摘""要:為了探究荔枝園間作距瓣豆(Centrosema"pubescens"Benth.)、廣東金錢草(Grona"styracifolia)對土壤理化性質(zhì)、微生物群落結(jié)構(gòu)及多樣性的影響,采集間作距瓣豆和廣東金錢草不同模式下荔枝樹行間0~40"cm深的土壤樣本,測定土壤有機(jī)質(zhì)、全氮、全磷、全鉀、硝態(tài)氮、銨態(tài)氮、有效磷、速效鉀和pH等理化因子,同時利用Illumina"NovaSeq測序平臺對荔枝園間作距瓣豆與廣東金錢草模式下的土壤微生物進(jìn)行16S擴(kuò)增子檢測。結(jié)果顯示:0~20"cm土層的養(yǎng)分含量普遍高于20~40"cm土層;0~20"cm土層中,與CK相比,間作距瓣豆處理的土壤有機(jī)質(zhì)含量提高7.06%,土壤全氮含量提高8.70%,土壤銨態(tài)氮含量提高103.29%;間作廣東金錢草處理的土壤銨態(tài)氮含量提高69.41%,土壤硝態(tài)氮含量顯著提高32.48%,土壤有效磷含量提高112.78%,土壤速效鉀含量提高9.44%。20~40"cm土層中,與CK相比,間作距瓣豆處理的土壤銨態(tài)氮含量提高114.58%,土壤速效鉀含量下降48.07%;間作廣東金錢草處理的土壤硝態(tài)氮含量下降15.07%,土壤有效磷含量提高105.43%,土壤速效鉀含量提高32.60%。在微生物多樣性方面,0~20"cm土層的各項指數(shù)普遍高于20~40"cm土層;0~20"cm土層中,與CK相比,間作距瓣豆處理的ACE指數(shù)和Chao1指數(shù)分別降低7.65%和7.68%;20~40"cm土層,間作廣東金錢草處理中的ACE指數(shù)和Chao1指數(shù)分別提升6.93%和6.74%。在土壤微生物群落結(jié)構(gòu)方面,所有土層樣品中主要的優(yōu)勢菌門均為酸桿菌門(Acidobacteriota)、綠彎菌門(Chloroflexi)、變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)、放線菌門(Actinobacteriota);主要的優(yōu)勢菌屬為酸桿菌門亞群Gp2、Gp13和Bryobacter、Candidatus"Solibacter、Bathyarchaeia等菌屬;間作后明顯增加泉古菌門(Crenarchaeota)、擬桿菌門(Bacteroidota)、疣微菌門(Verrucomicrobia)、Gp2、Gp13、Bryobacter的相對豐度。冗余分析結(jié)果表明,pH、全鉀、全磷和速效鉀是影響土壤微生物菌門結(jié)構(gòu)的主要理化因子。綜上所述,研究結(jié)果為荔枝園間作距瓣豆與廣東金錢草模式提供了理論依據(jù)。
關(guān)鍵詞:荔枝;間作;距瓣豆;廣東金錢草;土壤養(yǎng)分;土壤微生物群落結(jié)構(gòu)中圖分類號:S667.1;S551""""""文獻(xiàn)標(biāo)志碼:A
Effect"of"Intercropping"Centrosema"pubescens"or"Grona"styracifolia"of"Litchi"Orchard"on"the"Soil"Nutrients,"Microbial"Community"Structure"and"Diversity
YUAN"Bingchen1,3,"WANG"Yanru2,3,"SUN"Yuting1,3,"LI"Chengzhen1,3,"YU"Daogeng3*
1."College"of"Tropical"Crops,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."College"of"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"3."Tropical"Crops"Genetic"Resources"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Haikou,"Hainan"571101,"China
Abstract:"In"order"to"investigate"the"effects"of"intercropping"Centrosema"pubescens"or"Grona"styracifolia"on"soil"physicochemical"properties,"microbial"community"structure"and"diversity"in"the"litchi"orchard,"soil"samples"from"0"to"40"cm"depth"between"litchi"tree"rows"were"collected"under"intercropping"with"either"C."pubescens"or"G."styracifolia."Physicochemical"factors"such"as"soil"organic"matter,"total"nitrogen,"total"phosphorus,"total"potassium,"nitrate"nitrogen,"ammonium"nitrogen,"available"phosphorus,"available"potassium"and"pH"were"measured."In"addition,"Illumina"NovaSeq"sequencing"platform"was"used"for"16S"amplicon"sequencing"to"analyze"the"microbial"communities"in"the"soil"under"intercropping"with"C."pubescens"or"G."styracifolia"in"the"litchi"orchard."The