国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細(xì)胞焦亡:連接腸道菌群與肝臟疾病的新橋梁

2024-12-31 00:00:00趙奕杰謝露張亞亭劉光偉
臨床肝膽病雜志 2024年9期

通信作者:劉光偉,liuguangwei1975@163.com(ORCID:0000-0002-6641-1625)

摘要:自腸-肝軸的概念被提出以來,已有大量研究著眼于探索腸道菌群和肝病之間的聯(lián)系,但以細(xì)胞焦亡為樞紐,探究腸-肝串?dāng)_的內(nèi)在機(jī)制的觀點(diǎn)仍處于萌芽階段。本文主要通過敘述了腸道菌群失調(diào)通過影響?zhàn)つて琳系耐暾院湍懼岬拇x,誘導(dǎo)細(xì)胞焦亡,進(jìn)而影響肝臟相關(guān)疾病的發(fā)生和進(jìn)展的過程,并總結(jié)出腸道菌群失調(diào)通過誘導(dǎo)NLRP3/AIM2/Caspase-1依賴型、Caspase-4/11/GSDMD依賴型和Caspase-3/GSDME依賴型細(xì)胞焦亡以影響肝臟相關(guān)疾病的觀點(diǎn)。希望通過建立細(xì)胞焦亡與腸-肝免疫串?dāng)_之間的聯(lián)系,為未來肝病的診治提供新的思路和靶點(diǎn)。

關(guān)鍵詞:肝疾??;胃腸道微生物組;細(xì)胞焦亡;膽汁酸類和鹽類

基金項(xiàng)目:河南省自然科學(xué)基金(222300420490);河南省科技研發(fā)計劃聯(lián)合基金(222301420069);河南省特色骨干學(xué)科中醫(yī)學(xué)學(xué)科建設(shè)項(xiàng)目(STG-ZYXKY-2020017)

Pyroptosis:A new bridge connecting gut microbiota and liver diseases

ZHAO Yijie1,XIE Lu1,ZHANG Yating1,LIU Guangwei2.(1.The First Clinical Medical College of Henan University of Chinese Medicine,Zhengzhou 450000,China;2.Spleen,Stomach and Hepatobiliary Department,The First Affiliated Hospital of Henan University of Chinese Medicine,Zhengzhou 450000,China)

Corresponding author:LIU Guangwei,liuguangwei1975@163.com(ORCID:0000-0002-6641-1625)

Abstract:Since the proposal of the concept of the gut-liver axis,a large number of studies have focused on exploring the connection between gut microbiota and liver disease;however,the idea of using pyroptosis as a hub to explore the intrinsic mechanism of gut-liver crosstalk is still in its infancy.This article mainly describes the process by which gut microbiota dysbiosis affects the integrity of mucosal barrier and bile acid metabolism,induces pyroptosis,and thereby affects the development and progression of liver diseases,and it also concludes that gut microbiota dysbiosis affects liver diseases by inducing NLRP3/AIM2/Caspase-1-dependent,Caspase-4/11/GSDMD-dependent,and Caspase-3/GSDME-dependent pyroptosis.In summary,this study aims to provide new ideas and targets for the future diagnosis and treatment of liver diseases by establishing the connection between pyroptosis and intestinal-liver immune crosstalk.

Key words:Liver Diseases;Gastrointestinal Microbiome;Pyroptosis;Bile Acids and Salts

Research funding:Natural Science Foundation of Henan Province(222300420490);Joint Fund for Science and Technology Research and Development Plan of Henan Province(222301420069);Construction Project of Traditional Chinese Medicine Discipline as a Key Discipline with Characteristics in Henan Province(STG-ZYXKY-2020017)

1概述

眾所周知,人類腸道存在包括細(xì)菌、古細(xì)菌、真菌和病毒等多種微生物,腸道菌群及其代謝產(chǎn)物通過參與黏膜屏障的形成,以及氨基酸、脂肪酸和膽汁酸(BA)代謝等途徑保持與宿主的聯(lián)系[1]。肝臟是獨(dú)特的免疫器官,由于門靜脈循環(huán)的存在,其容易受到來自胃腸道的抗原(如病原體、毒素等)侵襲[2]。越來越多的證據(jù)[3-4]表明,腸道菌群失調(diào),黏膜屏障功能受損,并通過腸-肝軸增強(qiáng)肝臟的免疫應(yīng)答,使得腸道菌群在肝臟相關(guān)疾病的發(fā)生進(jìn)展過程中占據(jù)重要地位,其中包括酒精性肝病(ALD)、非酒精性脂肪性肝炎(NASH)、原發(fā)性硬化性膽管炎、自身免疫性肝炎(AIH)、病毒性肝炎以及肝細(xì)胞癌(HCC)等。細(xì)胞焦亡作為構(gòu)成先天免疫和放大炎癥反應(yīng)的關(guān)鍵部分,在維持腸道穩(wěn)態(tài)和機(jī)體免疫方面發(fā)揮重要作用。目前已有大量研究可以證明腸道菌群失調(diào)和細(xì)胞焦亡參與到多種肝病的發(fā)病機(jī)制中,但對于三者之前的相互影響卻鮮有論述[5]。因此,本文就腸道菌群失調(diào)、腸黏膜屏障功能受損誘導(dǎo)細(xì)菌病毒通過門靜脈循環(huán)易位至肝臟,引起腸-肝免疫串?dāng)_和細(xì)胞焦亡這一過程在肝臟相關(guān)疾病發(fā)病機(jī)制中的作用進(jìn)行綜述,以期為肝病的診治提供新的思路和靶點(diǎn)。

2腸道菌群與免疫穩(wěn)態(tài)

