟县| 佳木斯市| 宜章县| 洛川县| 景泰县| 鹿泉市| 沂源县| 南城县| 肇庆市| 达州市| 驻马店市| 岱山县| 宝鸡市| 临湘市| 鞍山市| 康马县| 同江市| 西畴县| 肥乡县| 鹰潭市| 崇左市| 出国| 祁阳县| 静乐县| 赣州市| 始兴县| 紫金县| 芦溪县| 肇源县| 彰化市|