"results"showed"that"the"nutrient"content"in"the"0-20"cm"soil"layer"was"generally"higher"than"that"in"the"20-40"cm"soil"layer."In"the"0-20"cm"soil"layer,"the"C."pubescens"intercropping"treatment"increased"soil"organic"matter"by"7.06%,"total"nitrogen"by"8.70%,"and"ammonium"nitrogen"by"103.29%,"compared"to"the"control."In"the"intercropping"treatment"with"G."styracifolia,"soil"ammonium"nitrogen"increased"by"69.41%,"nitrate"nitrogen"increased"by"32.48%,"available"phosphorus"increased"by"112.78%,"and"available"potassium"increased"by"9.44%,"compared"to"the"control."In"the"20-40"cm"soil"layer,"the"C."pubescens"intercropping"treatment"increased"soil"ammonium"nitrogen"by"114.58%,"but"decreased"available"potassium"by"48.07%,"compared"to"the"control."In"the"intercropping"treatment"with"G."styracifolia,"soil"nitrate"nitrogen"decreased"by"15.07%,"while"available"phosphorus"increased"by"105.43%"and"available"potassium"increased"by"32.60%,"compared"to"the"control."In"terms"of"microbial"diversity,"the"indices"in"the"0-20"cm"soil"layer"were"generally"higher"than"those"in"the"20-40"cm"soil"layer."In"the"0-20"cm"soil"layer,"the"ACE"index"and"Chao1"index"in"the"C."pubescens"intercropping"treatment"were"decreased"by"7.65%"and"7.68%,"respectively,"compared"to"the"control."In"the"20-40"cm"soil"layer,"the"ACE"index"and"Chao1"index"in"the"intercropping"treatment"with"G."styracifolia"were"increased"by"6.93%"and"6.74%,"respectively,"compared"to"the"control."In"terms"of"soil"microbial"community"structure,"the"dominant"phyla"in"all"soil"samples"were"Acidobacteria,"Chloroflexi,"Proteobacteria,"Firmicutes,"and"Actinobacteria,"while"the"dominant"genera"were"Gp2,"Gp13,"Bryobacter,"Candidatus"Solibacter"and"Bathyarchaeia"within"the"Acidobacteria"phylum."After"intercropping,"the"relative"abundance"of"Thaumarchaeota,"Nitrospirae,"Verrucomicrobia,"Gp2,"Gp13"and"Bryobacter"increased."Redundancy"analysis"indicated"that"pH,"total"potassium,"total"phosphorus,"and"available"potassium"were"the"main"physicochemical"factors"affecting"soil"microbial"community"structure."In"summary,"the"results"of"this"study"would"provide"a"theoretical"basis"for"intercropping"with"C."pubescens"or"G."styracifolia"in"litchi"orchards.
Keywords:"litchi;"intercropping;"Centrosema"pubescens;"Grona"styracifolia;"soil"nutrients;"soil"microbial"community"structure
DOI:"10.3969/j.issn.1000-2561.2024.07.014
荔枝(Litchi"chinensis"Sonn.)是一種原產(chǎn)于我國的無患子科常綠喬木,其果實色澤鮮艷,味道清爽,營養(yǎng)價值豐富,具有很高的市場價值[1]。荔枝在成花時花量大,消耗土壤養(yǎng)分過多,保果難度大,嚴(yán)重影響花、葉正常生長[2]。距瓣豆(Centrosema"pubescens"Benth.),又名蝴蝶豆,為豆科、距瓣豆屬纏繞性藤本植物,其莖葉柔軟,生長18個月仍未木質(zhì)化,葉量大,產(chǎn)量高,因其較耐蔭蔽,是一種優(yōu)質(zhì)的綠肥[3]。廣東金錢草(Grona"styracifolia)是豆科、假地豆屬植物,其地上部分具清熱祛濕、利尿通淋、排石的功效[4]。胡福初等[5]和顏彩繽等[6]的研究表明,荔枝園間作豆科植物具有增加土壤肥力、提高保水性能、改善園內(nèi)小氣候和控制雜草生長等作用。