腸道菌群是一個多物種的微生物群落,定植細(xì)菌數(shù)目多達(dá)百萬億計,其中90%以上屬于擬桿菌門和厚壁菌門,放線菌門含量較低,約占腸道菌群的2.5%,作為人體共生菌,腸道菌群參與人體多種生理和病理過程,包括免疫調(diào)節(jié)、循環(huán)代謝和黏膜防御等[6]。變形菌門在人類腸道中較少出現(xiàn),其比例增加被證明與炎癥和疾病關(guān)系密切相關(guān)[7]。腸道是人體含有最多免疫細(xì)胞的器官,包括漿細(xì)胞樣樹突狀細(xì)胞(DC)、黏膜相關(guān)恒定T淋巴細(xì)胞和γδT淋巴細(xì)胞等,上述免疫細(xì)胞共同構(gòu)成腸道黏膜免疫屏障;其不僅能抵抗病原體的侵襲,而且保有對共生菌的耐受性[8]。同樣,腸道固有免疫細(xì)胞(如Paneth cell)通過分泌溶菌酶、防御素等多種抗菌肽,以抑制多種病原微生物侵襲,維持腸道菌群平衡[9]。腸道相關(guān)淋巴組織是人體最大的淋巴組織,可分為淋巴細(xì)胞廣泛分布的上皮層、固有層和包括派爾斑在內(nèi)的淋巴組織區(qū)域。腸道相關(guān)淋巴組織通過調(diào)節(jié)DC的成熟、淋巴細(xì)胞的分化,以及免疫球蛋白A的產(chǎn)生,在激活宿主免疫和維持腸道穩(wěn)態(tài)方面發(fā)揮重要作用[10]。研究[11]表明,腸道菌群在調(diào)節(jié)人體免疫系統(tǒng)方面有著重要作用,外傷、飲食和遺傳等因素導(dǎo)致的腸道菌群失調(diào),黏膜屏障受損導(dǎo)致的內(nèi)毒素滲漏是引起機(jī)體免疫紊亂的關(guān)鍵,其不僅可以影響腸道固有免疫,還可以通過循環(huán)串?dāng)_影響其他臟器的免疫應(yīng)答。

3細(xì)胞焦亡

細(xì)胞焦亡是一種細(xì)胞程序性死亡的新形式,特征包括離子內(nèi)流、細(xì)胞膨脹裂解和炎性因子等胞內(nèi)溶質(zhì)流出[12]。激活細(xì)胞焦亡最主要的兩條途徑包括經(jīng)典途徑和非經(jīng)典途徑,經(jīng)典途徑主要由半胱氨酸天冬氨酸蛋白酶1(Caspase-1)介導(dǎo),依賴NOD樣家族受體核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白(NLRP)1、NLRP3、NLRC4和黑色素瘤缺乏因子2(AIM2)的激活;非經(jīng)典途徑主要由Caspase4/5/11介導(dǎo),依賴腸道細(xì)菌的外膜囊泡將內(nèi)毒素脂多糖(LPS)遞送至胞質(zhì)溶膠,促進(jìn)鳥苷酸結(jié)合蛋白的募集來激活[13]。在經(jīng)典焦亡途徑中,LPS/TLR/MyD88/NF-κB信號通路是誘導(dǎo)NLR活化和pro-IL-1β、pro-IL-1生成的先決條件[14]。眾所周知,NLRP3是介導(dǎo)細(xì)胞焦亡的關(guān)鍵媒介,NLRP3單體通常不具有生物活性,二聚化的NLRP3分子可以通過識別PAMP或DAMP,與含有CARD結(jié)構(gòu)域的凋亡相關(guān)斑點(diǎn)樣蛋白(ASC)上的Pyrin結(jié)構(gòu)域結(jié)合,并通過CARD-CARD相互作用,形成寡聚體[15]。同時,ASC的CARD結(jié)構(gòu)域募集并切割半胱天冬氨酸酶1前體(Procaspase-1),并激活Caspase-1,活化的Caspase-1能夠?qū)SDMD剪切為GSDMD-N端片段,該片段通過與細(xì)胞膜的磷酸肌醇或含有心磷脂的脂質(zhì)體結(jié)合,造成細(xì)胞膜穿孔,激活控制小分子進(jìn)出的受體Pannexin-1,打開膜通道P2X7,使細(xì)胞內(nèi)K+和ATP外流,細(xì)胞外水分子大量流入,造成細(xì)胞腫脹破裂,最終誘導(dǎo)細(xì)胞焦亡[16-17]。在此過程中,活化的Caspase-1將pro-IL-1β和pro-IL-18剪切為IL-1β和IL-18,隨細(xì)胞破裂釋放,導(dǎo)致級聯(lián)放大反應(yīng),引起免疫應(yīng)答。在非經(jīng)典細(xì)胞焦亡途徑中,LPS直接誘導(dǎo)Capase-4/5/11的活化和GSDMD的裂解,裂解片段GSDMD-N不僅能引起細(xì)胞膜溶解與細(xì)胞焦亡,還可以激活Caspase-1依賴型經(jīng)典焦亡途徑,最終促進(jìn)IL-1β和IL-18的釋放[18]。

除此之外,邵峰團(tuán)隊(duì)的研究為細(xì)胞焦亡提供了新的著眼點(diǎn):(1)化療藥物能夠誘導(dǎo)Caspase-3的激活,活化的Caspase-3將GSDME裂解為GSDMD-C和GSDME-N,GSDME-N同樣可以造成膜穿孔,從而將細(xì)胞凋亡轉(zhuǎn)化為細(xì)胞焦亡[19]。(2)毒性淋巴細(xì)胞分泌的顆粒酶A特異地切割和活化GSDMB,產(chǎn)物GSDMB-N通過膜穿孔誘導(dǎo)細(xì)胞焦亡[20]。正常情況下,焦亡通過激活先天免疫,保護(hù)機(jī)體免受病原微生物的侵襲,但其過度活躍也可能放大炎癥反應(yīng),導(dǎo)致機(jī)體免疫紊亂和臟器炎性損傷[21]。總結(jié)細(xì)胞焦亡機(jī)制見圖1。

4腸道菌群與細(xì)胞焦亡

作為構(gòu)成先天免疫的重要部分,細(xì)胞焦亡廣泛存在人體各個組織器官中。研究[22]發(fā)現(xiàn),NLRP3炎性小體廣泛存在于腸黏膜上皮細(xì)胞(IEC)、肝Kupffer細(xì)胞、肝竇內(nèi)皮細(xì)胞和肝星狀細(xì)胞(HSC)等基質(zhì)細(xì)胞中。腸道是定植細(xì)菌、真菌和病毒等病原微生物最多的器官,正常情況下,腸道共生菌通過定植抵抗的方式抵御病原微生物侵襲,其不僅能刺激機(jī)體產(chǎn)生適應(yīng)性免疫,調(diào)節(jié)Treg/Th17細(xì)胞的分化,也能促進(jìn)腸上皮細(xì)胞緊密連接蛋白1(ZO-1)表達(dá),以維持腸道黏膜屏障的結(jié)構(gòu)和功能[23]。腸道菌群失調(diào)時,LPS、脂磷壁酸和肽聚糖等PAMP增加,IEC的PRR通過識別PAMP激活NLRP3/ASC/Caspase-1通路介導(dǎo)的細(xì)胞焦亡,促進(jìn)腸道炎性病變[24]。且共生菌豐度降低會抑制ZO-1的表達(dá)和SCFA的分泌,導(dǎo)致腸道屏障受損以及腸道通透性增加,使大量細(xì)菌及其代謝產(chǎn)物通過門靜脈血流侵襲肝臟,激活Kupffer細(xì)胞、肝竇內(nèi)皮細(xì)胞等肝臟免疫細(xì)胞的NLRP3炎性小體,誘發(fā)免疫串?dāng)_,引起級聯(lián)反應(yīng),造成肝臟炎性損傷[25]。

