国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物病原菌孢子捕捉和監(jiān)測(cè)—助力植物病害管理

2025-02-19 00:00:00王奧霖范潔茹徐飛陳莉曹世勤王萬軍孫振宇劉偉胡小平周益林
植物保護(hù) 2025年1期
關(guān)鍵詞:采樣器冠層孢子

摘要

農(nóng)業(yè)生態(tài)系統(tǒng)中所有類型的植物均會(huì)受到病原菌的長(zhǎng)期威脅。許多高風(fēng)險(xiǎn)植物病原菌能夠通過空氣傳播, 甚至可隨高空氣流完成跨區(qū)域的遠(yuǎn)距離擴(kuò)散。因此, 為了控制氣傳病害管理中的殺菌劑投入, 需密切監(jiān)測(cè)空氣中的病原菌孢子。病菌孢子捕捉技術(shù)作為監(jiān)測(cè)空氣中病菌孢子量的有效手段, 可為種植者或相關(guān)政府部門提供病害風(fēng)險(xiǎn)的早期預(yù)警信息, 輔助病害管理決策。近年來, 分子檢測(cè)技術(shù)的發(fā)展拓寬了其在植物病害管理中的應(yīng)用范圍。本文主要從植物病害流行病學(xué)、病原體生物學(xué)、空氣動(dòng)力學(xué)等方面, 對(duì)病菌孢子捕捉技術(shù), 以及利用該技術(shù)獲得的數(shù)據(jù)改善病害管理策略的相關(guān)研究進(jìn)展進(jìn)行綜述, 并討論了應(yīng)用病菌孢子捕捉和監(jiān)測(cè)技術(shù)需要考慮的主要因素。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)及人工智能等技術(shù)的不斷發(fā)展, 該技術(shù)的發(fā)展面臨著新的機(jī)遇和挑戰(zhàn)。整合新技術(shù)和改善數(shù)據(jù)獲取、分析、解釋、共享效率, 實(shí)現(xiàn)病菌孢子捕捉的監(jiān)測(cè)預(yù)警技術(shù)網(wǎng)格化、信息化與智能化的深度融合成為新的發(fā)展需求。

關(guān)鍵詞

植物病害流行學(xué);" 空氣生物學(xué);" 病菌孢子捕捉;" 植物病害監(jiān)測(cè)預(yù)警;" 病害管理決策系統(tǒng)

中圖分類號(hào):

S 432.4

文獻(xiàn)標(biāo)識(shí)碼:" A

DOI:" 10.16688/j.zwbh.2024437

收稿日期:" 20240823""" 修訂日期:" 20240914

基金項(xiàng)目:

國家自然科學(xué)基金(32072359)

致" 謝:" 參加本試驗(yàn)部分工作的還有江代禮、譚翰杰、張能和紀(jì)燁斌等同學(xué),特此一并致謝。

* 通信作者

E-mail:

劉偉wliusdau@163.com;周益林ylzhou@ippcaas.cn

#

為并列第一作者

Catching and monitoring airborne inoculum of plant pathogens: improving plant disease management

WANG Aolin1,2," FAN Jieru1," XU Fei3," CHEN Li4,nbsp; CAO Shiqin5," WANG Wanjun6,SUN Zhenyu5," LIU Wei1*," HU Xiaoping2," ZHOU Yilin1*

(1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese

Academy of Agricultural Sciences, Beijing" 100193, China; 2. State Key Laboratory for Crop Stress Resistance

and High-Efficiency Production, College of Plant Protection, Northwest A amp; F University, Yangling" 712100,

China; 3. Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Integrated

Pest Management on Crops in Southern Part of North China, Ministry of Agriculture and Rural Affairs,

Zhengzhou" 450002, China; 4. College of Plant Protection, Anhui Agricultural University, Anhui

Province Key Laboratory of Integrated Pest Management on Crops, Hefei" 230036, China;

5. Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou" 730070, China;

6. Tianshui Institute of Agricultural Sciences, Gansu Province, Tianshui" 741000, China)

Abstract

In agricultural ecosystems, plants of all types are under constant threat from various pathogens. Many high-risk plant pathogens are airborne and can be transmitted over very long distances across regions in a single step via high-altitude air currents. To minimize the use of fungicides for managing diseases spread by air, it is imperative to closely monitor airborne inoculum. Monitoring airborne inoculum provides an effective early warning system for growers and government agencies, offering valuable insights for disease risk assessment and management decisions. In recent years, advancements in molecular detection technologies have expanded the application of inoculum-monitoring data in plant disease management. This review summarizes recent progress in spore sampling technologies to improve disease management strategy, focusing on aspects of disease epidemiology, pathogen biology, and aerodynamics. We also address key main considerations for implementing airborne inoculum monitoring. With the rapid advancement of technologies such as the internet of Things, big data, and artificial intelligence, airborne inoculum monitoring is encountering new opportunities and challenges. Future research should focus on integrating these technologies to enhance data acquisition, analysis, interpretation and sharing. In other words, there is a growing need for inoculum-based monitoring and prediction technologies to achieve a deeper integration of surveillance networks, informatization, and intelligence.

Key words

plant disease epidemiology;" aerobiology;" spore trapping;" monitoring and prediction of plant diseases;" decision support systems in disease management

近年來, 農(nóng)產(chǎn)品安全用藥問題引起社會(huì)和公眾的廣泛關(guān)注[1]。然而在農(nóng)業(yè)生態(tài)系統(tǒng)中, 植物病原菌幾乎無處不在, 嚴(yán)重威脅植物健康[23]。為了控制植物病害管理中的殺菌劑投入, 需密切監(jiān)測(cè)病菌繁殖體或傳播體的數(shù)量或濃度[45]。許多高風(fēng)險(xiǎn)氣傳植物病原菌均以空氣作為傳播媒介[67], 其中, 真菌孢子更易于隨氣流傳播[810]。因此, 捕捉和監(jiān)測(cè)空氣中的植物病原菌孢子, 特別是真菌孢子對(duì)于病害監(jiān)測(cè)預(yù)警具有重要意義。

植物病原菌孢子的捕捉和監(jiān)測(cè)研究可納入一個(gè)特定的專業(yè)領(lǐng)域, 即空氣生物學(xué)。Gregory是這一研究領(lǐng)域的先驅(qū)[11], 于20世紀(jì)30年代末期開始引領(lǐng)這一學(xué)科領(lǐng)域的研究和發(fā)展[12], 并在空氣中病菌孢子檢測(cè)工具的開發(fā)與應(yīng)用[1314]、環(huán)境對(duì)病菌孢子傳播的影響[15]、制定基于孢子量的病害流行風(fēng)險(xiǎn)指標(biāo)[1617]等方面做出了巨大貢獻(xiàn)。目前, 病菌孢子捕捉仍是監(jiān)測(cè)空氣中孢子量的有效手段。迄今為止, 研究者已開發(fā)出多種適于不同應(yīng)用范圍的取樣裝置或方法[18], 廣泛用于大田作物[15, 1924]、經(jīng)濟(jì)作物[25]、果樹[2628]和蔬菜[2930]上氣傳病原菌孢子的監(jiān)測(cè)。特別是分子生物學(xué)技術(shù)的蓬勃發(fā)展, 為該領(lǐng)域的研究提供了先進(jìn)的技術(shù)支持[17, 27, 3135]。

病菌孢子捕捉和監(jiān)測(cè)作為病害管理的輔助決策工具, 需根據(jù)目標(biāo)病害系統(tǒng)中特有的病原體生物學(xué)、病害流行學(xué)、病菌孢子在空氣中傳播的物理學(xué)特性等“量體裁衣”[36]。例如, 在病原菌越夏或越冬概率較高的場(chǎng)所定點(diǎn)監(jiān)測(cè)有助于在病害流行早期發(fā)現(xiàn)病菌孢子;解析病菌孢子的擴(kuò)散機(jī)制有助于推斷病害的田間分布格局[37]。此外, 在復(fù)雜的農(nóng)田環(huán)境中病菌孢子捕捉器的實(shí)際采樣范圍相對(duì)有限,還會(huì)受到孢子的捕獲/沉積效率、作物冠層結(jié)構(gòu)、采樣器與菌源的相對(duì)位置、天氣條件等因素的綜合影響[7,17,3841],因此,制定一套合理的病菌孢子捕捉器布設(shè)方案和解讀與挖掘獲取的空氣生物學(xué)數(shù)據(jù)將面臨巨大挑戰(zhàn)。

本文主要從植物病害流行學(xué)、病原體生物學(xué)、空氣動(dòng)力學(xué)等方面, 綜述基于病菌孢子捕捉技術(shù)改善病害管理策略的相關(guān)研究進(jìn)展, 具體內(nèi)容涉及病菌孢子捕捉的研究目的、采樣器的選用、采樣器的數(shù)量和布設(shè)方案、空氣生物學(xué)數(shù)據(jù)解讀等。讀者可根據(jù)自身的研究目的、目標(biāo)植物病理系統(tǒng)、氣候氣象條件或局部小氣候等, 在預(yù)算范圍內(nèi)選擇相對(duì)最優(yōu)的病菌孢子捕捉實(shí)施方案, 助力植物病害管理。

1" 空氣中病菌孢子捕捉和監(jiān)測(cè)的目的

空氣中病菌孢子捕捉和監(jiān)測(cè)的主要目的是在不同時(shí)空尺度上了解氣傳病害流行動(dòng)態(tài)和流行驅(qū)動(dòng)因素的變化情況, 現(xiàn)已廣泛應(yīng)用于各類研究。根據(jù)空氣中病菌孢子的捕捉和監(jiān)測(cè)目的, 對(duì)代表性的應(yīng)用型或基礎(chǔ)型研究論文中涉及的病害、寄主及孢子捕捉器類型、研究范圍或流行學(xué)尺度、采樣高度以及病菌孢子量化方法等(表1)進(jìn)行歸納。在應(yīng)用研究領(lǐng)域, 病菌孢子捕捉數(shù)據(jù)可用于擬合組建病害管理決策系統(tǒng)[42], 還可根據(jù)病菌孢子的進(jìn)展曲線, 結(jié)合氣象條件、栽培管理、品種抗病性等研究病情的進(jìn)展[43]。此外, 將病菌孢子捕捉與群體遺傳學(xué)和分子生態(tài)學(xué)相結(jié)合, 還可研究抗藥性或致病性相關(guān)基因型病原菌群體的結(jié)構(gòu)與生態(tài)學(xué)特征[4446]。在基礎(chǔ)研究領(lǐng)域, 該技術(shù)可用于研究空氣中病菌孢子的傳播規(guī)律或機(jī)制及時(shí)空變化動(dòng)態(tài), 為優(yōu)化病害管理決策系統(tǒng)提供理論支撐。