土壤微生物是土壤生態(tài)的關(guān)鍵組成部分,在改善土壤肥力以及生態(tài)系統(tǒng)結(jié)構(gòu)方面有其特定的作用。研究特定功能的土壤微生物種群豐度是了解間作對土壤生態(tài)變化的有效手段,林下間作豆科,根瘤可以通過固氮作用,以NH4+、NO2?、NO3?等多種形態(tài)向土壤提供有效的氮源,這可以通過分析相關(guān)微生物的豐度進(jìn)行評估[7]。土壤中有多種菌群與有機(jī)質(zhì)的增加呈正相關(guān),可以用作土壤健康的評價指標(biāo)[8]。目前,我國關(guān)于荔枝園間作距瓣豆和廣東金錢草對土壤微生物群落結(jié)構(gòu)及多樣性的影響尚無報道。為探討荔枝園間作距瓣豆與廣東金錢草對土壤養(yǎng)分和微生物群落結(jié)構(gòu)的影響,本研究以荔枝單作自然生草為對照,間作距瓣豆與廣東金錢草為不同處理,采用高通量測序技術(shù)對土壤微生物群落進(jìn)行測序和生物信息學(xué)分析,以期為荔枝園間作距瓣豆或廣東金錢草對土壤養(yǎng)分及微生物多樣性的影響提供一定的理論依據(jù)。
1.1""材料
試驗地位于海南省儋州市中國農(nóng)業(yè)科學(xué)院荔枝示范果園(109°57?E,"19°53?N)。該地區(qū)屬熱帶季風(fēng)氣候,年日照時數(shù)為1781"h,年平均降雨量為1823"mm,年平均氣溫為23.7"℃,最高和最低溫度分別為38"℃和7"℃。土壤為紅壤土,全年無霜。
供試?yán)笾ζ贩N為妃子笑,于2018年定植,種植規(guī)格為4"m×5"m;間作物距瓣豆與廣東金錢草均由中國熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所提供,于2020年定植于距荔枝樹莖基部1.5"m處的荔枝行間。
1.2""方法
1.2.1""試驗設(shè)計""試驗設(shè)3個處理,荔枝分別間作距瓣豆(CP)與廣東金錢草(GS),荔枝單作但不去除雜草為對照(CK),每個處理設(shè)置3次重復(fù)。
1.2.2""土樣采集""2021年12月采集土壤樣品,分別在距瓣豆或廣東金錢草的3個處理區(qū)進(jìn)行采集,采取五點取樣法,在距離荔枝樹基部40"cm處的間作物生長區(qū)隨機(jī)取5個點,用土鉆分別采集0~20、20~40"cm土層的間作區(qū)土壤,混勻后裝入無菌袋,放入裝有冰袋的保溫箱帶回實驗室,去除土壤中的雜根后,分為2部分,一部分風(fēng)干后過1"mm篩,用于土壤養(yǎng)分分析;另一部分裝入15"mL離心管,–80"℃下保存,用于微生物多樣性分析。
1.2.3""土壤養(yǎng)分測定和土壤總DNA提取""土壤基礎(chǔ)養(yǎng)分測定方法參考《土壤農(nóng)化分析方法》[9],采用重鉻酸鉀氧化法測定土壤有機(jī)質(zhì)(SOM)含量;采用半微量凱氏定氮法測定全氮(TN);用2"mol/L"KCl(1∶10,"w/V)浸提土壤,采用連續(xù)流動分析儀測定銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3–-N)含量;采用NaOH熔融-鉬銻抗比色法測定全磷(TP);采用鹽酸-氟化銨比色法測定有效磷(AP);采用NaOH熔融-火焰光度法測定全鉀(TK);采用醋酸銨浸提-火焰光度法測定速效鉀(AK),使用ZD-18"pH計(ZD儀器,中國臺州)測土壤pH。土壤樣品置于干冰中保存、運輸,由深圳微科盟科技有限公司進(jìn)行16S"擴(kuò)增子測序。
1.3""數(shù)據(jù)處理
使用Qiime2對原始數(shù)據(jù)進(jìn)行去噪、去嵌合處理,得到OTUs。利用QIIME2"core-diversity插件計算特征序列水平Alpha多樣性指數(shù);采用SPSS"26.0軟件的獨立t檢驗分析土壤理化因子的差異性,用R語言vegan軟件包構(gòu)建微生物菌門與土壤理化因子的相關(guān)性;采用SPSS"26.0軟件的Spearman’s"rho"test分析微生物菌屬和土壤理化因子的相關(guān)性。
2.1""間作對土壤理化因子的影響
由表1可知,荔枝園林下種植2種豆科植物后,不同處理間的土壤養(yǎng)分含量差異顯著(Plt;"0.05)。在不同土層中,除有效磷外,0~20"cm土層的養(yǎng)分含量普遍高于20~40"cm土層。
0~20"cm土層中,與CK1相比,間作距瓣豆的土壤有機(jī)質(zhì)含量顯著提高7.06%,土壤全氮含量顯著提高8.70%,土壤銨態(tài)氮含量顯著提高103.29%,速效鉀含量顯著下降29.78%,而土壤硝態(tài)氮和有效磷含量無顯著差異;間作廣東金錢草的土壤銨態(tài)氮含量顯著提高69.41%,土壤硝態(tài)氮含量顯著提高32.48%,土壤有效磷含量顯著提高112.78%,土壤全鉀含量顯著提高66.8%,土壤速效鉀含量顯著提高9.44%,而土壤有機(jī)質(zhì)、全氮、全磷、速效鉀含量和pH無顯著差異(表1)。
20~40"cm土層中,與CK2相比,間作距瓣豆的土壤銨態(tài)氮含量顯著提高114.58%,土壤硝態(tài)氮含量顯著下降19.63%,土壤有效磷含量顯著下降24.57%,土壤有速效鉀含量顯著下降48.07%,而土壤有機(jī)質(zhì)和全氮含量無顯著差異;間作廣東金錢草的土壤硝態(tài)氮含量顯著下降15.07%,土壤有效磷含量顯著提高105.43%,土壤速效鉀含量顯著提高32.60%,而土壤有機(jī)質(zhì)、全氮、全磷、銨態(tài)氮含量和pH無顯著差異(表1)。