腸道菌群同樣受到以BA代謝為核心的腸-肝循環(huán)的調(diào)控。BA可直接作為內(nèi)源性DAMP或結(jié)合LPS作用于NLRP3炎癥小體,調(diào)控腸道內(nèi)環(huán)境穩(wěn)態(tài)[26]。研究[27]表明,BA可以調(diào)節(jié)法尼醇X受體(FXR)和G蛋白偶聯(lián)膽汁酸受體(TGR5)的表達(dá),相反,F(xiàn)XR通過調(diào)節(jié)成纖維細(xì)胞生長因子(FGF15/19)和膽固醇7α-羥化酶(CYP7A1)的分泌來影響B(tài)A的分解和腸屏障功能。Han等[28]證明,在NAFLD患者中FXR能夠通過抑制內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激下調(diào)蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶的磷酸化和下游轉(zhuǎn)錄因子CHOP的表達(dá),以減弱NLRP3的激活和硫氧還蛋白相互作用蛋白的表達(dá),進(jìn)而減輕肝臟炎性損傷。TGR5在腸上皮細(xì)胞再生及免疫細(xì)胞信號傳導(dǎo)過程中發(fā)揮重要作用,石膽酸能通過TGR5/cAMP/PKA軸抑制NLRP3炎性小體的激活[29]。此外,脫氧膽酸和石膽酸還可以通過調(diào)節(jié)FOXP3+和ROR-γt轉(zhuǎn)錄因子的表達(dá)和Treg/Th17的分化,以維持腸道穩(wěn)態(tài)平衡[30]。綜上,腸道菌群失調(diào)可能通過影響B(tài)A代謝導(dǎo)致肝臟炎性損傷,肝損傷引起的BA水平下降也可導(dǎo)致腸道細(xì)菌的過度增長,二者間互為因果,此過程依賴腸FXR-FGF15/19和肝FXR-SHP軸的雙向調(diào)控[31]。同樣,腸道菌群失調(diào)可以激活I(lǐng)ECS的NLRP3/ASC/Caspase-1經(jīng)典途徑以誘導(dǎo)細(xì)胞焦亡,并且伴隨腸道屏障破壞、病原微生物的漏出引起的免疫串?dāng)_又成為肝臟細(xì)胞焦亡的始動因素。故以細(xì)胞焦亡為主要應(yīng)答形式,以菌群穩(wěn)態(tài)、屏障功能和BA代謝為主要免疫途徑的協(xié)同作用,在肝臟相關(guān)疾病的發(fā)生發(fā)展中起重要作用。

4.1腸道菌群、細(xì)胞焦亡與AIH AIH是一種以血清轉(zhuǎn)氨酶升高、循環(huán)中存在自身抗體、高γ-球蛋白血癥、肝組織學(xué)特征性改變以及對免疫抑制治療應(yīng)答為特點(diǎn)的慢性炎癥性肝病,急性進(jìn)展可能導(dǎo)致肝衰竭和終末期肝病,死亡率較高[32]。腸道菌群作為環(huán)境因素的一部分被證實(shí)在AIH的發(fā)病過程中起重要作用,其影響機(jī)制主要包括腸道屏障的破壞、腸道細(xì)菌的易位和免疫平衡失調(diào)[33]。與健康人群相比,AIH患者腸上皮細(xì)胞ZO表達(dá)減少,LPS水平升高,腸道厭氧菌(Bifidobacterium和Lactobacilli)豐度降低,這些現(xiàn)象均提示AIH的發(fā)病與腸道菌群失調(diào)密切相關(guān)[34]。Chen等[35]發(fā)現(xiàn),在ConA誘導(dǎo)的小鼠肝炎模型中,腸道致病Salmonella和Streptococcus能誘導(dǎo)腸道內(nèi)DC的活化,并通過派爾斑和相關(guān)M細(xì)胞的攝取和呈遞將其遷移到肝臟,或引發(fā)腸漏使大量病原菌入侵肝臟,激活NKT淋巴細(xì)胞并分泌各種炎性因子,從而引起肝損傷,調(diào)整腸道菌群中革蘭陰性菌的比例可以顯著減輕這一過程。研究[36]發(fā)現(xiàn),在AIH小鼠模型中,應(yīng)用復(fù)合益生菌不僅可以糾正腸道菌群失調(diào),改善黏膜屏障功能,還能通過抑制LPS/TLR4/NF-κB信號通路的激活,下調(diào)NLRP3、Caspase-1的表達(dá),從而減輕由于細(xì)胞焦亡造成的肝損傷。此外,Wang等[37]發(fā)現(xiàn),三氯乙烯能夠激活炎性小體NLRP3、Caspase-1的表達(dá),促進(jìn)IL-1β分泌、肝臟B淋巴細(xì)胞浸潤和Th17分化,抑制Treg的分化;補(bǔ)充乙酰半胱氨酸能夠緩解這一過程,并減少自身抗體的產(chǎn)生,說明三氯乙烯誘導(dǎo)的氧化應(yīng)激及免疫失衡在AIH的發(fā)展過程中起重要作用。綜上,腸道菌群失調(diào)通過誘導(dǎo)NLRP3/ASC/Caspase-1介導(dǎo)的細(xì)胞焦亡,引起Treg/Th17免疫失衡,可能是促進(jìn)AIH的進(jìn)展的重要原因。