近年來, 病菌孢子捕捉技術(shù)在植物生物安全風(fēng)險(xiǎn)監(jiān)測(cè)和預(yù)警中也起到了舉足輕重的作用[47]。我國于2021年4月15日正式實(shí)施《中華人民共和國生物安全法》, 其中第三章明確指出需要防范和科學(xué)應(yīng)對(duì)植物有害生物威脅, 組織監(jiān)測(cè)站點(diǎn)布局, 建設(shè)、完善監(jiān)測(cè)信息報(bào)告系統(tǒng), 開展主動(dòng)監(jiān)測(cè)和病原檢測(cè), 并納入國家生物安全風(fēng)險(xiǎn)監(jiān)測(cè)預(yù)警體系[48]。在植物生物安全風(fēng)險(xiǎn)監(jiān)測(cè)預(yù)警體系下, 病菌孢子捕捉技術(shù)可用來衡量氣候變化和農(nóng)業(yè)生產(chǎn)系統(tǒng)對(duì)病原菌群體的影響, 或研究病原菌擴(kuò)散、入侵、新致病力小種的產(chǎn)生、遺傳多樣性等[49]。

病菌孢子捕捉技術(shù)最大優(yōu)勢(shì)是其能在病害的視覺癥狀出現(xiàn)前確認(rèn)空氣中病菌孢子的存在, 適于馬鈴薯晚疫病菌Phytophthora infestans、蘋果黑星病菌Venturia inaequalis、小麥印度腥黑穗病菌Tilletia indica、黃瓜霜霉病菌Pseudoperon ospora cubensis、小麥銹菌(條銹病菌: Puccinia striiformis f.sp. tritici, 葉銹病菌: P.triticina, 稈銹病菌: P.graminis f.sp. tritici)等具有遠(yuǎn)程傳播能力的病菌[5057]。近年來, 為提升植物的防病減災(zāi)水平, 增強(qiáng)重大病情的監(jiān)測(cè)預(yù)警和疫情防控處置能力, 病菌孢子捕捉技術(shù)融合了大量農(nóng)藝資料和氣象數(shù)據(jù), 大大提高了風(fēng)險(xiǎn)預(yù)測(cè)精度, 并優(yōu)化了管理措施[5859]。因此, 該技術(shù)還可作為改進(jìn)現(xiàn)有預(yù)測(cè)預(yù)報(bào)系統(tǒng)的重要抓手, 為優(yōu)化殺菌劑針對(duì)性噴施方案提供參考[26, 6063]。

2 "病菌孢子捕捉器的類型與適用范圍

病菌孢子捕捉技術(shù)正逐漸發(fā)展成為許多農(nóng)作物病害管理決策的重要輔助手段[27]。根據(jù)截獲病菌孢子的空氣動(dòng)力學(xué)原理可將采樣裝置劃分為重力沉降式、主動(dòng)吸氣式、撞擊式和其他類型。不同類型的病菌孢子捕捉器在設(shè)計(jì)原理上存在差異且各有優(yōu)缺點(diǎn), 主要表現(xiàn)在捕捉效率、捕捉周期、樣品處理難易、適用的靶標(biāo)病菌孢子大小和監(jiān)測(cè)頻率等方面。因此, 具體的研究目的和適用范圍也存在差異。

2.1" 重力沉降式采樣裝置

該裝置工作原理簡(jiǎn)單, 空氣中懸浮的病菌孢子在重力作用下會(huì)沉積在收集裝置表面[89], 因而屬于被動(dòng)采樣范疇。例如, 在垂直、水平或傾斜的支架上安裝涂有硅脂或凡士林的載玻片。該裝置突出優(yōu)點(diǎn)是價(jià)格低廉, 并可在采樣后將載玻片直接用于顯微觀察。然而, 由于整個(gè)孢子捕捉過程中采集的空氣量是未知的, 無法計(jì)算空氣中孢子的濃度(每m3空氣中的孢子數(shù))。此外, 該裝置易受到空氣中的大型生物或非生物碎屑影響而出現(xiàn)過飽和現(xiàn)象。不過, 由于其設(shè)計(jì)簡(jiǎn)單、便于操作且經(jīng)濟(jì)實(shí)用, 適于大面積監(jiān)測(cè)或布設(shè)在復(fù)雜設(shè)備難以進(jìn)入的區(qū)域, 同時(shí)也適用于預(yù)算有限或僅需檢測(cè)目標(biāo)孢子有無的研究。

2.2" 主動(dòng)吸氣型采樣裝置

定容式病菌孢子捕捉器是最為常見的主動(dòng)吸氣型采樣裝置,

其中又以Burkard-7d定容式病菌孢子捕捉器(http:∥www.burkard.co.uk/7dayst.htm)最為典型。該類型采樣裝置

通常使用電源驅(qū)動(dòng)的轉(zhuǎn)子或吸氣泵收集空氣中的病菌孢子, 吸入的孢子在慣性的作用下被黏性表面(如膠帶)截獲[90]。采樣表面逐小時(shí)轉(zhuǎn)動(dòng), 不易飽和, 因此可對(duì)空氣中的病菌孢子進(jìn)行連續(xù)捕捉。該裝置的突出優(yōu)點(diǎn)是吸氣流速可控, 且在整個(gè)采樣期間保持恒定, 可對(duì)吸入的空氣進(jìn)行量化, 進(jìn)而計(jì)算每小時(shí)每立方米空氣中的孢子數(shù)量。風(fēng)對(duì)定容式孢子捕捉器的捕捉效率影響相對(duì)較小, 但受限于采樣表面截獲孢子時(shí)的成功率。一些輕量的孢子被吸入后可能會(huì)繞開采樣表面, 被捕捉器內(nèi)壁截獲;而質(zhì)量較大的孢子, 當(dāng)撞擊采樣表面產(chǎn)生的瞬時(shí)動(dòng)能超過引力勢(shì)能時(shí), 孢子則會(huì)反彈,以上2種情況發(fā)生時(shí)均無法成功截獲孢子[91]。

液體撞擊濾塵器和串聯(lián)式粒子碰撞捕捉器也是主動(dòng)吸氣型采樣裝置[89], 吸入的病菌孢子通過培養(yǎng)基保持活性。該裝置能夠靶向目標(biāo)病原菌, 尤其適合較小的病菌孢子或細(xì)菌, 如梨火疫病菌Erwinia amylovora。由于細(xì)菌在靜風(fēng)(水平風(fēng)速為0~0.2 m/s)中沉降速率極小(≈0.01 cm/s), 理論上無論環(huán)境中風(fēng)速如何變化, 捕捉效率都無限接近1[91]。但細(xì)菌在空氣中的傳播機(jī)制目前尚未明確: Prussin等[92]和 Gilet等[93]認(rèn)為, 細(xì)菌在降水時(shí)通過風(fēng)雨傳播;但Lindemann等[94]研究發(fā)現(xiàn), 晴朗干燥的天氣條件下, 空氣中仍能夠捕獲高濃度的細(xì)菌;Morris等[9596]研究證實(shí), 細(xì)菌也可將銹菌的夏孢子作為其在空氣中傳播的載體。因此, 監(jiān)測(cè)空氣中細(xì)菌濃度時(shí)應(yīng)格外謹(jǐn)慎,且還需要更多的基礎(chǔ)研究為其提供理論支撐。

2.3" 撞擊式采樣裝置

旋轉(zhuǎn)膠棒式病菌孢子捕捉器(Rotorod)是最典型的撞擊式采樣裝置, 優(yōu)點(diǎn)是在田間條件下, 捕捉表面相對(duì)于環(huán)境風(fēng)速具有更高的線性速度(亦稱切向速度), 能極大降低風(fēng)速變化對(duì)捕捉效率的影響。

Rotorod式孢子捕捉器的理論捕捉效率與目標(biāo)孢子的形態(tài)和密度有關(guān)。在田間應(yīng)用中, 實(shí)際捕捉效率大多低于理論值[9798]。主要存在三點(diǎn)原因: 1)Rotorod探頭會(huì)干擾周圍氣流;2)旋轉(zhuǎn)臂周圍存在大量的湍流和渦旋;3)撞擊旋轉(zhuǎn)臂的孢子由于黏性不足或采樣表面過飽和未被全部截獲,

實(shí)際應(yīng)用中,研究人員可在裝置運(yùn)行前進(jìn)行質(zhì)控檢查, 例如: 確保旋轉(zhuǎn)臂具有足夠強(qiáng)度的黏性;確保黏性涂層均勻且厚度適中(以靶標(biāo)病菌孢子的半徑長(zhǎng)度為宜),從而降低由采樣面黏性不足引起的截獲誤差。

在降水期間, 為避免Rotorod捕捉器的采樣面被雨水浸濕, 需要設(shè)計(jì)恰當(dāng)?shù)膿跤臧澹?3]。研究人員可根據(jù)孢子捕捉周期內(nèi)雨滴的終速度(取決于雨滴的大小及分布)和風(fēng)速預(yù)報(bào), 針對(duì)性的設(shè)計(jì)和改進(jìn)擋雨板的尺寸和安裝位置。

2.4" 其他采樣裝置

漏斗式采樣器由頂部與地面垂直的漏斗, 漏斗底部的過濾網(wǎng)和離心管組成。過濾網(wǎng)可阻隔隨雨水沉積的大型植物組織殘?bào)w、昆蟲和雜質(zhì)等, 含有病菌孢子的雨水則收集在下部的離心管內(nèi)(圖1c)。該裝置適于收集長(zhǎng)距離傳播并在降水時(shí)沉積的病菌孢子, 例如大豆銹病菌Phakopsora pachyrhizi孢子[70], 或通過雨水飛濺傳播的病菌孢子, 如小麥赤霉病菌Fusarium graminearum species complex孢子[99]或蘋果炭疽病菌Colletotrichum fioriniae孢子[100]。該裝置還可通過安裝雨量計(jì)來量化單位體積降水中的病菌孢子數(shù)量, 但管內(nèi)雨水蒸發(fā)或超過離心管容載量時(shí)可能存在量化誤差。