2.2""間作對土壤微生物群落多樣性的影響
為了探究間作2種豆科植物對土壤微生物豐富度和多樣性的影響,對土壤樣品進(jìn)行Alpha多樣性分析。結(jié)果顯示,0~20"cm土層的各項指數(shù)普遍高于20~40"cm土層。0~20"cm土層中,與CK1相比,間作距瓣豆的ACE指數(shù)和Chao1指數(shù)分別顯著降低7.65%和7.68%,間作廣東金錢草的各指數(shù)均無顯著差異;20~40"cm土層中,與CK2相比,間作距瓣豆的Simpson指數(shù)顯著下降0.25%,間作廣東金錢草的ACE指數(shù)和Chao1指數(shù)分別顯著提升6.93%和6.74%(表2)。
2.3""間作后土壤微生物組成分析
2.3.1""門水平""不同間作處理下土壤微生物群落結(jié)構(gòu)相對豐度前十的門類群分別是酸桿菌門(Acidobacteriota)、綠彎菌門(Chloroflexi)、變形菌門(Proteobacteria)、厚壁菌門(Firmicutes)、放線菌門(Actinobacteriota)、泉古菌門(Crenarchaeota)、擬桿菌門(Bacteroidota)、疣微菌門(Verrucomicrobia)、粘菌門(Myxococcota)、芽單胞菌門(Gemmatimonadota),共8個微生物門、1個古菌門和1個真菌門(圖1)。結(jié)果表明,荔枝園間作2種豆科后并未改變門水平下微生物的主要種類組成,但泉古菌門、擬桿菌門、疣微菌門在2種間作模式下不同土層中的相對豐度均明顯提高47%。0~20"cm土層中,與CK1相比,泉古菌門的相對豐度在間作距瓣豆和廣東金錢草中分別增加145.6%和193.4%,擬桿菌門的相對豐度則分別增加55.1%和103.1%,疣微菌門的相對豐度則分別增加4.2%和31.3%;20~40"cm土層中,與CK2相比,泉古菌門的相對豐度在間作距瓣豆與廣東金錢草中分別增加154.2%和187.2%,擬桿菌門的相對豐度則分別增加51.8%和326.6%,疣微菌門的相對豐度則分別增加9.8%和27.0%。而放線菌門、芽單胞菌門在2種間作模式下不同土層中的相對豐度均有所下降,0~20"cm土層中,與CK1相比,放線菌門的相對豐度在間作距瓣豆和廣東金錢草中分別降低15.0%和28.5%,芽單胞菌門的相對豐度則分別降低11.7%和30.8%;20~40"cm土層中,與CK2相比,放線菌門的相對豐度在間作距瓣豆和廣東金錢草中分別降低24.5%和22.9%,芽單胞菌門的相對豐度則分別降低20.1%和23.1%。
2.3.2""屬水平""在0~20"cm土層中,不同處理土壤微生物群落結(jié)構(gòu)相對豐度大于1%的屬有10個(圖2)。酸桿菌門的亞群Gp2(17.6%~20.2%)、Gp13(3.1%~3.9%)和Bryobacter(3.7%~4.5%)、Candidatus"Solibacter(2.9%~3.2%)均為優(yōu)勢菌屬,其中,與CK1相比,間作距瓣豆和廣東金錢草均提高了Gp2、Gp13和Bryobacter菌屬的相對豐度,但降低了Candidatus"Solibacter菌屬的相對豐度,Gp2菌屬的相對豐度分別增加4.7%和15.0%,Gp13菌屬分別增加2.1%和22.1%,Bryobacter菌屬分別增加5.9%和21.9%,Candidatus"Solibacter菌屬分別降低9.9%和4.4%;相對豐度較高的還有Bathyarchaeia、硝化螺旋菌屬(Nitrospira)、熱酸菌屬(Acidothermus)、Acidibacter、Occallatibacter、鞘氨醇單胞菌屬(Sphingomonas)等,間作距瓣豆提高了Acidibacter、鞘氨醇單胞菌屬的相對豐度;2種間作模式下Bathyarchaeia、硝化螺旋菌屬、熱酸菌屬、Occallatibacter等菌屬的相對豐度均降低。在20~40"cm土層中,不同處理下土壤微生物群落結(jié)構(gòu)相對豐度大于1%的屬有8個。與0~20"cm土層的結(jié)果相似,酸桿菌門的亞群Gp2(29.1%~"31.9%)、Gp13(5.8%~6.8%)和Bryobacter(3.1%~"3.6%)、Candidatus"Solibacter(2.5%~3.0%)等均為優(yōu)勢菌,其中,與CK2相比,間作距瓣豆的Gp2、Gp13、Bryobacter、Bathyarchaeia、Acidibacter等菌屬的相對豐度分別提高了31.9%、6.7%、3.2%、3.5%、1.0%,而Candidatus"Solibacter和熱酸菌屬的相對豐度分別下降了2.6%和1.5%;間作廣東金錢草的Gp13、Bryobacter、Bathyarchaeia、Acidibacter等菌屬的相對豐度分別提高了6.2%、3.6%、3.3%、1.2%,而Gp2、Candidatus"Solibacter和熱酸菌屬的相對豐度則分別降低了29.1%、2.5%和1.4%。
2.4""土壤理化性質(zhì)與菌群的相關(guān)性分析
2.4.1""門水平上土壤理化因子與微生物的相關(guān)性分析""對土壤總微生物中相對豐度前十的門分類水平微生物進(jìn)行冗余分析,以探究特定微生物與土壤理化因子的關(guān)系。結(jié)果表明,微生物群落主要是受土壤pH、全鉀、全磷和速效鉀的影響,其中綠彎菌門與土壤pH呈正相關(guān);厚壁菌門、擬桿菌門、疣微菌門、變形菌門、泉古菌門、粘菌門與土壤pH呈負(fù)相關(guān);綠彎菌門與土壤全氮、全磷、硝態(tài)氮、銨態(tài)氮、速效鉀含量呈負(fù)相關(guān);酸桿菌門、厚壁菌門與土壤全磷、硝態(tài)氮含量呈正相關(guān);放線菌門、芽單胞菌門與土壤全磷、全鉀、有效磷含量呈負(fù)相關(guān);擬桿菌門、疣微菌門、變形菌門、粘菌門、泉古菌門與土壤全氮、全磷、硝態(tài)氮、銨態(tài)氮、速效鉀含量呈正相關(guān)(圖3)