4.2腸道菌群、細(xì)胞焦亡與ALD ALD是一種由于過量飲酒而導(dǎo)致的慢性肝損傷的疾病,包括酒精性脂肪性肝炎、酒精性肝炎、肝纖維化、肝硬化在內(nèi)的一系列肝臟病變,病程終末期可出現(xiàn)肝癌或肝衰竭,臨床死亡率較高[38]。ALD的發(fā)病機(jī)制尚未明確,目前認(rèn)為腸道菌群失調(diào)、脂質(zhì)代謝異常和腸源性內(nèi)毒素血癥是參與發(fā)病的重要因素。研究[39]發(fā)現(xiàn),酒精過度暴露下調(diào)宿主腸上皮細(xì)胞抗菌蛋白REG3B和REG3G的表達(dá),導(dǎo)致以擬桿菌門和厚壁菌門的豐度下降,變形菌門和放線菌門的比例升高為主要表現(xiàn)的腸道菌群失調(diào),并上調(diào)腸肝中乙醇誘導(dǎo)酶(CYP2E1)和誘導(dǎo)型一氧化氮合酶(iNOS)等氮氧化應(yīng)激相關(guān)蛋白的表達(dá),抑制相關(guān)ZO-1、occludin和claudin-1/3的水平,造成腸屏障破壞、LPS滲漏和肝損傷,石榴的應(yīng)用能夠有效阻斷了這一過程。ALD不僅與Caspase-1依賴型經(jīng)典焦亡通路的激活有關(guān),同樣受到Caspase-4/11介導(dǎo)的非經(jīng)典焦亡通路的調(diào)控。酒精損傷肝細(xì)胞所產(chǎn)生的尿酸和ATP是激活經(jīng)典焦亡通路的損傷相關(guān)分子模式(DAMP),腸道菌群失調(diào)和屏障功能受損所導(dǎo)致的LPS滲漏是激活細(xì)胞焦亡的病原相關(guān)分子模式(PAMP),LPS被肝Kupffer細(xì)胞TLR4受體所識別,誘導(dǎo)無活性的pro-IL-1β結(jié)合,pro-IL-1β在尿酸和ATP激活的焦亡過程中,被裂解為具有活性的炎性因子IL-1β,IL-1β是調(diào)控免疫的關(guān)鍵細(xì)胞因子,在酒精介導(dǎo)的肝損傷中起重要作用[40]。Wu等[41]發(fā)現(xiàn),黃芪甲苷可以上調(diào)酒精暴露小鼠腸道Butyricicoccus和Turicibacter等益生菌的豐度,抑制血清LPS水平的升高和肝Kupffer細(xì)胞NLRP3/ASC/Caspase-1通路的激活,減少IL-1β、IL-18和TNF-α等炎性因子的分泌,可減緩ALD進(jìn)展,改善肝損傷。此外,Khanova等[42]發(fā)現(xiàn),在酒精性肝炎小鼠模型中可以檢測到Caspase-11(在人體中是Caspase-4)的高度表達(dá),并通過激活GSDMD導(dǎo)致細(xì)胞裂解,大量炎性因子流出,加重肝臟炎性損傷。綜上,過度飲酒不僅直接損傷肝細(xì)胞,還能導(dǎo)致腸穩(wěn)態(tài)失調(diào)和黏膜屏障受損,由此產(chǎn)生的DAMP和異常易位的PAMP通過激活Caspase-1和Caspase-4/11依賴型細(xì)胞焦亡,進(jìn)一步加速ALD的進(jìn)展。

4.3腸道菌群、細(xì)胞焦亡與NASH NASH是以肝細(xì)胞球囊變性和肝小葉炎癥為特征性改變的慢性炎癥性肝病,誘發(fā)NASH的危險因素包括特異性遺傳基因的表達(dá),環(huán)境因素和飲食生活習(xí)慣等[43]。與ALD相似,腸道菌群結(jié)構(gòu)異常、腸源LPS滲漏和脂質(zhì)代謝紊亂同樣貫穿NASH發(fā)病的始終。作為“雙重打擊”的第一步,腸道微生物組成改變、通透性增加導(dǎo)致LPS滲漏,經(jīng)門靜脈血流易位至肝臟,進(jìn)而誘導(dǎo)肝細(xì)胞TLR和NLR受體激活是誘發(fā)NASH的始動因素[44]。腸道致病菌Escherichia coli、Bilophila和Dysgonomonas的豐度增加可以促進(jìn)腸源LPS和內(nèi)源性乙醇的產(chǎn)生,而Alistipes、Ruminococcus、Bifidobacterium、Lactobacillus和Akkermansia等腸道有益菌的比例降低減少了以丙酸、丁酸為主的SCFA的生成,導(dǎo)致腸屏障受損和炎性因子分泌,兩者相互協(xié)同,引起免疫串?dāng)_,加速NASH的進(jìn)展[45]。越來越多證據(jù)表明,腸道菌群失調(diào)、LPS滲漏和脂質(zhì)代謝異常誘導(dǎo)的細(xì)胞焦亡是NASH的關(guān)鍵驅(qū)動因素。Tian等[46]研究發(fā)現(xiàn),鐵皮石斛能恢復(fù)NASH模型大鼠ZO-1、occludin和claudin的水平,改善因高脂飲食和腸道菌群失調(diào)引起的腸道通透性增加,從而減輕LPS滲漏誘導(dǎo)的肝臟炎性損傷。Csak等[47]發(fā)現(xiàn),在高脂飲食誘導(dǎo)的NASH小鼠模型中,飽和脂肪酸促進(jìn)LPS誘導(dǎo)的肝臟巨噬細(xì)胞NLRP3炎性小體激活和炎性因子IL-1β釋放,加重肝臟炎性損傷。應(yīng)用MCC950可以抑制由于膽固醇晶體沉積引起的NLRP3炎性體活性,同時降低Caspase-1和IL-1β的過表達(dá),進(jìn)而減緩NASH的進(jìn)展。此外,非經(jīng)典焦亡途徑在NASH的進(jìn)展過程中同樣發(fā)揮重要作用,在蛋氨酸膽堿缺乏飼料飼養(yǎng)的NASH小鼠模型中,可以檢測到LPS/Caspase-11/GSDMD通路的顯著激活,Caspase-11通過增加巨噬細(xì)胞中的糖酵解和氧化磷酸化,或間接激活Caspase-1以促進(jìn)IL-1β的剪切和釋放,從而加重肝臟炎性損傷和纖維化進(jìn)展[48]。綜上,腸道菌群失調(diào)、LPS滲漏和脂質(zhì)堆積皆可以通過誘導(dǎo)細(xì)胞焦亡的方式加重NASH的進(jìn)展。