另一類漏斗式采樣器其上部是平行于地面的球狀或圓柱狀“漏斗”, 漏斗末端與尾翼(或副翼)相連, 使其始終迎風(fēng), 病菌孢子則收集在漏斗底部的過濾器中(圖1a,b)。這種采樣器的優(yōu)點(diǎn)是價(jià)格便宜, 可在田間大規(guī)模布設(shè), 但很難提供病菌孢子濃度數(shù)據(jù)。然而, 當(dāng)二進(jìn)制的病菌孢子數(shù)據(jù)(存在/不存在)可滿足研究需求時(shí),該裝置特別適用于大尺度的流行病學(xué)監(jiān)測(cè)。該裝置目前已成功用于美國佛羅里達(dá)至加拿大的整個(gè)北美地區(qū)大豆銹病菌Phakopsora pachyrhizi[101]和安大略地區(qū)馬鈴薯晚疫病菌Phytophthora infestans的流行動(dòng)態(tài)監(jiān)測(cè)(Sporometrics公司, 加拿大)。

總之, 旋轉(zhuǎn)膠棒式病菌孢子捕捉器和Burkard-7d定容式病菌孢子捕捉器更適于監(jiān)測(cè)大小在10 μm以上的真菌和卵菌孢子, 是農(nóng)業(yè)中最常用的病菌孢子捕捉裝置[20,24,2930,5859,78,8384,87,102]。液體撞擊濾塵器和串聯(lián)式粒子碰撞捕捉器則更適于捕捉較小的病菌孢子或細(xì)菌。

3" 病菌孢子捕捉器的布設(shè)

地面布設(shè)的病菌孢子捕捉器從水平和垂直距離上都應(yīng)盡可能靠近菌源[103],如布設(shè)在病菌更可能安全越冬的場(chǎng)所。但基于病菌孢子捕捉的空氣生物學(xué)數(shù)據(jù)通常具有高度的不穩(wěn)定性,受風(fēng)速、風(fēng)向、目標(biāo)病害系統(tǒng)和當(dāng)?shù)貤l件等與病菌繁殖體相關(guān)的農(nóng)業(yè)生態(tài)小氣候的影響[104]。在對(duì)菌源空間分布或規(guī)模缺乏足夠了解的前提下,病菌孢子捕捉器的初始布設(shè)往往會(huì)代入研究人員的主觀性。通常在獲得首批試驗(yàn)數(shù)據(jù)后,才能有針對(duì)性的調(diào)整布設(shè)方案,并隨著數(shù)據(jù)和經(jīng)驗(yàn)的累積,不斷優(yōu)化和完善。因此,圍繞有關(guān)病菌孢子捕捉器布設(shè)的關(guān)鍵問題展開討論,如:病菌孢子捕捉器地面布設(shè)的具體位置、捕捉范圍、捕捉器的數(shù)量、空氣生物學(xué)數(shù)據(jù)的解讀等,并簡(jiǎn)要介紹移動(dòng)機(jī)載采樣平臺(tái)。

3.1" 哨兵樣地: 在一個(gè)田塊或區(qū)域偵查首個(gè)病菌孢子遷入事件

理想情況下,應(yīng)在本地初侵染發(fā)生前探測(cè)到遷入的病菌孢子。但在干燥少雨的天氣條件下, 隨高空氣流遠(yuǎn)距離傳播的病菌孢子難以僅通過干沉降作用(干沉降是指生物氣溶膠如病菌孢子直接沉降到地表的現(xiàn)象)到達(dá)地面和寄主植物[105]。因此,傳統(tǒng)病菌孢子捕捉技術(shù)發(fā)現(xiàn)的首個(gè)孢子通常來源于附近的本地菌源而非遠(yuǎn)距離遷入的異地菌源。

病菌孢子捕捉和在哨兵樣地中進(jìn)行病害偵查是識(shí)別首波孢子遷入的2個(gè)基本途徑。種有易感作物的小塊哨兵樣地中的采樣速率可能比任何病菌孢子捕捉器都高,采樣速率Dr=vgfsEiAc,其中,Dr(m3/s)表示每Ac(m2)面積哨點(diǎn)作物的采樣速率,vg(m/s)表示孢子沉降速率,fs和Ei分別表示孢子存活率和孢子在作物上的侵染成功率。理想條件下(fsEi=1)對(duì)于常見的孢子(Dr≈0.02Ac),面積為3 m×3 m的哨兵樣地上的采樣速率可達(dá)10 800 L/min,遠(yuǎn)高于Burkard-7d和Rotorod捕捉器的10 L/min和40 L/min,但該法受限于病菌侵染率及病害癥狀是否肉眼可見和易于識(shí)別[70]。此外,對(duì)于潛伏侵染時(shí)間較長(zhǎng)的病害,病菌孢子捕捉更具優(yōu)勢(shì)。

3.2" 采樣頻率/持續(xù)時(shí)間

空氣中的病菌孢子具有一定的周期性變化規(guī)律。Aylor等[75]研究發(fā)現(xiàn),空氣中馬鈴薯晚疫病菌孢子在1 d內(nèi)表現(xiàn)出顯著的逐小時(shí)變化。并且,絕大多數(shù)病菌孢子的產(chǎn)孢和釋放都存在一定的晝夜節(jié)律,通常在夜間產(chǎn)孢,白天釋放。因此,采樣周期、頻率和持續(xù)時(shí)間大多以此作為依據(jù)。研究發(fā)現(xiàn),通常中午前后病菌孢子釋放量最高,其中鏈格孢屬Alternaria spp.、枝孢屬Cladosporium spp.、黑粉菌屬Ustilago spp.和白粉菌屬Erysiphe spp.的病菌孢子在13:00左右達(dá)到峰值[106]。但不同病菌存在一定差異。中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所小麥白粉病研究組此前在對(duì)田間小麥白粉病菌分生孢子濃度動(dòng)態(tài)的監(jiān)測(cè)研究中發(fā)現(xiàn),白天捕獲的孢子濃度高于夜間且通常在正午達(dá)到峰值[82];最近一項(xiàng)關(guān)于田間小麥條銹病和白粉病混合發(fā)生條件下空氣中2種病菌孢子濃度動(dòng)態(tài)變化的研究表明,條銹病菌夏孢子和白粉病菌分生孢子的釋放峰值均在10:00-14:00(數(shù)據(jù)未發(fā)表)。相反,禾谷鐮孢Fusarium graminearum子囊孢子的釋放峰值通常出現(xiàn)在午夜[40,92,107108],而其大型分生孢子的釋放時(shí)間在1 d中呈均勻分布,不表現(xiàn)明顯的晝夜節(jié)律[107]。

根據(jù)病菌孢子釋放的晝夜節(jié)律,可將病菌孢子釋放周期(孢子濃度峰出現(xiàn)概率較高的時(shí)間段)作為設(shè)計(jì)采樣周期的參考依據(jù),并根據(jù)環(huán)境、寄主和病菌孢子的類型適當(dāng)調(diào)整。有研究指出,根據(jù)病菌孢子釋放周期延長(zhǎng)采樣時(shí)間,并在此期間進(jìn)行分段采樣,能夠使數(shù)據(jù)更具代表性。例如,洋蔥灰霉病菌Botrytis squamosa最初在10:00-12:00進(jìn)行固定2 h的孢子捕捉[2930,5859,87]。但后續(xù)研究表明,在08:00-14:00間進(jìn)行分段采樣(旋轉(zhuǎn)膠棒式捕捉器,開機(jī)10 min和關(guān)機(jī)10 min連續(xù)自動(dòng)切換,實(shí)際采樣時(shí)間占50%),數(shù)據(jù)收集更具代表性[109];而萵苣霜霉病菌Bremia lactucae孢子可在06:00-15:00之間進(jìn)行分段采樣(實(shí)際采樣時(shí)間占50%)[84]。

旋轉(zhuǎn)膠棒或玻片式采樣裝置因采樣表面容載能力有限,更適于在病菌孢子釋放周期內(nèi)進(jìn)行分段采樣。并且,采樣周期、頻率和持續(xù)時(shí)間還應(yīng)考慮采樣面的飽和速率。Burkard-7d定容式孢子捕捉器由于能夠連續(xù)運(yùn)行且采樣表面不易飽和,通常無需分段采樣。

3.3" 采樣高度

地面布設(shè)的病菌孢子捕捉器放置高度一定程度上取決于研究目的(表1)。理想條件下, 應(yīng)考慮架設(shè)病菌孢子捕捉塔, 以便在不同高度進(jìn)行采樣[91]。但受限于場(chǎng)地和設(shè)備, 生產(chǎn)上難以大規(guī)模推廣使用病菌孢子捕捉塔。公認(rèn)的經(jīng)驗(yàn)是當(dāng)監(jiān)測(cè)本地或局部菌源時(shí), 將病菌孢子捕捉器布設(shè)在作物冠層上方;當(dāng)監(jiān)測(cè)異地或遠(yuǎn)距離遷入的菌源時(shí), 布設(shè)在高于地面幾米的位置。

研究人員通過測(cè)定病菌孢子的垂直擴(kuò)散梯度和估計(jì)冠層釋放的病菌孢子比例, 發(fā)現(xiàn)不同采樣高度上的病菌孢子濃度測(cè)量值存在顯著性差異且隨高度的增加而下降, 例如煙草霜霉病菌Peronospora tabacina[74]、蘋果黑星病菌Venturia inaequalis[28]和馬鈴薯晚疫病菌Phytophthora infestans[75]。特別是對(duì)于植被覆蓋率較低的作物, 由田間點(diǎn)源釋放的病菌孢子隨高度的增加濃度會(huì)迅速衰減, 距地3 m以上的空氣中通常難以捕獲病菌孢子。中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所小麥白粉病研究組此前關(guān)于不同采樣高度上小麥白粉病菌孢子濃度差異的研究也表明, 1.6 m高度處(冠層外)的孢子濃度顯著低于0.6 m(冠層內(nèi))[82]。

對(duì)于單點(diǎn)源的傳播中心,冠層逃逸的病菌孢子受羽流影響濃度會(huì)迅速衰減,因此,病菌孢子在垂直和水平方向上的捕捉概率會(huì)隨菌源與采樣器間距離的增加而降低[110]。但田間環(huán)境下可能存在多個(gè)點(diǎn)源傳播中心,由每個(gè)點(diǎn)源傳播中心成功逃逸的病菌孢子會(huì)隨盛行風(fēng)單獨(dú)或合并到達(dá)各個(gè)采樣高度,從而使得捕獲到的病菌孢子實(shí)質(zhì)上可能來自多個(gè)點(diǎn)源傳播中心,導(dǎo)致病菌孢子濃度數(shù)據(jù)與采樣高度之間并非簡(jiǎn)單的線性負(fù)相關(guān),還會(huì)受第一個(gè)點(diǎn)源傳播中心與采樣器之間距離及其余點(diǎn)源數(shù)量的復(fù)合影響(圖2)[91]。因此,研究人員還可根據(jù)盛行風(fēng)風(fēng)向上菌源位置和數(shù)量等信息,進(jìn)一步優(yōu)化病菌孢子捕捉器的布設(shè)方案[19,28]。