2.4.2""屬水平上土壤理化因子與微生物的相關(guān)性分析""對土壤屬分類水平總相對豐度前十的優(yōu)勢微生物進(jìn)行相關(guān)性分析,以探究土壤理化因子與優(yōu)勢菌屬之間的相關(guān)性。結(jié)果表明,Gp2、Gp13、硝化螺旋菌屬、熱酸菌屬與土壤有機(jī)質(zhì)、全氮、硝態(tài)氮、全磷、速效鉀呈極顯著負(fù)相關(guān);Gp2、Gp13、硝化螺旋菌屬、熱酸菌屬與土壤pH呈顯著正相關(guān);Bryobacter、Acidibacter、Occallatibacter、鞘氨醇單胞菌屬與土壤有機(jī)質(zhì)、全氮、硝態(tài)氮、銨態(tài)氮、全磷、速效鉀含量呈顯著正相關(guān);Candidatus"Solibacter與土壤有機(jī)質(zhì)、全氮、硝態(tài)氮、全鉀、速效鉀含量呈顯著正相關(guān);
Bathyarchaeia菌屬與土壤全鉀含量呈極顯著正相關(guān);Acidibacter、Occallatibacter、鞘氨醇單胞菌屬與土壤pH呈極顯著負(fù)相關(guān)(表3)。
3.1""間作對土壤理化性質(zhì)的影響
土壤有機(jī)質(zhì)、氮素和磷素是衡量土壤養(yǎng)分的重要指標(biāo),對作物產(chǎn)量、品質(zhì)提升起到重要作用,土壤中的有機(jī)質(zhì)主要通過影響土壤pH、水分保持能力、土壤營養(yǎng)元素含量等土壤學(xué)特征來影響土壤質(zhì)量[10],而氮素和磷素是植物體生長發(fā)育必須的基本元素。前人的大量研究表明,果園間作豆科綠肥,土壤養(yǎng)分能得到明顯改善[11-14]。本研究表明間作對0~40"cm土層的土壤養(yǎng)分均有影響,隨著土壤深度增加而土壤養(yǎng)分減弱,其中,間作距瓣豆后土壤有機(jī)質(zhì)、全氮、銨態(tài)氮含量顯著提高,有機(jī)質(zhì)含量的提升主要分布在表層,這與王依等[15]、霍穎等[16]的研究結(jié)果相似。豆科以其與根瘤菌建立共生關(guān)系的能力而聞名,并通過固定空氣中的氮來提高土壤養(yǎng)分,間作距瓣豆顯著提高了土壤表層中的全氮和銨態(tài)氮含量,改善了土壤氮素的缺乏,說明其固氮能力較強(qiáng),適宜種植在缺乏氮素的土壤中。間作廣東金錢草對土壤中全鉀、硝態(tài)氮、銨態(tài)氮和有效磷等養(yǎng)分含量均有提高,土壤中的可利用氮素和磷素明顯提升,對于我國南方紅壤土中磷肥的利用有一定的改善。間作距瓣豆和廣東金錢草均提高了土壤養(yǎng)分,這與趙財?shù)萚17]、陳國棟等[18]、陳利云等[19]的研究結(jié)果一致,表明距瓣豆和廣東金錢草是良好的間作綠肥植物,有待進(jìn)一步開發(fā)利用。
3.2""間作對土壤微生物群落多樣性的影響
前人的一些研究表明,果園間作可顯著增加微生物群落多樣性[20-22]。此外還有一些研究表明,長期的豆科間作減少了土壤微生物的數(shù)量,但不影響微生物的豐富度[23]。這些研究表明,間作對土壤微生物群落多樣性的變化可能由于間作植物的種類和時間的差異而表現(xiàn)不同。本研究中,表層土層的各項指數(shù)均普遍高于深層土層,說明隨著土壤深度的增加,微生物的數(shù)量和種類均下降。與CK相比,間作距瓣豆使表層土壤微生物物種豐富度顯著降低,這說明間作距瓣豆在短期內(nèi)會引起微生物豐富度的下降,這還需要進(jìn)一步的觀測。間作廣東金錢草顯著提升深層土壤的ACE指數(shù)和Chao1指數(shù),說明廣東金錢草可以有效提高土壤深層的微生物群落多樣性,在提高土壤生態(tài)環(huán)境和微生物多樣性方面起著重要作用。
3.3""間作對土壤微生物群落組成的影響
微生物菌群相對豐度的不同是反映土壤環(huán)境變化的重要指標(biāo)因子,有助于較早地反映土壤環(huán)境的變化過程[24]。泉古菌門是土壤中占主導(dǎo)地位的氨氧化微生物[25-27],擬桿菌門可以厭氧分解植物體,有促進(jìn)有機(jī)質(zhì)分解等作用[28],疣微菌門可能是植物根相關(guān)根際微生物群落的重要成員,是土壤抵御環(huán)境變化的重要微生物門類[29-30]。在本研究中,荔枝園分別間作距瓣豆與廣東金錢草均顯著提升了泉古菌門、擬桿菌門、疣微菌門的相對豐度,同時顯著降低了放線菌門、芽單胞菌門的相對豐度。造成這些差異的原因可能與土壤養(yǎng)分中氮含量的增加和植物殘骸分解有關(guān)。
在屬水平上,Gp2、Gp13的相對豐度較高,這可能與土壤偏酸有關(guān)[31]。Bryobacter菌屬是一類可以降解咪唑啉酮類和氟草凈除草劑的厭氧微生物[32],鞘氨醇單胞菌屬被證實是一種可以抗旱、促進(jìn)植物生長的根際微生物[33],本研究結(jié)果表明,間作距瓣豆顯著增加了Bryobacte和鞘氨醇單胞菌屬的相對豐度,說明間作距瓣豆可以有效提升土壤部分細(xì)菌的相對豐度。
3.4""土壤微生物與理化因子的相關(guān)性分析
相關(guān)性分析結(jié)果表明,土壤pH、全鉀、全磷和速效鉀是影響土壤微生物門結(jié)構(gòu)的主要環(huán)境因子。綠彎菌門、Gp2、Gp13、硝化螺旋菌屬、熱酸菌屬與土壤pH呈正相關(guān),厚壁菌門、擬桿菌門、疣微菌門、變形菌門、粘菌門與土壤pH呈負(fù)相關(guān),因此,土壤pH為影響土壤微生物群落結(jié)構(gòu)變化的主要理化因子之一。擬桿菌門、疣微菌門、變形菌門、粘菌門、泉古菌門,以及Bryobacter、Acidibacter、Occallatibacter、鞘氨醇單胞菌屬與土壤全氮、硝態(tài)氮、銨態(tài)氮、全磷、速效鉀含量呈正相關(guān),綠彎菌門與土壤全氮、硝態(tài)氮、銨態(tài)氮、全磷、速效鉀含量呈負(fù)相關(guān)。間作距瓣豆和廣東金錢草提高了泉古菌門、擬桿菌門、疣微菌門,以及Bryobacter、鞘氨醇單胞菌屬的相對豐度,說明間作可以改變土壤微生物群落結(jié)構(gòu),這些相對豐度的變化可能與間作距瓣豆或廣東金錢草導(dǎo)致的土壤氮、磷、鉀等養(yǎng)分含量變化有關(guān)。