4.4腸道菌群、細(xì)胞焦亡與病毒性肝炎病毒性肝炎是指因感染嗜肝病毒引起的肝臟慢性炎性損傷,因其擁有較高的發(fā)病率和致死率,成為影響全球的重大公共衛(wèi)生問題[49]。腸道微生物作為激活肝臟先天免疫及適應(yīng)性免疫的關(guān)鍵,被證明在病毒性肝炎的發(fā)生進(jìn)展中發(fā)揮重要作用[50]。一項(xiàng)真實(shí)世界研究[51]顯示,經(jīng)恩替卡韋治療后的慢性乙型肝炎患者,腸道菌群α多樣性顯著增加,Streptococcus等致病菌比例降低,Bifidobacterium、Lactobacilli等益生菌豐度上升,且與腸屏障保護(hù)相關(guān)的Akkermansia表達(dá)上調(diào),以維持腸道穩(wěn)態(tài),減輕因菌群易位和肝臟免疫應(yīng)激造成的炎性損傷。在慢性丙型肝炎(CHC)患者中,腸道菌群生態(tài)失調(diào),Lachnospira和Ruminococcus等共生菌比例減少,Streptococcus等致病菌比例上調(diào),通過影響B(tài)A和短鏈脂肪酸的代謝,抑制Treg的分化,改變腸道微環(huán)境,進(jìn)而加速CHC的進(jìn)展[52]。越來越多證據(jù)證明,LPS/NF-κB/NLRP3通路介導(dǎo)的肝細(xì)胞焦亡參與病毒性肝炎的發(fā)生進(jìn)展過程中。Negash等[53]證明,NLRP3炎性體的激活和IL-1β的高表達(dá),促進(jìn)HCV感染造成的肝臟炎癥損傷。Yu等[54]發(fā)現(xiàn),在HBV感染過程中,HBeAg通過抑制ROS的產(chǎn)生和NF-κB信號通路的激活,以抑制LPS誘導(dǎo)的NLRP3/Caspase-1/IL-1β依賴型細(xì)胞焦亡,下調(diào)IL-1β的表達(dá),從而逃避肝臟Kupffer細(xì)胞的免疫清除。相反,Xie等[55]發(fā)現(xiàn),在過氧化氫刺激下,HBV X蛋白(HBX)激活肝細(xì)胞的NLRP3,通過誘導(dǎo)線粒體損傷和mtROS產(chǎn)生,促進(jìn)肝細(xì)胞焦亡,以及ASC、IL-1β、IL-18和HMGB1的釋放。無論是測定方法不同還是感染時期存在差異,造成這一現(xiàn)象的原因還需要進(jìn)一步研究證明。此外,作為激活宿主先天免疫的關(guān)鍵介質(zhì),AIM2炎性小體通過激活A(yù)SC/Caspase-1/IL-1β/IL-18通路,誘導(dǎo)細(xì)胞焦亡,抵御細(xì)菌和病原體侵襲[56]。Han等[57]發(fā)現(xiàn),與CHC患者相比,AIM2炎性小體激活導(dǎo)致Caspase-1、IL-1β和IL-18分泌增多在慢性乙型肝炎的炎性損傷中占絕對優(yōu)勢。綜上,腸道菌群失調(diào)可能通過激活肝臟先天免疫,誘導(dǎo)NLRP3和AIM2等炎性小體的激活,引起肝細(xì)胞焦亡,促進(jìn)病毒感染引起的肝臟炎性損傷。

4.5腸道菌群、細(xì)胞焦亡與HCC HCC是原發(fā)性肝癌最常見的病理類型之一,其病因與遺傳、酒精、病毒及代謝關(guān)系密切,發(fā)病機(jī)制涉及氧化應(yīng)激、線粒體損傷、免疫應(yīng)激、炎癥和腫瘤微環(huán)境改變等多個方面[58]。在HCC患者中,Clostridiales、Desulfovibrionales、Lactobacillales和Bifidobacterium等益生菌的占比明顯減少,Erysipelotrichales和Coriobacteriales等致病菌比例顯著增加,證明腸道菌群失調(diào)與HCC關(guān)系密切[59]。研究[60]表明,腸道菌群失調(diào)引起LPS易位,誘導(dǎo)肝臟HSC和Kupffer細(xì)胞等的PRR依賴型先天免疫和適應(yīng)性免疫的激活,引起B(yǎng)A和SCFA等代謝異常,在HCC發(fā)生進(jìn)展過程中起關(guān)鍵作用。作為腫瘤細(xì)胞的“雙刃劍”,NLRP3炎性小體的激活與LPS滲漏和BA代謝密切相關(guān),在HCC的發(fā)生進(jìn)展過程中發(fā)揮雙向調(diào)節(jié)作用[61]。Liu等[62]研究發(fā)現(xiàn),腸黏膜屏障受損或膽管損傷可能引起腸道病菌的易位定植于肝臟,并借助腫瘤免疫抑制作用逃避免疫細(xì)胞的清除,Stenotrophomonas maltophilia通過激活TLR4/NF-κB信號通路,上調(diào)HSC衰老相關(guān)因子的表達(dá),進(jìn)而誘導(dǎo)NLRP3依賴型細(xì)胞焦亡,促進(jìn)肝硬化和HCC發(fā)展。Chen等[63]證明,CDCA通過與血紅素加氧酶-1結(jié)合,激活NLRP3炎性小體,并通過上調(diào)mtROS和mtDNA的表達(dá),誘導(dǎo)細(xì)胞焦亡,促進(jìn)HCC的進(jìn)展。相反,NLRP3依賴型細(xì)胞焦亡的激活在抑制HCC進(jìn)展方面同樣發(fā)揮重要作用。Wei等[64]研究證明,在HCC細(xì)胞中,17β-雌二醇E2通過激活ERβ/MAPK/ERK通路顯著上調(diào)NLRP3炎性小體的表達(dá),在HCC病變過程中起保護(hù)作用。Zhang等[65]發(fā)現(xiàn),貓尾草異黃酮增加了乳酸脫氫酶的釋放,通過激活NLRP3/Caspase-1/IL-1β通路介導(dǎo)的細(xì)胞焦亡,抑制HCC細(xì)胞的增殖和遷移。作為GSDMD的替代途徑,GSMDE在調(diào)控腫瘤的發(fā)生進(jìn)展過程中也發(fā)揮重要作用,其對腫瘤抑制作用依賴于GzmB/Caspase-3誘導(dǎo)的細(xì)胞焦亡[66]。研究[67]發(fā)現(xiàn),大麻二酚治療的HepG2和MHCC97H細(xì)胞,Caspase-3/GSDME依賴型和ATF4/CHOP依賴型焦亡通路被顯著激活,HCC的進(jìn)展被抑制。綜上,腸道菌群失調(diào)通過LPS滲漏及BA代謝影響NLRP3/Caspase-1/GSDMD和Caspase-3/GSDME依賴細(xì)胞焦亡的激活,在HCC的發(fā)病和進(jìn)展過程中發(fā)揮重要作用。總結(jié)前文所述,細(xì)胞焦亡、腸道菌群和肝臟之間的相互影響機(jī)制見圖2。