前人基于長(zhǎng)期對(duì)空氣中各種病菌孢子垂直分布格局的觀測(cè)經(jīng)驗(yàn), 總結(jié)歸納出適于捕捉不同病菌孢子的采樣器布設(shè)高度。針對(duì)本地菌源, 如監(jiān)測(cè)洋蔥灰霉病菌Botrytis squamosa孢子時(shí), 在生長(zhǎng)季早期通常將采樣器放置在距地1 m處, 并根據(jù)作物的生長(zhǎng)情況適時(shí)調(diào)整[5859, 109];監(jiān)測(cè)菠菜、萵苣霜霉病菌Bremia lactucae孢子時(shí), 采樣器則通常布設(shè)在距地0.53 m處[33,78,111];當(dāng)研究小麥冠層上方禾谷鐮孢菌F.graminearum孢子時(shí)空動(dòng)態(tài)與赤霉病嚴(yán)重度及DON毒素(deoxynivalenol, 脫氧雪腐鐮刀菌烯醇)關(guān)系時(shí), 采樣器放置在距地1 m高度[20], 該布設(shè)高度同時(shí)也適于監(jiān)測(cè)葡萄白粉病菌Erysiphe necator和草莓灰霉病菌Botrytis cinerea孢子[27, 43, 103]。中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所小麥白粉病研究組多年來連續(xù)進(jìn)行了小麥白粉病、條銹病和赤霉病春季流行期田間病菌孢子的時(shí)空動(dòng)態(tài)監(jiān)測(cè), 發(fā)現(xiàn)將Burkard-7d定容式孢子捕捉器布設(shè)在小麥冠層高度(0.6~1 m)更能代表一個(gè)地塊的本地菌源[35, 65, 82, 112114]。監(jiān)測(cè)遠(yuǎn)距離遷入的異地菌源時(shí), 如Fall等研究馬鈴薯晚疫病菌孢子的區(qū)域擴(kuò)散模式時(shí), 將病菌孢子捕捉器放置在距地2.9 m高度以收集大部分由遠(yuǎn)距離遷入的病菌孢子[42]。

3.4" 病菌孢子濃度空間分布格局及擴(kuò)散梯度

不同病菌孢子傳播的空間范圍存在一定差異,有的病菌孢子主要在相鄰的寄主間短距離傳播,有的則可跨不同地塊遠(yuǎn)距離傳播,甚至跨區(qū)域擴(kuò)散。因此了解空氣中目標(biāo)病菌孢子濃度的空間分布格局、擴(kuò)散性質(zhì)或范圍,亦可為病菌孢子捕捉器的布設(shè)提供建設(shè)性指導(dǎo)。在農(nóng)業(yè)生態(tài)系統(tǒng)中,病害田間分布型(分布格局)主要有3種,即均勻分布(正二項(xiàng)分布)、隨機(jī)分布(泊松分布)和聚集分布(奈曼分布或負(fù)二項(xiàng)分布)[37],病菌孢子的截獲概率受其影響。例如,當(dāng)不考慮孢子捕捉器在田間具體位置時(shí),完全隨機(jī)分布型病害較聚集分布更有可能截獲病菌孢子[115116]。相反,當(dāng)病害呈聚集分布格局且孢子捕捉器放置位置恰能截獲菌源中心釋放的孢子羽流,則發(fā)現(xiàn)早期擴(kuò)散的病菌孢子的概率更大[115,117]。

目前, 已有研究報(bào)道了空氣中病菌孢子的空間分布格局。在田間或小區(qū)尺度上, Charest等[26]研究發(fā)現(xiàn), 空氣中蘋果黑星病菌Venturia inaequalis子囊孢子的空間分布格局呈負(fù)二項(xiàng)分布的聚集分布模式;類似地, 在葡萄園和洋蔥田中捕獲的具有殺菌劑抗藥基因型的Botrytis cinerea和B.squamosa孢子同樣具有聚集分布模式[102]。但病菌孢子濃度的空間分布格局也隨病情進(jìn)展和病害嚴(yán)重度的增加而改變。Carisse等[87]發(fā)現(xiàn), 在病害流行早期且病菌孢子濃度較低時(shí), 空氣中的B.squamosa孢子呈隨機(jī)分布, 而在后期病菌孢子濃度升高時(shí)呈聚集分布。在區(qū)域尺度上, Fall等[42]研究發(fā)現(xiàn), 馬鈴薯晚疫病菌孢子呈負(fù)二項(xiàng)聚集分布格局, 且空間異質(zhì)性隨病菌孢子濃度的增加而增加。因此, 當(dāng)病菌孢子濃度呈聚集分布時(shí), 為了提高數(shù)據(jù)的代表性,需盡可能增設(shè)更多的病菌孢子捕捉器, 且數(shù)量隨孢子濃度空間異質(zhì)性的增加而增加;反之, 當(dāng)病菌孢子濃度呈均勻分布時(shí), 布設(shè)1臺(tái)就可滿足同等監(jiān)測(cè)需求[118]。

不同病菌孢子的擴(kuò)散梯度存在明顯差異。其中短距離傳播的如小麥赤霉病菌Fusarium graminearum, 其子囊孢子和大型分生孢子濃度在距菌源中心5~22 m和5 m處降至10%[23, 79];香蕉黑葉條斑病菌Mycosphaerella fijiensis的子囊孢子僅在菌源中心附近幾米內(nèi)有效傳播, 而其分生孢子則很少擴(kuò)散[119]。具有遠(yuǎn)程傳播能力的病菌孢子如馬鈴薯晚疫病、小麥銹?。òl銹、葉銹和稈銹)、小麥白粉病、大豆銹病等的病菌孢子可擴(kuò)散至幾百米, 甚至能跨越高山、河流、海洋或大洲, 一次性傳播幾千公里[110]。因此, 對(duì)于短距離傳播的病菌孢子, 一般在病害流行的田間尺度上監(jiān)測(cè)本地菌源, 病菌孢子捕捉器的位置應(yīng)盡可能靠近病菌的越冬或越夏場(chǎng)所;而對(duì)于遠(yuǎn)距離傳播的病菌孢子, 除了監(jiān)測(cè)本地菌源外, 還需及時(shí)發(fā)現(xiàn)異地菌源的遷入, 在區(qū)域尺度上實(shí)施病菌孢子捕捉網(wǎng)格化管理。

病菌孢子的釋放機(jī)制大體可分為主動(dòng)和被動(dòng)兩類:主動(dòng)釋放的孢子如子囊孢子,子囊殼遇水吸濕后會(huì)形成膨壓,當(dāng)靜水壓力足夠大時(shí),子囊孢子受力排出并向上彈射一段距離,釋放到一定高度后在風(fēng)的輔助下完成后續(xù)傳播和擴(kuò)散;而被動(dòng)釋放的孢子如分生孢子或夏孢子則需在湍流和陣風(fēng)中釋放,且風(fēng)速需達(dá)到一定的臨界值[91]。主動(dòng)釋放的病菌孢子其釋放高度受孢子形狀、大小、質(zhì)量、狀態(tài)(泡水或暴露在空氣中)、相對(duì)濕度變化等因素的影響[7475,120];而被動(dòng)釋放的病菌孢子必須在風(fēng)的作用下擺脫氣動(dòng)阻力,使其脫離產(chǎn)孢器官和突破寄主葉片表面的黏性邊界層時(shí)才能有效釋放[121123]。此外,主動(dòng)釋放的病菌孢子通常附著于土壤或秸稈殘茬;而被動(dòng)釋放的病菌孢子一般寄生在葉片表面,釋放高度取決于發(fā)病部位。因此,病菌孢子的釋放機(jī)制也是孢子捕捉器布設(shè)前需考慮的重要因素之一。

3.5" 病菌孢子捕捉數(shù)據(jù)的代表性

病菌孢子捕捉器的采樣范圍受地形、物理屏障、尤其是作物冠層幾何結(jié)構(gòu)(高度、密度)等因素的影響,導(dǎo)致在實(shí)際應(yīng)用中僅利用單個(gè)采樣器獲取空氣生物學(xué)數(shù)據(jù)來預(yù)測(cè)病害的發(fā)生和流行面臨一定的挑戰(zhàn)[67]。

采樣覆蓋范圍(數(shù)據(jù)代表性)是指在一定概率閾值下截獲病菌孢子時(shí)的菌源分布范圍[111,124],其在不同程度上受到冠層結(jié)構(gòu)的影響。根據(jù)氣流和病菌孢子的擴(kuò)散機(jī)制,作物冠層結(jié)構(gòu)可分為兩大類(圖3a):“行結(jié)構(gòu)作物冠層”(例如,棚架作物、多年生作物和蔬菜作物)和“單株作物冠層”(例如,傳統(tǒng)果園)[36]。

玉米、大豆和小麥等糧油作物雖成行種植,但行距相對(duì)于冠層高度可忽略不計(jì),冠層彼此相連且在空間上均勻致密。因此不受“行結(jié)構(gòu)”對(duì)流體運(yùn)動(dòng)的影響。對(duì)于這類高1.5 m左右的作物冠層,3D高斯羽流模型適于模擬病菌孢子的田間擴(kuò)散行為,且羽流形狀不受風(fēng)向的影響[41],病菌孢子捕捉器5 m范圍內(nèi)的采樣概率較高。

傳統(tǒng)果園(如核果類果園)植株間等距, 當(dāng)風(fēng)向偏離種植行時(shí), 氣團(tuán)在植株間穿梭形成的尾流會(huì)使其隨后的運(yùn)動(dòng)軌跡明顯偏離平均風(fēng)向(圖3b)。此外, 氣團(tuán)在經(jīng)過冠層時(shí)會(huì)受到合力向上的空氣阻力, 而冠層以下氣團(tuán)在運(yùn)輸過程中則明顯減速和稀釋[125]。因此, 放置在冠層頂部的采樣器截獲病菌孢子的概率較高(圖3b), 且捕獲到的病菌孢子最有可能來自病株冠層的上1/3處[51, 126]。但無論風(fēng)向如何變化, 均很難截獲采樣器周圍10 m范圍外的病菌孢子, 通常15 m已達(dá)有效捕獲的臨界距離。