間作豆科植物對土壤養(yǎng)分和微生物影響主要表現(xiàn)在0~20"cm土層,對20~40"cm土層的影響較小。距瓣豆和廣東金錢草均具有良好的固氮效果,間作均提高了土壤氮含量,說明間作距瓣豆或廣東金錢草可以減少氮肥的施用。此外,間作距瓣豆顯著提高了有機(jī)質(zhì)含量,間作廣東金錢草顯著提高了土壤中的全鉀和有效磷等養(yǎng)分含量,二者均顯著提升了泉古菌門、擬桿菌門、疣微菌門的相對豐度。本研究探討了荔枝園間作距瓣豆或廣東金錢草模式對土壤養(yǎng)分和微生物多樣性的影響,為今后的生產(chǎn)實踐及研究提供理論依據(jù)。
參考文獻(xiàn)
[1]"鄧秀新,"束懷瑞,"郝玉金,"徐強(qiáng),"韓明玉,"張紹鈴,"段常青,"姜全,"易干軍,"陳厚彬."果樹學(xué)科百年發(fā)展回顧[J]."農(nóng)學(xué)學(xué)報,"2018,"8(1):"24-34.DENG"X"X,"SHU"H"R,"HAO"Y"J,"XU"Q,"HAN"M"Y,"ZHANG"S"L,"DUAN"C"Q,"JIANG"Q,"YI"G"J,"CHEN"H"B."Review"on"the"centennial"development"of"pomology"in"China[J]."Journal"of"Agriculture,"2018,"8(1):"24-34."(in"Chinese)
[2]"吳定堯,"張海嵐."妃子笑荔枝的特性[J]."中國南方果樹,"1997,"26(5):"26-27.WU"D"Y,"ZHANG"H"L."Characteristics"of"Feizhixiao"litchi[J]."South"China"Fruits,"1997,nbsp;26(5):"26-27."(in"Chinese)
[3]"王燕茹,"袁秉琛,"孫郁婷,"王志勇,"虞道耿."蝴蝶豆種質(zhì)資源芽期耐鹽性篩選及評價[J]."熱帶作物學(xué)報,"2023,"44(5):"955-967."WANG"Y"R,"YUAN"B"C,"SUN"Y"T,"WANG"Z"Y,"YU"D"G."Screening"and"evaluation"of"salt"tolerance"in"the"bud"stage"of"Centrosema"pubescens"resources[J]."Chinese"Journal"of"Tropical"Crops,"2023,"44(5):"955-967."(in"Chinese)
[4]"劉茁."廣金錢草的生物活性成分研究[D]."沈陽:"沈陽藥科大學(xué),"2005.LIU"Z."Studies"on"the"bioactivity"consituents"Desmodium"styracifolium"(OSB.)"Merr[D]."Shenyang:"Shenyang"Pharmaceutical"University,"2005."(in"Chinese)
[5]"胡福初,"范鴻雁,"韓劍,"吳鳳芝,"王祥和."荔枝果園套種平托花生栽培管理技術(shù)[J]."中國熱帶農(nóng)業(yè),"2017,"75(2):"80-81.HU"F"C,"FAN"H"Y,"HAN"J,"WU"F"Z,"WANG"X"H."Cultivation"and"management"techniques"of"interplanted"Pinto"peanut"in"litchi"orchard[J]."China"Tropical"Agriculture,"2017,"75(2):"80-81."(in"Chinese)
[6]"顏彩繽,"胡福初,"趙亞,"王祥和,"陳哲,"張世青,"吳鳳芝,"范鴻雁."荔枝園間作平托花生對土壤理化性質(zhì)、酶活性和微生物群落結(jié)構(gòu)及多樣性的影響[J]."中國土壤與肥料,"2022(5):"203-210.YAN"C"B,"HU"F"C,"ZHAO"Y,"WANG"X"H,"CHEN"Z,"ZHANG"S"Q,"WU"F"Z,"FAN"H"Y."Effects"of"intercropping"Pinto"peanut"in"litchi"orchard"on"soil"physicochemical"properties,"enzyme"activities,"bacterial"community"structure"and"diversity[J]."Soil"and"Fertilizer"Sciences"in"China,"2022(5):"203-210."(in"Chinese)
[7]"BUNEMANN"E"K,"BONGIORNO"G,"BAI"Z,"CREAMER"R"E,"DE"DEYN"G."Soil"quality:"a"critical"review[J]."Soil"Biology"and"Biochemistry,"2018,"120:"105-125.
[8]"ZHAO"X"H,"DONG"Q"Q,"HAN"Y,"ZHANG"K"Z,"SHI"X"L,"YANG"X,"YUAN"Y,"ZHOU"D"Y,"WANG"K,"WANG"X"G,"JIANG"C"J,"LIU"C"J,"LIU"X"B,"ZHANG"H,"ZHANG"Z"M,"YU"H"Q."Maize/peanut"intercropping"improves"nutrient"uptake"of"side-row"maize"and"system"microbial"community"diversity[J]."BMC"Microbiology,"2022,"22:"14.