5總結(jié)

綜上所述,腸道菌群失調(diào)主要通過影響?zhàn)つて琳系耐暾砸约癇A的代謝,誘導(dǎo)細(xì)胞焦亡,從而干預(yù)肝臟疾病的發(fā)生和進(jìn)展。作為誘發(fā)肝病的危險因素,免疫平衡紊亂,過量飲酒,脂質(zhì)堆積,嗜肝病毒感染以及肝細(xì)胞癌變不僅可以直接損傷肝實(shí)質(zhì)細(xì)胞,也可以通過破壞腸道菌群穩(wěn)態(tài)平衡,使腸源性DAMP和PAMP通過門靜脈循環(huán)及BA代謝等途徑,逆行易位至肝臟,從而激活并放大肝臟先天免疫,誘導(dǎo)肝細(xì)胞焦亡。

腸道菌群失調(diào)通過腸肝免疫串?dāng)_誘導(dǎo)肝細(xì)胞焦亡的理論已經(jīng)形成較為堅(jiān)實(shí)的研究基礎(chǔ),但其在肝臟相關(guān)疾病中所發(fā)揮的作用還存在較多爭議,特別是NLRP3依賴型細(xì)胞焦亡對CHC、DILI和HCC等疾病的雙向調(diào)控作用,仍然需要進(jìn)一步研究闡明??傊c道和肝臟之間存在特殊的免疫穩(wěn)態(tài)調(diào)節(jié)機(jī)制,維持腸道菌群穩(wěn)態(tài)平衡和黏膜屏障功能正常,抑制因LPS滲漏誘導(dǎo)的肝細(xì)胞焦亡,在減輕肝損傷和減緩多種肝臟相關(guān)疾病的進(jìn)展方面具有重大意義。通過調(diào)節(jié)腸道菌群來維持腸道和肝臟的免疫穩(wěn)態(tài),減輕肝損傷,可能成為未來肝病診療的新靶點(diǎn)。

利益沖突聲明:本文不存在任何利益沖突。

作者貢獻(xiàn)聲明:趙奕杰負(fù)責(zé)擬定寫作思路,撰寫文章;謝露負(fù)責(zé)調(diào)整文章架構(gòu)和修改;張亞亭負(fù)責(zé)文獻(xiàn)收集整理;劉光偉指導(dǎo)文章撰寫和修改。

參考文獻(xiàn):

[1]de VOS WM,TILG H,van HUL M,et al.Gut microbiome and health:Mechanistic insights[J].Gut,2022,71(5):1020-1032.DOI:10.1136/gutjnl-2021-326789.

[2]PABST O,HORNEF MW,SCHAAP FG,et al.Gut-liver axis:Barriers and functional circuits[J].Nat Rev Gastroenterol Hepatol,2023,20(7):447-461.DOI:10.1038/s41575-023-00771-6.

[3]KNORR J,WREE A,F(xiàn)ELDSTEIN AE.Pyroptosis in steatohepatitis and liver diseases[J].J Mol Biol,2022,434(4):167271.DOI:10.1016/j.jmb.2021.167271.

[4]GIUFFRèM,CAMPIGOTTO M,CAMPISCIANO G,et al.A story of liver and gut microbes:how does the intestinal flora affect liver dis?ease?A review of the literature[J].Am J Physiol Gastrointest Liver Physiol,2020,318(5):G889-G906.DOI:10.1152/ajpgi.00161.2019.

[5]KNORR J,WREE A,F(xiàn)ELDSTEIN AE.Pyroptosis in steatohepatitis and liver diseases[J]Mol Biol,2022,434(4):167271.DOI:10.1016/j.jmb.2021.167271.

[6]CHOPYK DM,GRAKOUI A.Contribution of the intestinal microbiomeand gut barrier to hepatic disorders[J].Gastroenterology,2020,159(3):849-863.DOI:10.1053/j.gastro.2020.04.077.

[7]ECKBURG PB,BIK EM,BERNSTEIN CN,et al.Diversity of the hu?man intestinal microbial flora[J].Science,2005,308(5728):1635-1638.DOI:10.1126/science.1110591.

[8]MOWAT AM,AGACE WW.Regional specialization within the intesti?nal immune system[J].Nat Rev Immunol,2014,14(10):667-685.DOI:10.1038/nri3738.

[9]BEL S,PENDSE M,WANG YH,et al.Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine[J].Science,2017,357(6355):1047-1052.DOI:10.1126/science.aal4677.

[10]M?RBE UM,J?RGENSEN PB,F(xiàn)ENTON TM,et al.Human gut-associ?ated lymphoid tissues(GALT);diversity,structure,and function[J].Mucosal Immunol,2021,14(4):793-802.DOI:10.1038/s41385-021-00389-4.

[11]YANG WJ,CONG YZ.Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflamma?tory diseases[J].Cell Mol Immunol,2021,18(4):866-877.DOI:10.1038/s41423-021-00661-4.

[12]ANDERSON MJ,DEN HARTIGH AB,F(xiàn)INK SL.Molecular mecha?nisms of pyroptosis[J].Methods Mol Biol,2023,2641:1-16.DOI:10.1007/978-1-0716-3040-2_1.

[13]SANTOS JC,DICK MS,LAGRANGE B,et al.LPS targets host gua?nylate-binding proteins to the bacterial outer membrane for non-canoni?cal inflammasome activation[J].EMBO J,2018,37(6):e98089.DOI:10.15252/embj.201798089.

[14]WANG JF,DONG R,ZHENG S.Roles of the inflammasome in the gut-liver axis(Review)[J].Mol Med Rep,2019,19(1):3-14.DOI:10.3892/mmr.2018.9679.

[15]FERNANDES-ALNEMRI T,WU J,YU JW,et al.The pyroptosome:A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation[J].Cell Death Differ,2007,14(9):1590-1604.DOI:10.1038/sj.cdd.4402194.

[16]SHAO F.Gasdermins:Making pores for pyroptosis[J].Nat Rev Im?munol,2021,21(10):620-621.DOI:10.1038/s41577-021-00602-2.

[17]CHEN KW,DEMARCO B,BROZ P.Pannexin-1 promotes NLRP3 ac?tivation during apoptosis but is dispensable for canonical or nonca?nonical inflammasome activation[J].Eur J Immunol,2020,50(2):170-177.DOI:10.1002/eji.201948254.