“行結(jié)構(gòu)作物冠層”(如葡萄園)通常在種植行上植被覆蓋較為密集,而行間大多為裸露的空地, 導(dǎo)致氣團(tuán)在流動(dòng)過程中形成周期性循環(huán)模式: 病菌孢子由靠近“行”一側(cè)的冠層底部擴(kuò)散到冠層頂部, 再由另一側(cè)的冠層頂部擴(kuò)散到冠層底部, 如此往復(fù)[127128]。風(fēng)向和風(fēng)速均影響“行結(jié)構(gòu)作物冠層”中病菌孢子羽流的形狀, 從而影響采樣覆蓋范圍[129]。當(dāng)風(fēng)偏離種植行的方向時(shí), 氣流在“行”的引導(dǎo)下向靠近“行”一側(cè)偏轉(zhuǎn), 孢子羽流向“行”所在方向傾斜,使得病菌孢子主要來源為采樣器周圍的2~3行的患病寄主作物, 并且有機(jī)會(huì)截獲較遠(yuǎn)距離上的病菌孢子(圖3b);當(dāng)風(fēng)向與“行”平行時(shí), 病菌孢子羽流形狀會(huì)明顯收縮, 病菌孢子捕捉數(shù)據(jù)僅能代表采樣器所在“行”[3939, 130]。此外, 布設(shè)在種植行內(nèi)部的采樣器由于附近空域被植被填充, 病菌孢子會(huì)因葉片的攔截效應(yīng)逐漸稀釋或提前沉降, 采樣覆蓋范圍通常低于布設(shè)在行間通道上的情況。

綜上,如小麥、玉米、大豆這類冠層致密的作物,采樣覆蓋范圍的形狀或大小僅受風(fēng)速影響,對(duì)采樣器的位置或風(fēng)向較不敏感(圖3b);而高敏感冠層,采樣器的位置、風(fēng)向、作物類型均是采樣覆蓋范圍的潛在影響因素(圖3b)。因此,采樣器的布設(shè)應(yīng)在盡可能提高發(fā)現(xiàn)病菌孢子概率的前提下考慮數(shù)據(jù)的可讀性和解釋性。例如,當(dāng)葡萄園中的盛行風(fēng)偏離葡萄藤方向時(shí),研究人員應(yīng)意識(shí)到采樣器傾向于截獲其所在“行”上患病寄主的病菌孢子,并且這種“偏好”隨行間距的增大而增大,而果園管理者則無需過多關(guān)注這個(gè)變量。

3.6" 病菌孢子捕捉網(wǎng)格化布局

病菌孢子捕捉網(wǎng)格化布局是為了同時(shí)在較小尺度下監(jiān)測(cè)本地菌源和在較大尺度下監(jiān)測(cè)跨區(qū)域遷移的菌源。其中,應(yīng)用最為廣泛的是監(jiān)測(cè)大豆銹病菌Phakospora pachyrhizi孢子在美國和加拿大之間南北擴(kuò)散的病菌孢子捕捉網(wǎng)格。該網(wǎng)絡(luò)覆蓋北美26個(gè)(?。┲莸募s15 000個(gè)監(jiān)測(cè)點(diǎn),基于統(tǒng)一標(biāo)準(zhǔn)的程序處理和分析樣品,并結(jié)合計(jì)算機(jī)建模模擬大豆銹病的進(jìn)展情況,最后通過ipmPIPE信息平臺(tái)(https:∥www.ipmpipe.org)實(shí)時(shí)發(fā)布病害擴(kuò)散風(fēng)險(xiǎn)及具體的殺菌劑施用指南[70]。在比利時(shí)布設(shè)的病菌孢子捕捉監(jiān)測(cè)網(wǎng)格,通過監(jiān)測(cè)瓦壟大區(qū)(自治行政區(qū))空氣中的小麥條銹病菌Puccinia striiformis f.sp. tritici孢子,預(yù)測(cè)當(dāng)?shù)匦←湕l銹病的進(jìn)展情況[131]。在澳大利亞,由固定位置的氣旋式孢子捕捉器和安裝在車頂?shù)囊苿?dòng)式孢子捕捉器(車載RAM空氣取樣器)共同構(gòu)成病菌孢子捕捉網(wǎng)格,用于長(zhǎng)期監(jiān)測(cè)空氣中的小麥褐斑病菌Pyrenophora tritici-repentis和油菜黑脛病菌Leptosphaeria maculans的孢子,近年來也將危害經(jīng)濟(jì)作物的病原菌列為監(jiān)測(cè)對(duì)象[132]。

與上述在較大空間尺度(gt;100 km)上布設(shè)的病菌孢子捕捉網(wǎng)格不同,加拿大魁北克省的病菌孢子捕捉網(wǎng)格旨在監(jiān)測(cè)30 km×30 km的區(qū)域[59]。病菌孢子捕捉結(jié)果和模型預(yù)測(cè)的病害流行風(fēng)險(xiǎn)能夠?qū)崟r(shí)反饋給生產(chǎn)者,顯著降低了殺菌劑的使用劑量和頻率,提高了環(huán)境、生態(tài)和人類健康效益[109]。

理想情況下,病菌孢子捕捉網(wǎng)格覆蓋下的每一個(gè)地塊都應(yīng)布設(shè)至少一臺(tái)病菌孢子捕捉器,但人力或物力通常無法保障如此高負(fù)荷的監(jiān)測(cè)網(wǎng)格運(yùn)轉(zhuǎn)。因此,病菌孢子捕捉網(wǎng)格化布局可基于傳統(tǒng)的病害勘察和長(zhǎng)期定點(diǎn)監(jiān)測(cè),并融合多種數(shù)據(jù)類型,以增強(qiáng)重大病情監(jiān)測(cè)預(yù)警和防控處置能力[59]。

3.7" 移動(dòng)機(jī)載采樣平臺(tái)

小型載人飛機(jī)是最早用于研究高空大氣中病菌孢子的移動(dòng)采樣平臺(tái),為病菌孢子的遠(yuǎn)距離傳播提供了有力佐證[50,133]。近年來,隨著無人/遙控駕駛飛行器的發(fā)展, 成功驗(yàn)證了距地300 m以內(nèi)空域水平運(yùn)輸達(dá)1 km的病菌孢子擴(kuò)散模型, 其性能遠(yuǎn)超地面布設(shè)的孢子捕捉器, 同時(shí)也彌補(bǔ)了距地10~300 m之間空域的研究空白(載人飛行器在低于300 m的飛行高度上受限)[80, 134136]。

在較大尺度的田間病菌孢子監(jiān)測(cè)方面(擴(kuò)散距離超過100 m且距地超過50 m), 移動(dòng)機(jī)載采樣平臺(tái)具有一定的優(yōu)勢(shì): 1)采樣覆蓋范圍更大;2)可根據(jù)風(fēng)向隨時(shí)調(diào)整飛行軌跡;3)采樣效率高, 能夠發(fā)現(xiàn)較低濃度下的病菌孢子。但也受限于無人機(jī)的續(xù)航和任務(wù)載荷能力, 并且在對(duì)近地面空氣進(jìn)行采樣時(shí)可能受到大氣湍流的干擾, 使飛行安全受到影響[137]?!岸嘈怼睙o人機(jī)雖然能夠克服復(fù)雜的湍流活動(dòng), 但旋翼轉(zhuǎn)動(dòng)形成的下洗氣流也會(huì)對(duì)正常采樣造成一定影響, 并且在懸停時(shí)采樣效率會(huì)大幅下降[91]。

由于飛行成本的限制,長(zhǎng)期以來很難通過移動(dòng)機(jī)載采樣平臺(tái)獲得連續(xù)且長(zhǎng)數(shù)據(jù)鏈的病菌孢子濃度的時(shí)間序列[138]。Gottwald等[139]首創(chuàng)性地在無人機(jī)上搭載伺服系統(tǒng)控制的采樣裝置(“鼓”),通過滑動(dòng)“鼓”的位置(包含20個(gè)連續(xù)的采樣位置)能夠在預(yù)設(shè)時(shí)長(zhǎng)下實(shí)現(xiàn)不同高度和區(qū)域上的連續(xù)采樣。Gonzalez等[140]在此基礎(chǔ)上參考Burkard-7d定容式孢子捕捉器的設(shè)計(jì)原理(http:∥www.burkard.co.uk/7dayst.htm),設(shè)計(jì)了一款適合小型或中型無人機(jī)搭載的簡(jiǎn)易輕量型采樣裝置,在高空采樣時(shí)不受飛行速度和周圍氣流的影響。未來,研制和改良適合小型無人機(jī)搭載的輕量、低耗、高效且能連續(xù)工作的采樣器有望進(jìn)一步擴(kuò)大移動(dòng)機(jī)載采樣平臺(tái)的應(yīng)用范圍,并且對(duì)整個(gè)空氣生物學(xué)領(lǐng)域的研究也將是劃時(shí)代意義的重大變革,正如20世紀(jì)50年代Burkard定容式孢子捕捉器的問世[90]。

地面固定位置上布設(shè)的病菌孢子捕捉器采樣方案的制訂需充分考慮風(fēng)速、風(fēng)向、特定病害系統(tǒng)、冠層結(jié)構(gòu)等不確定性因素的影響。因此,需要與流體力學(xué)、物理學(xué)、氣象學(xué)、計(jì)算機(jī)科學(xué)、植物生理學(xué)等進(jìn)行廣泛深入的學(xué)科交叉。病菌孢子捕捉器一旦布設(shè),其所在位置和環(huán)境條件將作為解讀采樣數(shù)據(jù)合理性和代表性的依據(jù),可為具體的病害綜合防治提供指導(dǎo)。最后,隨著無人機(jī)技術(shù)的迭代發(fā)展,更多移動(dòng)機(jī)載采樣平臺(tái)有望應(yīng)用于病菌孢子捕捉研究,彌補(bǔ)地面布設(shè)的采樣器機(jī)動(dòng)性不足的短板。

4" 基于病菌孢子捕捉數(shù)據(jù)設(shè)定防治指標(biāo)