[9]"鮑士旦."土壤農(nóng)化分析[M]."北京:"中國農(nóng)業(yè)出版社,"2000.BAO"S"D."Agriculture"soil"chemical"analysis[M]."Beijing:"China"Agriculture"Press,"2000."(in"Chinese).
[10]"ABDALLA"M,"HASTINGS"A,"CHENG"K,"YUE"Q,"CHADWICK"D,"ESPENBERG"M."A"critical"review"of"the"impacts"of"cover"crops"on"nitrogen"leaching,"net"greenhouse"gas"balance"and"crop"productivity[J]."Global"Change"Biology,"2019,"25(8):"2530-2543.
[11]"李忠佩,"張?zhí)伊郑?林心雄."紅壤區(qū)土壤有機(jī)碳的循環(huán)和平衡及有機(jī)資源利用[J]."長江流域資源與環(huán)境,"1998,"7(2):"45-52.LI"Z"P,"ZHANG"T"L,"LIN"X"X."The"cycling"and"balance"of"soil"organic"carbon"and"utilization"of"organic"resources"in"red"soil"region"of"china[J]."Resources"and"Environment"in"the"Yangtze"Basin,"1998,"7(2):"45-52."(in"Chinese)
[12]"韓文斌,"謝樹果,"杜春梅,"曹衛(wèi)東,"任勝茂,"梁宏."四川丘陵區(qū)桔園間作豆科綠肥的效應(yīng)[J]."中國南方果樹,"2014,"43(5):"62-63."HAN"W"B,"XIE"S"G,"DU"C"M,"CAO"W"D,"REN"S"M,"LIANG"H."Effect"of"green"manure"on"leguminous"intercropping"in"orange"orchard"in"hilly"area"of"Sichuan[J]."South"China"Fruits,"2014,"43(5):"62-63."(in"Chinese)
[13]"梁琴,"蔣進(jìn),"周澤弘,"漆燕,"韓文斌,"任勝茂,"曾召瓊,"楊貴川."四川丘陵柑橘園種植豆科綠肥的環(huán)境和增產(chǎn)提質(zhì)效應(yīng)[J]."中國土壤與肥料,"2021(6):"143-148.LIANG"Q,"JIANG"J,"ZHOU"Z"H,"QI"Y,"HAN"W"B,"REN"S"M,"ZENG"Z"Q,"YANG"G"C."Environment,"yield"and"quality"improvement"of"legume"green"manure"planted"in"hilly"citrus"orchard"of"Sichuan"province[J]."Soil"and"Fertilizernbsp;Sciences"in"China,"2021(6):"143-148."(in"Chinese).
[14]"于淑慧,"朱國梁,"董浩,"牟小翎,"史桂芳,"畢軍,"夏光利,"曹衛(wèi)東."桃園種植不同綠肥對土壤肥力的影響[J]."山東農(nóng)業(yè)科學(xué),"2019,"51(2):"72-75.YU"S"H,"ZHU"G"L,"DONG"H,"MU"X"L,"SHI"G"F,"BI"J,"XIA"G"L,"CAO"W"D."Effects"of"planting"different"green"manure"crops"on"soil"fertility"inpeach"orchards[J]."Shandong"Agricultural"Sciences,"2019,"51(2):"72-75."(in"Chinese)
[15]"王依,"陳成,"馬攔妮,"雷靖,"徐明,"雷玉山."行間生草對秦嶺北麓獼猴桃園土壤養(yǎng)分、pH值的影響[J]."中國農(nóng)學(xué)通報,"2019,"35(15):"59-65.WANG"Y,"CHEN"C,"MA"L"N,"LEI"J,"XU"M,"LEI"Y"S."Inter-row"grass:"effects"on"soil"nutrients"and"pH"Value"of"kiwifruit"orchards"in"northern"Qinling"Mountains[J]."Chinese"Agricultural"Science"Bulletin,"2019,"35(15):"59-65."(in"Chinese)
[16]"霍穎,"張杰,"王美超,"姚允聰."梨園行間種草對土壤有機(jī)質(zhì)和礦質(zhì)元素變化及相互關(guān)系的影響[J]."中國農(nóng)業(yè)科學(xué),"2011,"44(7):"1415-1424."HUO"Y,"ZHANG"J,"WANG"M"C,"YAO"Y"C."Effects"of"inter-row"planting"grasses"on"variations"and"relationships"of"soil"organic"matter"and"soil"nutrients"in"pear"orchard[J]."Scientia"Agricultura"Sinica,"2011,"44(7):"1415-1424."(in"Chinese)
[17]"趙財,"柴強(qiáng),"喬寅英,"王建康."禾豆間距對間作豌豆“氮阻遏”減緩效應(yīng)的影響[J]."中國生態(tài)農(nóng)業(yè)學(xué)報,"2016,"24(9):"1169-1176."ZHAO"C,"CAI"Q,"QIAO"Y"Y,"WANG"J"K."Effect"of"cereal-legume"spacing"in"intercropping"system"on"alleviating"“N"inhibition”"in"pea"plants[J]."Chinese"Journal"of"Eco-Agriculture,"2016,"24(9):"1169-1176."(in"Chinese)
[18]"陳國棟,"黃高寶,"柴強(qiáng)."不同帶型及施氮條件下玉米間作豌豆的產(chǎn)量表現(xiàn)和氮肥利用率[J]."中國土壤與肥料,"2013(3):"78-82.CHEN"G"D,"HUANG"G"B,"CAI"Q."Effects"of"different"nitrogen"applications"and"intercropping"stripe"compounds"on"yield"and"nitrogen"use"efficiency"under"maize/pea"intercropping[J]."Soil"and"Fertilizer"Sciences"in"China,"2013(3):"78-82."(in"Chinese)
[19]"陳利云,"汪之波,"呼麗萍."6種豆科綠肥植物與蘋果樹套種對果園土壤碳氮特征的影響[J]."草地學(xué)報,"2021,"29(4):"671-676.CHEN"L"Y,"WANG"Z"B,"HU"L"P."Effects"of"interplanting"six"Leguminous"green"manure"plants"in"apple"prchard"on"soil"carbon"and"nitrogen"characteristics[J]."Acta"Agrestia"Sinica,"2021,"29(4):"671-676."(in"Chinese)
[20]"CASTELLANO-HINOJOSA"A,"STRAUSS"S"L."Impact"of"cover"crops"on"the"soil"microbiome"of"tree"crops[J]."Microorganisms,"2020,"8:"328.