[18]HUANG XL,F(xiàn)ENG Y,XIONG GQ,et al.Caspase-11,a specific sen?sor for intracellular lipopolysaccharide recognition,mediates the non-canonical inflammatory pathway of pyroptosis[J].Cell Biosci,2019,9:31.DOI:10.1186/s13578-019-0292-0.

[19]WANG YP,GAO WQ,SHI XY,et al.Chemotherapy drugs induce py?roptosis through caspase-3 cleavage of a gasdermin[J].Nature,2017,547(7661):99-103.DOI:10.1038/nature22393.

[20]ZHOU ZW,HE HB,WANG K,et al.Granzyme A from cytotoxic lym?phocytes cleaves GSDMB to trigger pyroptosis in target cells[J].Science,2020,368(6494):eaaz7548.DOI:10.1126/science.aaz7548.

[21]BARNETT KC,LI SR,LIANG KX,et al.A 360°view of the inflamma?some:Mechanisms of activation,cell death,and diseases[J].Cell,2023,186(11):2288-2312.DOI:10.1016/j.cell.2023.04.025.

[22]ZHANG YW,YANG WL,LI WG,et al.NLRP3 inflammasome:Checkpoint connecting innate and adaptive immunity in autoim?mune diseases[J].Front Immunol,2021,12:732933.DOI:10.3389/fimmu.2021.732933.

[23]MARTENS EC,NEUMANN M,DESAI MS.Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J].Nat Rev Microbiol,2018,16(8):457-470.DOI:10.1038/s41579-018-0036-x.

[24]XUE SG,XUE Y,DOU DB,et al.Kui Jie Tong ameliorates ulcerative colitis by regulating gut microbiota and NLRP3/caspase-1 classical pyroptosis signaling pathway[J].Dis Markers,2022,2022:2782112.DOI:10.1155/2022/2782112.

[25]SZABO G,CSAK T.Inflammasomes in liver diseases[J].J Hepatol,2012,57(3):642-654.DOI:10.1016/j.jhep.2012.03.035.

[26]HAO HP,CAO LJ,JIANG CT,et al.Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis[J].Cell Metab,2017,25(4):856-867.e5.DOI:10.1016/j.cmet.2017.03.007.

[27]PERINO A,SCHOONJANS K.Metabolic messengers:Bile acids[J].Nat Metab,2022,4(4):416-423.DOI:10.1038/s42255-022-00559-z.

[28]HAN CY,RHO HS,KIM A,et al.FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury[J].Cell Rep,2018,24(11):2985-2999.DOI:10.1016/j.celrep.2018.07.068.

[29]CHEN Y,LE TH,DU QM,et al.Genistein protects against DSS-in?duced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling[J].Int Immunopharmacol,2019,71:144-154.DOI:10.1016/j.intimp.2019.01.021.

[30]HANG SY,PAIK D,YAO LN,et al.Bile acid metabolites control TH 17and T cell differentiation[J].Nature,2019,576(7785):143-148.DOI:10.1038/s41586-019-1785-z.

[31]HUANG FJ,ZHENG XJ,MA XH,et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J].Nat Commun,2019,10(1):4971.DOI:10.1038/s41467-019-12896-x.

[32]MANNS MP,LOHSE AW,VERGANI D.Autoimmune hepatitis-update 2015[J].J Hepatol,2015,62(1):S100-S111.DOI:10.1016/j.jhep.2015.03.005.

[33]LIU QY,HE W,TANG RQ,et al.Intestinal homeostasis in autoim?mune liver diseases[J].Chin Med J,2022,135(14):1642-1652.DOI:10.1097/CM9.0000000000002291.

[34]LI LP,KANG YB.The gut microbiome and autoimmune hepatitis:Im?plications for early diagnostic biomarkers and novel therapies[J].Mol Nutr Food Res,2023,67(24):e2300043.DOI:10.1002/mnfr.202300043.

[35]CHEN JN,WEI YF,HE JQ,et al.Natural killer T cells play a neces?sary role in modulating of immune-mediated liver injury by gut micro?biota[J].Sci Rep,2014,4:7259.DOI:10.1038/srep07259.

[36]KANG YB,KUANG XY,YAN H,et al.A novel synbiotic alleviates au?toimmune hepatitis by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB/NLRP3 signaling pathway[J].mSystems,2023,8(2):e0112722.DOI:10.1128/msystems.01127-22.

[37]WANG H,WANG GD,LIANG YJ,et al.Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in tri?chloroethene-mediated autoimmunity[J].Free Radic Biol Med,2019,143:223-231.DOI:10.1016/j.freeradbiomed.2019.08.014.

[38]SEITZ HK,BATALLER R,CORTEZ-PINTO H,et al.Alcoholic liver dis?ease[J].Nat Rev Dis Primers,2018,4(1):16.DOI:10.1038/s41572-018-0014-7.

[39]CHO YE,SONG BJ.Pomegranate prevents binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress[J].Redox Biol,2018,18:266-278.DOI:10.1016/j.redox.2018.07.012.

[40]PETRASEK J,IRACHETA-VELLVE A,SAHA B,et al.Metabolic dan?ger signals,uric acid and ATP,mediate inflammatory cross-talk be?tween hepatocytes and immune cells in alcoholic liver disease[J].J Leukoc Biol,2015,98(2):249-256.DOI:10.1189/jlb.3AB1214-590R.

[41]WU S,WEN F,ZHONG XB,et al.Astragaloside IV ameliorate acute alcohol-induced liver injury in mice via modulating gut microbiota and regulating NLRP3/caspase-1 signaling pathway[J].Ann Med,2023,55(1):2216942.DOI:10.1080/07853890.2023.2216942.

[42]KHANOVA E,WU R,WANG W,et al.Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients[J].Hepatology,2018,67(5):1737-1753.DOI:10.1002/hep.29645.

[43]CALIGIURI A,GENTILINI A,MARRA F.Molecular pathogenesis of NASH[J].Int J Mol Sci,2016,17(9):1575.DOI:10.3390/ijms17091575.

[44]MUSSO G,CASSADER M,GAMBINO R.Non-alcoholic steatohepati?tis:Emerging molecular targets and therapeutic strategies[J].Nat Rev Drug Discov,2016,15(4):249-274.DOI:10.1038/nrd.2015.3.

[45]BASHIARDES S,SHAPIRO H,ROZIN S,et al.Non-alcoholic fatty liver and the gut microbiota[J].Mol Metab,2016,5(9):782-794.DOI:10.1016/j.molmet.2016.06.003.

[46]TIAN GG,WANG W,XIA ER,et al.Dendrobium officinale alleviates high-fat diet-induced nonalcoholic steatohepatitis by modulating gut microbiota[J].Front Cell Infect Microbiol,2023,13:1078447.DOI:10.3389/fcimb.2023.1078447.