預(yù)測(cè)病害的流行風(fēng)險(xiǎn)對(duì)制定有效的病害綜合治理策略至關(guān)重要[141]。在病害綜合治理系統(tǒng)中,常通過防治指標(biāo)或稱經(jīng)濟(jì)閾值確定是否必須啟動(dòng)防治方案及采取行動(dòng)的最佳時(shí)機(jī)和手段。由于病菌孢子濃度與病情進(jìn)展密切相關(guān),因此可基于病菌孢子捕捉技術(shù)預(yù)測(cè)病害的流行風(fēng)險(xiǎn),間接估計(jì)作物產(chǎn)量或品質(zhì)的損失情況,從而指導(dǎo)具體的防治決策[27,58,83]。

Carisse等[29]將空氣中洋蔥灰霉病菌Botrytis squamosa孢子濃度達(dá)10~15個(gè)/m3作為殺菌劑噴施的行動(dòng)閾值, 降低了56%~75%的殺菌劑有效用量。Van der Heyden等[59] 將“檢出第一個(gè)病菌孢子”作為防治指標(biāo), 并將病菌孢子濃度達(dá)到10個(gè)/m3及產(chǎn)孢潛力指數(shù)[142]超過80作為再次啟動(dòng)殺菌劑噴施計(jì)劃的行動(dòng)閾值。Thiessen等[103]也將檢出首個(gè)病菌孢子作為防治指標(biāo), 減少了殺菌劑噴施次數(shù)。但空氣中的病菌孢子對(duì)病害發(fā)生和流行的驅(qū)動(dòng)作用還受作物種類、抗病性、生育期、氣象條件等因素影響。Carisse等[58]認(rèn)為病菌孢子捕捉需結(jié)合天氣預(yù)報(bào), 聯(lián)合開發(fā)病害流行風(fēng)險(xiǎn)的預(yù)測(cè)指標(biāo), 以指導(dǎo)精準(zhǔn)防控。

不同病原菌的生存策略不同, 有些病菌單個(gè)孢子的侵染能力有限, 但可產(chǎn)生巨大的病菌孢子群體。因此,基于病菌孢子捕捉技術(shù)制定的防治指標(biāo)相對(duì)較高, 如監(jiān)測(cè)麥類作物、草莓、葡萄上的白粉病菌或麥類作物上的銹菌孢子等。相反, 十字花科、黃瓜、葡萄等作物上的霜霉病菌, 雖然產(chǎn)孢量有限, 但單個(gè)孢子的侵染力較強(qiáng),故相應(yīng)的防治閾值應(yīng)適當(dāng)降低[47]。此外, 同種病原菌在不同作物或同種病原菌的不同株系在同一作物上侵染和產(chǎn)孢能力的差異也影響防治指標(biāo)的制定。Carisse等[43]發(fā)現(xiàn), 覆盆子和草莓上的灰霉病菌Botrytis cinerea孢子濃度增長(zhǎng)速率較葡萄更快。Fall[143]比較了馬鈴薯晚疫病菌不同無性系之間的侵染能力, 發(fā)現(xiàn)造成同等嚴(yán)重度時(shí), 不同無性系的孢子濃度存在顯著性差異。

近年來, 基因組學(xué)及測(cè)序技術(shù)的發(fā)展為流行病學(xué)上存在顯著差異、寄主特異、或殺菌劑抗藥性基因型的病菌孢子的監(jiān)測(cè)提供了理論支撐[47]。Rahman等[52]發(fā)現(xiàn), 空氣中不同寄主適應(yīng)型進(jìn)化分支的葫蘆霜霉病菌Pseudoperonospora cubensis孢子的首次檢出時(shí)間和季節(jié)動(dòng)態(tài)均存在差異, 為種植戶提供了針對(duì)不同葫蘆品種的精準(zhǔn)防治方案。類似地, Carisse等[144]發(fā)現(xiàn), 不同進(jìn)化分支的葡萄霜霉病菌Plasmopara viticola孢子在不同品種上的相對(duì)豐度顯著不同且存在一定競(jìng)爭(zhēng), 可作為葡萄霜霉病綜合治理中風(fēng)險(xiǎn)指標(biāo)的參考依據(jù)。Hellin等[45]通過監(jiān)測(cè)空氣中抗甾醇脫甲基抑制劑(sterol demethylation inhibitors, DMIs)和琥珀酸脫氫酶抑制劑(succinate dehydrogenase inhibitors, SDHIs)類殺菌劑的小麥發(fā)酵殼針孢Zymoseptoria tritici孢子分布, 指導(dǎo)殺菌劑合理選用。

基于病菌孢子捕捉數(shù)據(jù)制定的防治指標(biāo)受氣象條件、作物抗性水平、病害嚴(yán)重度、病菌生物學(xué)特性等因素的影響[42, 58]。當(dāng)條件適于侵染和病害發(fā)展時(shí), 少量病菌孢子就可造成較大的流行風(fēng)險(xiǎn)。因此, 除了孢子量外, 病菌孢子與環(huán)境或寄主互作的關(guān)系也應(yīng)納入決策支持系統(tǒng), 以提供更精準(zhǔn)的綜合治理策略。

5" 結(jié)語與展望

近幾十年來,受氣候變化、耕作制度改變、植物種質(zhì)資源和商品全球化貿(mào)易的影響,許多植物病原菌在世界范圍內(nèi)廣泛傳播[145]。地方流行病害和外來入侵病害分別呈現(xiàn)災(zāi)變和蔓延趨勢(shì)。與此同時(shí),迫于政府、消費(fèi)者的雙重壓力,種植者必須采取更明智的病害防治策略以減輕對(duì)殺菌劑的依賴。因此,病害監(jiān)測(cè)預(yù)警工作正面臨嚴(yán)峻挑戰(zhàn)[3]。自Gregory開創(chuàng)空氣傳播植物病害生物學(xué)研究以來[11],國內(nèi)外學(xué)者承前啟后、繼往開來,與具有突發(fā)性、暴發(fā)性和流行性的多種氣傳病害展開了“持久戰(zhàn)”“世紀(jì)戰(zhàn)”,建立了基于空氣中病菌孢子捕捉量的病害中、短期預(yù)測(cè)預(yù)報(bào)和風(fēng)險(xiǎn)評(píng)估模型,顯著改善了植物病害綜合治理水平。在此背景下,本文匯總了與病菌孢子捕捉和監(jiān)測(cè)相關(guān)的代表性研究成果。

定量分子生物學(xué)的發(fā)展為在不同流行病學(xué)研究尺度上快速、準(zhǔn)確地獲取病菌孢子捕捉數(shù)據(jù)提供了強(qiáng)大的技術(shù)支撐,并能同時(shí)靶向多種病菌孢子[49,5859,109,114]??茖W(xué)家也嘗試將新興的“現(xiàn)場(chǎng)快速檢測(cè)技術(shù)”如等溫PCR技術(shù)(LAMP-PCR或RPA-PCR)與自動(dòng)化病菌孢子捕捉器相結(jié)合,為種植者和植保專家提供實(shí)時(shí)的風(fēng)險(xiǎn)預(yù)警[69,146]。此外,圖像自動(dòng)識(shí)別技術(shù)也在迅速發(fā)展,目前已在多種具有災(zāi)變性流行風(fēng)險(xiǎn)的糧食作物病害和導(dǎo)致毀滅性產(chǎn)量損失的經(jīng)濟(jì)作物病害上建立了病菌孢子的AI圖像識(shí)別數(shù)據(jù)庫,結(jié)合風(fēng)險(xiǎn)估計(jì)模型和相應(yīng)的管理決策可即時(shí)的為用戶提供最佳解決方案(https:∥www.scanittech.com或https:∥bioscout.com.au)。但基于孢子捕捉的病害管理所獲得的經(jīng)濟(jì)效益同時(shí)取決于減少的殺菌劑投入成本和采樣所需成本(包括購買、維護(hù)病菌孢子捕捉器和孢子計(jì)數(shù)與定量的成本),而后者相當(dāng)昂貴,使得我國大多數(shù)仍保有精耕細(xì)作或小農(nóng)經(jīng)營(yíng)模式的農(nóng)戶望而卻步。隨著土地流轉(zhuǎn)政策的持續(xù)推進(jìn)及農(nóng)民專業(yè)合作社的發(fā)展,規(guī)?;⒓s化的現(xiàn)代農(nóng)業(yè)生產(chǎn)模式將成為經(jīng)營(yíng)主體。

未來,有望將病菌孢子監(jiān)測(cè)網(wǎng)格與DNA分析、圖像和數(shù)據(jù)分析技術(shù)結(jié)合,切實(shí)服務(wù)于農(nóng)業(yè)現(xiàn)代化體系下的植物病害管理生產(chǎn)實(shí)踐。

改革開放40余年來,我國科技步入快速發(fā)展軌道,農(nóng)業(yè)科技創(chuàng)新體系整體效能顯著提升,填補(bǔ)了病菌孢子捕捉和監(jiān)測(cè)領(lǐng)域的多項(xiàng)研究空白[147],但與歐美科技強(qiáng)國之間的差距依然存在。我國基于病菌孢子捕捉的監(jiān)測(cè)預(yù)警技術(shù)仍處于發(fā)展的初級(jí)階段,特別是在基礎(chǔ)研究領(lǐng)域和交叉前沿領(lǐng)域亟待攻關(guān)打破創(chuàng)新性瓶頸。當(dāng)下,以物聯(lián)網(wǎng)、大數(shù)據(jù)及人工智能等技術(shù)驅(qū)動(dòng)的第四次工業(yè)革命正以前所未有的態(tài)勢(shì)席卷全球。持續(xù)整合不斷發(fā)展的新興技術(shù),改善數(shù)據(jù)獲取、分析、解釋和共享效率是大勢(shì)所趨, 也是在“大數(shù)據(jù)”時(shí)代下實(shí)現(xiàn)病菌孢子捕捉技術(shù)網(wǎng)格化、信息化與智能化深度融合的必經(jīng)之路。

參考文獻(xiàn)

[1]" SHENASHEN M A, EMRAN M Y, EL S A, et al. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns [J/OL]. Progress in Materials Science, 2022, 124: 100866. DOI: 10.1016/j.pmatsci.2021.100866.

[2]" STRANGE R N, SCOTT P R. Plant disease: a threat to global food security [J]. Annual Review of Phytopathology, 2005, 43(1): 83116.

[3]" JEAN B R, PAMELA K A, DANIEL P B, et al. The persistent threat of emerging plant disease pandemics to global food security [J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2022239118. DOI: 10.1073/pnas.2022239118.

[4]" HUGHES G. The evidential basis of decision making in plant disease management [J]. Annual Review of Phytopathology, 2017, 80(4): 4159.