[21]"DING"T"T,"YAN"Z"C,"ZHANG"W"Z,"DUAN"T"Y."Green"manure"crops"affected"soil"chemical"properties"and"fungal"diversity"and"community"of"apple"orchard"in"the"Loess"Plateau"of"China[J]."Journal"of"Soil"Science"and"Plant"Nutrition,"2021,"21:"1089-1102.
[22]"ZHU"L"Z,"HE"J,"TIAN"Y,"LI"X"Y,"LI"Y"H,"WANG"F,"QIN"K,"WANG"J."Intercropping"wolfberry"with"Gramineae"plants"improves"productivity"and"soil"quality[J]."Scientia"Horticulturae,"2022,"292:"110632.
[23]"ZHONG"Z"M,"HUANG"X"S,"FENG"D"Q,"XING"S"H,"WENG"B"Q."Long-term"effects"of"legume"mulching"on"soil"chemical"properties"and"bacterial"community"composition"and"structure[J]."Agriculture,"Ecosystems"amp;"Environment,"2018,"268:"24-33.
[24]"曹鵬,"沈菊培,"賀紀(jì)正."古菌細(xì)胞膜脂在古菌群落組成及其對環(huán)境響應(yīng)研究中的應(yīng)用[J]."應(yīng)用生態(tài)學(xué)報,"2012,"23(9):"2609-2616.CAO"P,"SHEN"J"P,"HE"J"Z."Applications"of"archaeal"membrane"lipids"in"investigating"archaeal"community"composition"and"its"responses"to"environmental"factors[J]."Chinese"Journal"of"Applied"Ecology,"2012,"23(9):"2609-2616."(in"Chinese)
[25]"SHEN"J"P,"ZHANG"L"M,"DI"H"J,"HE"J"Z."A"review"of"ammonia-oxidizing"bacteria"and"archaea"in"Chinese"soils[J]."Frontiers"in"Microbiology,"2012,"3:"296.
[26]"劉晶靜,"馬文丹,"和松,"吳增學(xué),"李春."酸性土壤氨氧化微生物及其影響因素研究進(jìn)展[J]."微生物學(xué)通報,"2023,"50(1):"413-426.LIU"J"J,"MA"W"D,"HE"S,"WU"Z"X,"LI"C."Ammonia-oxidi zing"microorganisms"in"acidic"soil"and"their"influencing"factors:"a"review[J]."Microbiology"China,"2023,"50(1):"413-426."(in"Chinese)
[27]"STEMPFHUBER"B,"ENGEL"M,"FISCHER"D."pH"as"a"driver"for"ammonia-oxidizing"archaea"in"forest"soils[J]."Microbial"Ecology,"2015,"69:"879-883.
[28]"HUANG"J"J,"MA"K,"XIA"X"X,"GAO"K"L,"LU"Y"H."Biochar"and"magnetite"promote"methanogenesis"during"anaerobic"decomposition"of"rice"straw[J]."Soil"Biology"and"Biochemistry,"2020,"143:"107740.
[29]"YANG"L,"BARNARD"R,"KUZYAKOV"Y,"TIAN"J."Bacterial"communities"drive"the"resistance"of"soil"multifunctionality"to"land-use"change"in"karst"soils[J]."European"Journal"of"Soil"Biology,"2021,"104:"103313.
[30]"FUERST"J"A."Phylum"Verrucomicrobia[M]//Reference"Module"in"Life"Sciences,"Elsevier,"2019:"551-563.
[31]"CHU"H,"FIERER"N,"LAUBER"C"L."Soil"bacterial"diversity"in"the"Arctic"is"not"fundamentally"different"from"that"found"in"other"biome[J]."Environmental"Microbiology,"2010,"12(11):"2998-3006.
[32]"PERTILE"M,"SOUSA"R"M"S,"MENDES"L"W,"ANTUNES"J"E"L,"OLIVEIRA"L"M"S."Response"of"soil"bacterial"communities"to"the"application"of"the"herbicides"imazethapyr"and"flumyzin[J]."European"Journal"of"Soil"Biology,"2021,"102:"103252.
[33]"LUO"Y,"ZHOU"M,"ZHAO"Q,"WANG"F,"GAO"J,"SHENG"H,"AN"L."Complete"genome"sequence"of"Sphingomonas"sp."Cra20,"a"drought"resistant"and"plant"growth"promoting"rhizobacteria[J]."Genomics,"2020,"112:"3648-3657.