[47]CSAK T,GANZ M,PESPISA J,et al.Fatty acid and endotoxin acti?vate inflammasomes in mouse hepatocytes that release danger sig?nals to stimulate immune cells[J].Hepatology,2011,54(1):133-144.DOI:10.1002/hep.24341.

[48]ZHU YW,ZHAO H,LU J,et al.Caspase-11-mediated hepatocyticpyroptosis promotes the progression of nonalcoholic steatohepatitis[J].Cell Mol Gastroenterol Hepatol,2021,12(2):653-664.DOI:10.1016/j.jcmgh.2021.04.009.

[49]YANG JJ,WANG DW,LI YC,et al.Metabolomics in viral hepatitis:Advances and review[J].Front Cell Infect Microbiol,2023,13:1189417.DOI:10.3389/fcimb.2023.1189417.

[50]SEHGAL R,BEDI O,TREHANPATI N.Role of microbiota in patho?genesis and management of viral hepatitis[J].Front Cell Infect Mi?crobiol,2020,10:341.DOI:10.3389/fcimb.2020.00341.

[51]LU YX,HE CZ,WANG YX,et al.Effect of entecavir on the intestinal microflora in patients with chronic hepatitis B:A controlled cross-sectional and longitudinal real-world study[J].Infect Dis Ther,2021,10(1):241-252.DOI:10.1007/s40121-020-00355-w.

[52]INOUE T,NAKAYAMA J,MORIYA K,et al.Gut dysbiosis associated with hepatitis C virus infection[J].Clin Infect Dis,2018,67(6):869-877.DOI:10.1093/cid/ciy205.

[53]NEGASH AA,RAMOS HJ,CROCHET N,et al.IL-1βproduction through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease[J].PLoSPathog,2013,9(4):e1003330.DOI:10.1371/journal.ppat.1003330.

[54]YU X,LAN PX,HOU XB,et al.HBV inhibits LPS-induced NLRP3 in?flammasome activation and IL-1βproduction via suppressing the NF-κB pathway and ROS production[J].J Hepatol,2017,66(4):693-702.DOI:10.1016/j.jhep.2016.12.018.

[55]XIE WH,DING J,XIE XX,et al.Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflamma?some activation[J].Inflamm Res,2020,69(7):683-696.DOI:10.1007/s00011-020-01351-z.

[56]PAN XF,XU HX,ZHENG CL,et al.Human hepatocytes express ab?sent in melanoma 2 and respond to hepatitis B virus with interleukin-18 expression[J].Virus Genes,2016,52(4):445-452.DOI:10.1007/s11262-016-1327-9.

[57]HAN Y,CHEN Z,HOU R,et al.Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients[J].Virol J,2015,12:129.DOI:10.1186/s12985-015-0360-y.

[58]HO DWH,LO RCL,CHAN LK,et al.Molecular pathogenesis of he?patocellular carcinoma[J].Liver Cancer,2016,5(4):290-302.DOI:10.1159/000449340.

[59]LUO WY,GUO SQ,ZHOU Y,et al.Hepatocellular carcinoma:How the gut microbiota contributes to pathogenesis,diagnosis,and therapy[J].Front Microbiol,2022,13:873160.DOI:10.3389/fmicb.2022.873160.

[60]BI CC,XIAO GQ,LIU CY,et al.Molecular immune mechanism of in?testinal microbiota and their metabolites in the occurrence and de?velopment of liver cancer[J].Front Cell Dev Biol,2021,9:702414.DOI:10.3389/fcell.2021.702414.

[61]ZHAO HJ,ZHANG YM,ZHANG YT,et al.The role of NLRP3 inflam?masome in hepatocellular carcinoma[J].Front Pharmacol,2023,14:1150325.DOI:10.3389/fphar.2023.1150325.

[62]LIU BY,ZHOU ZW,JIN Y,et al.Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma[J].J Immunother Cancer,2022,10(1):e003069.DOI:10.1136/jitc-2021-003069.

[63]CHEN WB,DING M,JI LY,et al.Bile acids promote the develop?ment of HCC by activating inflammasome[J].Hepatol Commun,2023,7(9):e0217.DOI:10.1097/HC9.0000000000000217.

[64]WEI Q,GUO PB,MU K,et al.Estrogen suppresses hepatocellular carcinoma cells through ERβ-mediated upregulation of the NLRP3 inflammasome[J].Lab Invest,2015,95(7):804-816.DOI:10.1038/labinvest.2015.63.

[65]ZHANG Y,YANG H,SUN MF,et al.Alpinumisoflavone suppresses hepatocellular carcinoma cell growth and metastasis via NLRP3 in?flammasome-mediated pyroptosis[J].Pharmacol Rep,2020,72(5):1370-1382.DOI:10.1007/s43440-020-00064-8.

[66]BHAT AA,THAPA R,AFZAL O,et al.The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer:A Review[J].Int J Biol Macromol,2023,242(Pt 2):124832.DOI:10.1016/j.ijbiomac.2023.124832.

[67]SHANGGUAN FG,ZHOU HF,MA NF,et al.A novel mechanism of cannabidiol in suppressing hepatocellular carcinoma by inducing GSDME dependent pyroptosis[J].Front Cell Dev Biol,2021,9:697832.DOI:10.3389/fcell.2021.697832.

收稿日期:2023-10-27;錄用日期:2023-11-29

本文編輯:王亞南

引證本文:ZHAO YJ, XIE L, ZHANG YT, et al. Pyroptosis: A new bridge connecting gut microbiota and liver diseases[J]. J Clin Hepatol, 2024, 40(9): 1908-1915.

趙奕杰, 謝露, 張亞亭, 等 . 細(xì)胞焦亡: 連接腸道菌群與肝臟疾病 的新橋梁[J]. 臨床肝膽病雜志, 2024, 40(9): 1908-1915.

赤峰市| 明水县| 冷水江市| 和田县| 高清| 布尔津县| 台南县| 崇明县| 永德县| 松滋市| 阿合奇县| 齐河县| 南京市| 凤台县| 年辖:市辖区| 开平市| 伊通| 布尔津县| 沈阳市| 封丘县| 柘城县| 民权县| 孙吴县| 巨野县| 济阳县| 临汾市| 竹北市| 百色市| 青州市| 新疆| 渝中区| 昌乐县| 文山县| 吴桥县| 那坡县| 江孜县| 宝山区| 平阴县| 南昌市| 辽源市| 桦川县|