[5]" 封洪強(qiáng), 姚青, 胡程, 等. 我國農(nóng)作物病蟲害智能監(jiān)測(cè)預(yù)警技術(shù)新進(jìn)展[J]. 植物保護(hù), 2023, 49(5): 229242.

[6]" BROWN J K M, HOVMOLLER M S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease [J]. Science, 2002, 297(5581): 537541.

[7]" SCHMALE Ⅲ D G, ROSS S D. Highways in the sky: Scales of atmospheric transport of plant pathogens [J]. Annual Review of Phytopathology, 2015, 53: 591611.

[8]" SINGH R P, HODSON D P, HUERTA-ESPINO J, et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production [J]. Annual Review of Phytopathology, 2011, 49(1): 465481.

[9]" ZENG Shimai, LUO Yong. Long-distance spread and interregional epidemics of wheat stripe rust in China [J]. Plant Disease, 2006, 90(8): 980988.

[10]GREGORY P H. The microbiology of the atmosphere [M]. 2nd ed. London: Leonard Hill Limited, 1973.

[11]LACEY J, LACEY M E, FITT B D L. Philip Herries Gregory 1907-1986: pioneer aerobiologist, versatile mycologist [J]. Annual Review of Phytopathology, 1997, 35: 114.

[12]GREGORY P H. The dispersion of airborne spores [J]. Transactions of the British Mycological Society, 1945, 28(1/2): 2672.

[13]MCTNEY H A, FITT B D L, SCHMECHEL D. Sampling bioaerosols in plant pathology [J]. Journal of Aerosol Science, 1997, 28(3): 349364.

[14]WILLIAMS R H, WARD E, MCCARTNEY H A. Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores [J]. Applied and Environmental Microbiology, 2021, 67(6): 24532459.

[15]FITT B D L, CREIGHTON N F, BAINBRIDGE A. Role of wind and rain in dispersal of Botrytis fabae conidia [J]. Transactions of the British Mycological Society, 1985, 85(2): 307312.

[16]ROGERS S L, ATKINS S D, WEST J S. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR [J]. Plant Pathology, 2009, 58(2): 324331.

[17]WEST J S, ATKINS S D, EMBERLIN J, et al. PCR to predict risk of airborne disease [J]. Trends in Microbiology, 2008, 16(8): 380387.

[18]LACEY J. Spore dispersal — its role in ecology and disease: the British contribution to fungal aerobiology [J]. Mycological Research, 1996, 100(6): 641660.

[19]CHAMECKI M, DUFAULT N S, ISARD S A. Atmospheric dispersion of wheat rust spores: a new theoretical framework to interpret field data and estimate downwind dispersion [J]. Journal of Applied Meteorology and Climatology, 2011, 51(3): 672685.

[20]HELLIN P, DUVIVIER M, DEDEURWAERDER G, et al. Evaluation of the temporal distribution of Fusarium graminearum airborne inoculum above the wheat canopy and its relationship with Fusarium head blight and DON concentration [J]. European Journal of Plant Pathology, 2018, 151(4): 10491064.

[21]HEMMATI F, PELL J K, MCCARTNEY H A, et al. Airborne concentrations of conidia of Erynia neoaphidis above cereal fields [J]. Mycological Research, 2011, 105(4): 485489.

[22]MORAIS D, SACHE I, SUFFERT F, et al. Is the onset of Septoria tritici blotch epidemics related to the local pool of ascospores [J]. Plant Pathology, 2016, 65(2): 250260.

[23]PAULITZ T C, DUTILLEUL P, YAMASAKI S H, et al. A generalized two-dimensional Gaussian model of disease foci of head blight of wheat caused by Gibberella zeae [J]. Phytopathology, 1999, 89(1): 7483.

[24]REICH J, CHATTERTON S, JOHNSON D. Temporal dynamics of Botrytis cinerea and Sclerotinia sclerotiorum in seed alfalfa fields of southern Alberta, Canada [J]. Plant Disease, 2016, 101(2): 331343.

[25]ALDERMAN S C. Aerobiology of Claviceps purpura in Kentucky bluegrass [J]. Plant Disease, 1993, 77(10): 10451049.

[26]CHAREST J, DEWDNEY M, PAULITZ T, et al. Spatial distribution of Venturia inaequalis airborne ascospores in orchards [J]. Phytopathology, 2002, 92(7): 769779.

[27]CARISSE O, BACON R, LEFEBVRE A. Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration [J]. Crop Protection, 2009, 28(12): 10361044.

[28]AYLOR D E. Vertical variation of airborne concentration of Venturia inaequalis ascospores in an apple orchard [J]. Phytopathology, 1995, 85(2): 175181.

[29]CARISSE O, MCCARTNEY H A, GAGNON J A, et al. Quantification of airborne inoculum as an aid in the management of leaf blight of onion caused by Botrytis squamosa [J]. Plant Disease, 2005, 89(7): 726733.

[30]CARISSE O, TREMBLAY D M, LVESQUE C A, et al. Development of a TaqMan real-time PCR assay for quantification of airborne conidia of Botrytis squamosa and management of Botrytis leaf blight of onion [J]. Phytopathology, 2009, 99(11): 12731280.

[31]WEST J S, CANNING G G M, PERRYMAN S A, et al. Novel technologies for the detection of Fusarium head blight disease and airborne inoculum [J]. Tropical Plant Pathology, 2017, 42(3): 203209.

[32]GENT D H, NELSON M E, FARNSWORTH J L, et al. PCR detection of Pseudoperonospora humuli in air samples from hop yards [J]. Plant Pathology, 2009, 58(6): 10811091.

[33]KUNJETI S G, ANCHIETA A, MARTIN F N, et al. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR [J]. Phytopathology, 2016, 106(11): 14261437.

[34]FALACY J S, GROVE G G, MAHAFFEE W F, et al. Detection of Erysiphe necator in air samples using the polymerase chain reaction and species-specific primers [J]. Phytopathology, 2007, 97(10): 12901297.

[35]王奧霖, 商昭月, 張美惠, 等. 基于病菌孢子捕捉和real-time PCR技術(shù)的田間空氣中小麥白粉病菌孢子動(dòng)態(tài)監(jiān)測(cè)及病情估計(jì)模型研究[J]. 植物保護(hù), 2024, 50(2): 4956.

[36]WALTER F M, FABIEN M, LUCAS U, et al. Catching spores: Linking epidemiology, pathogen biology, and physics to ground-based airborne inoculum monitoring [J]. Plant Disease, 2023, 107(1): 1333.

[37]馬占鴻. 植病流行學(xué)[M]. 北京: 科學(xué)出版社, 2010.

[38]MILLER N E, STOLL R, MAHAFFEE W F, et al. An experimental study of momentum and heavy particle transport in a trellised agricultural canopy [J]. Agricultural and Forest Meteorology, 2015(211/212): 100114.

[39]MILLER N E, STOLL R, MAHAFFEE W F, et al. Mean and turbulent flow statistics in a trellised agricultural canopy [J]. Boundary-Layer Meteorology, 2017, 165(1): 113143.

[40]AARON Ⅱ J P, LI Qing, RIMY M, et al. Monitoring the long-distance transport of Fusarium graminearum from field-scale sources of inoculum [J]. Plant Disease, 2014, 98(4): 504511.

[41]AARON Ⅱ J P, MARR L C, SCHMALE Ⅲ D G, et al. Experimental validation of a long-distance transport model for plant pathogens: Application to Fusarium graminearum [J]. Agricultural and Forest Meteorology, 2015, 203: 118130.

[42]FALL M L, VAN DER HEYDEN H, BRODEUR L, et al. Spatiotemporal variation in airborne sporangia of Phytophthora infestans: characterization and initiative toward improving potato late blight risk estimation [J]. Plant Pathology, 2015, 64(1): 178190.

[43]CARISSE O, TREMBLAY D M, LEFEBVRE A. Comparison of Botrytis cinerea airborne inoculum progress curves from raspberry, strawberry and grape plantings [J]. Plant Pathology, 2014, 63(5): 983993.

[44]FRAAIJE B A, COOLS H J, FOUNTAINE J, et al. Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola [J]. Phytopathology, 2005, 95(8): 933941.

[45]HELLIN P, DUVIVIER M, CLINCKEMAILLIE A, et al. Multiplex qPCR assay for simultaneous quantification of CYP51-S524T and SdhC-H152R substitutions in European populations of Zymoseptoria tritici [J]. Plant Pathology, 2020, 69(9): 16661677.

[46]NICOLAISEN M, WEST J S, SAPKOTA R, et al. Fungal communities including plant pathogens in near surface air are similar across northwestern Europe [J/OL]. Frontiers in Microbiology, 2017, 8: 1729. DOI: 10.3389/fmicb.2017.01729.

[47]JACKSON S L, BAYLISS K L. Spore traps need improvement to fulfil plant biosecurity requirements [J]. Plant Pathology, 2011, 60(5): 801810.

[48]《實(shí)驗(yàn)動(dòng)物與比較醫(yī)學(xué)》編輯部.《中華人民共和國生物安全法》: 防控重大新發(fā)突發(fā)傳染病、動(dòng)植物疫情[J]. 實(shí)驗(yàn)動(dòng)物與比較醫(yī)學(xué), 2021, 41(5): 442.

[49]CHEN Wen, HAMBLETON S, SEIFERT K A, et al. Assessing performance of spore samplers in monitoring aeromycobiota and fungal plant pathogen diversity in Canada [J/OL]. Applied and Environmental Microbiology, 2018, 84(9): e02601-17. DOI: 10.1128/AEM.02601-17.

[50]HIRST J M, HURST G H, HOGG W H. Long-distance spore transport: Methods of measurement, vertical spore profiles and the detection of immigrant spores [J]. Journal of General Microbiology, 1967, 48(3): 329355.

[51]AYLOR D E. The aerobiology of apple scab [J]. Plant Disease, 1998, 82(8): 838849.

[52]RAHMAN A, STANDISH J, D’ARCANGELO K N, et al. Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew [J]. Phytopathology, 2020, 111(2): 312320.

[53]COHEN Y, ROTEM J. Dispersal and viability of sporangia of Pseudoperonospora cubensis [J]. Transactions British Mycological Society, 1971, 57(1): 6774.

[54]STANSBURY C D, MCKIRDY S J, DIGGLE A J, et al. Modeling the risk of entry, establishment, spread, containment, and economic impact of Tilletia indica, the cause of Karnal bunt of wheat, using an Australian context [J]. Phytopathology, 2002, 92(3): 321331.

[55]PAN Zaitao, YANG Xiaobing, PIVONIA S, et al. Long-term prediction of soybean rust entry into the continental United States [J]. Plant Disease, 2006, 90(7): 840846.

[56]KLJUN N, ROTACH M W, SCHMID H P. A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications [J]. Boundary-Layer Meteorology, 2002, 103(2): 205226.

[57]LI Yuxiang, DAI Jichen, ZHANG Taixue, et al. Genomic analysis, trajectory tracking and field investigation of wheat stripe rust pathogen reveal sources and their migration routes contributing to disease epidemics in China [J/OL]. Plant Communications, 2023, 4: 100563. DOI: 10.1016/j.xplc.2023.100563.

[58]CARISSE O, LEVASSEUR A, VAN DER HEYDEN H. A new risk indicator for Botrytis leaf blight of onion caused by Botrytis squamosa based on infection efficiency of airborne inoculum [J]. Plant Pathology, 2012, 61(6): 11541164.

[59]VAN DER HEYDEN H, CARISSE O, BRODEUR L. Comparison of monitoring based indicators for initiating fungicide spray programs to control Botrytis leaf blight of onion [J]. Crop Protection, 2012, 33: 2128.

[60]THIESSEN L D, KEUNE J A, NEILL T M, et al. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew [J]. Plant Pathology, 2016, 65: 238249.

[61]BRACHACZEK A, KACZMAREK J, JEDRYCZKA M. Monitoring blackleg (Leptosphaeria spp.) ascospore release timing and quantity enables optimal fungicide application to improved oilseed rape yield and seed quality [J]. European Journal of Plant Pathology, 2016, 145(3): 643657.

[62]CAO Xueren, YAO Dongming, ZHOU Yilin, et al. Detection and quantification of airborne inoculum of Blumeria graminis f.sp. tritici using quantitative PCR [J]. European Journal of Plant Pathology, 2016, 146(1): 225229.

[63]WEST J S, FITT B D L, LEECH P K, et al. Effects of timing of Leptosphaeria maculans ascospore release and fungicide regime on Phoma leaf spot and Phoma stem canker development on winter oilseed rape (Brassica napus) in southern England [J]. Plant Pathology, 2002, 51(4): 454463.

[64]BRISCHETTO C, BOVE F, LANGUASCO L, et al. Can spore sampler data be used to predict Plasmopara viticola infection in vineyards [J/OL]. Frontiers in Plant Science, 2020, 11: 1187. DOI: 10.3389/fpls.2020.01187.

[65]CAO Xueren, YAO Dongming, XU Xiangming, et al. Development of weather- and airborne inoculum-based models to describe disease severity of wheat powdery mildew [J]. Plant Disease, 2014, 99(3): 395400.

[66]DHAR N, MAMO B E, SUBBARAO K, et al. Measurements of aerial spore load by qPCR facilitates lettuce downy mildew risk advisement [J]. Plant Disease, 2019, 104(1): 8293.

[67]PARDYJAK E R, SPECKART S O, YIN F, et al. Near source deposition of vehicle generated fugitive dust on vegetation and buildings: Model development and theory [J]. Atmospheric Environment, 2008, 42: 64426452.

[68]GONZLEZ-FERNNDEZ E, PIA-REY A, FERNNDEZ-GONZLEZ M, et al. Identification and evaluation of the main risk periods of Botrytis cinerea infection on grapevine based on phenology, weather conditions and airborne conidia [J]. The Journal of Agricultural Science, 2020, 158(1/2): 8898.

[69]LEES A, ROBERTS D M, LYNOTT J, et al. Real-time PCR and LAMP assays for the detection of spores of Alternaria solani and sporangia of Phytophthora infestans to inform disease risk forecasting [J]. Plant Disease, 2019, 103(12): 31723180.

[70]ISARD S A, BARNES C W, HAMBLETON S, et al. Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling [J]. Plant Disease, 2011, 95(11): 13461357.

[71]HU Xuemin, FU Songping, LI Yuxiang, et al. Dynamics of Puccinia striiformis f.sp. tritici urediniospores in Longnan, a critical oversummering region of China [J]. Plant Disease, 2023, 107(10): 31553163.

[72]谷醫(yī)林, 王翠翠, 初炳瑤, 等. 甘谷縣春季空氣中小麥條銹菌孢子動(dòng)態(tài)的監(jiān)測(cè)及其與氣象因素的相關(guān)性分析[J]. 植物保護(hù)學(xué)報(bào), 2018, 45(1): 161166.

[73]GU Yilin, LI Yong, WANG Cuicui, et al. Inter-seasonal and altitudinal inoculum dynamics for wheat stripe rust and powdery mildew epidemics in Gangu, Northwestern China [J]. Crop Protection, 2018, 110: 6572.

[74]AYLOR D E, TAYLOR G. Escape of Peronospora tabacina spores from a field of diseased tobacco plants [J]. Phytopathology, 1983, 73(4): 525529.

[75]AYLOR D E, FRY W E, MAYTON H, et al. Quantifying the rate of release and escape of Phytophthora infestans sporangia from a potato canopy [J]. Phytopathology, 2001, 91(12): 11891196.

[76]LIMPERT E, GODET F, MLLER K. Dispersal of cereal mildews across Europe [J]. Agricultural and Forest Meteorology, 1999. 97(4): 293308.

[77]NEUFELD K N, ISARD S A, OJIAMBO P S. Relationship between disease severity and escape of Pseudoperonospora cubensis sporangia from a cucumber canopy during downy mildew epidemics [J]. Plant Pathology, 2013, 62(6): 13661377.

[78]CHOUDHURY R A, KOIKE S T, FOX A D, et al. Spatiotemporal patterns in the airborne dispersion of spinach downy mildew [J]. Phytopathology, 2016, 107(1): 5058.

[79]FERNANDO W G D, PAULITZ T C, SEAMAN W L, et al. Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots [J]. Phytopathology, 1997, 87(4): 414421.

[80]AYLOR D E, SCHMALE Ⅲ D G, SHIELDS E J, et al. Tracking the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling [J]. Agricultural and Forest Meteorology, 2011, 151(2): 251260.

[81]BLANCO C, DE S B L, ROMERO F. Relationship between concentrations of Botrytis cinerea conidia in air, environmental conditions, and the incidence of grey mold in strawberry flowers and fruits [J]. European Journal of Plant Pathology, 2006, 114(4): 415425.

[82]CAO Xueren, DUAN Xiayu, ZHOU Yilin, et al. Dynamics in concentrations of Blumeria graminis f.sp. tritici conidia and its relationship to local weather conditions and disease index in wheat [J]. European Journal of Plant Pathology, 2012, 132(4): 525535.

[83]CARISSE O, MORISSETTE-THOMAS V, VAN DER HEYDEN H. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry [J]. Phytopathology, 2013, 103(8): 811821.

[84]FALL M L, VAN DER HEYDEN H, BEAULIEU C, et al. Bremia lactucae infection efficiency in lettuce is modulated by temperature and leaf wetness duration under Quebec field conditions [J]. Plant Disease, 2015, 99(7): 10101019.

[85]AGUAYO J, FOURRIER-JEANDEL C, HUSSON C, et al. Assessment of passive traps combined with high-throughput sequencing to study airborne fungal communities [J/OL]. Applied and Environmental Microbiology, 2018, 84(11): e02637-17. DOI: 10.1128/AEM.02637-17.

[86]OVASKAINEN O, ABREGO N, SOMERVUO P, et al. Monitoring fungal communities with the global spore sampling project [J/OL]. Frontiers in Ecology and Evolution, 2020, 7: 511. DOI: 10.3389/fevo.2019.00511.

[87]CARISSE O, SAVARY S, WILLOCQUET L. Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leafblight epidemics [J]. Phytopathology, 2018, 98(1): 3844.

[88]XU Xiangming, BUTT D J, RIDOUT U S. Temporal patterns of airborne conidia of Podosphaera leucotricha, causal agent of apple powdery mildew [J]. Plant Pathology, 1995, 44(6): 944955.

[89]WEST J S, KIMBER R B E. Innovations in air sampling to detect plant pathogens [J]. Annals of Applied Biology, 2015, 166(1):417.

[90]HIRST J M. An automatic volumetric spore trap [J]. Annals of Applied Biology, 1952, 39(2): 257265.

[91]AYLOR D E. Airborne dispersion of pollen and spores [M]. Minnesota: The American Phytopathological Society Saint-Paul Minesota, 2017.

[92]PRUSSIN Ⅱ A J, SZANYI N A, WELLING P I, et al. Estimating the production and release of ascospores from a field-scale source of Fusarium graminearum inoculum [J]. Plant Disease, 2014, 98: 497503.

[93]GILET T, BOUROUIBA L. Fluid fragmentation shapes rain-induced foliar disease transmission [J/OL]. Journal of the Royal Society Interface, 2015, 12(104): 20141092. DOI: 10.1098/rsif.2014.1092.

[94]LINDEMANN J, UPPER C D. Aerial dispersal of epiphytic bacteria over bean plants [J]. Applied and Environmental Microbiology, 1985, 50(5): 12291232.

[95]MORRIS C E, SANDS D C, GLAUX C, et al. Urediospores of rust fungi are ice nucleation active at gt;-10℃ and harbor ice nucleation active bacteria [J]. Atmospheric Chemistry and Physics, 2013, 13(8): 42234233.

[96]MORRIS C E, SANDS D C, GLAUX C, et al. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria [J]. Atmospheric Chemistry and Physics Discussions, 2012, 12(10): 2614326171.

[97]NOLL K E. A rotary inertial impactor for sampling giant particles in the atmosphere [J]. Atmospheric Environment, 1970, 4(1): 919.

[98]EDMONDS R L. Collection efficiency of Rotorod samplers for sampling fungus spores in the atmosphere [J]. Plant Disease Reporter, 1972, 56(8): 704708.

[99]PAUL P A, EL-ALLAF S M, LIPPS P E, et al. Rain splash dispersion of Gibberella zeae within wheat canopies in Ohio [J]. Phytopathology, 2004, 94(12): 13421349.

[100]PHILLIP L M, KARI A P. Spore dispersal patterns of Colletotrichum fioriniae in orchards and the timing of apple bitter rot infection periods [J]. Plant Disease, 2023, 107(8): 24742482.

[101]QUALEN R V, YANG Xiaobing. Spore traps help researchers watch for soybean rust [DB/OL]. Database (Iowa State University), 2006: 185. https:∥lib.dr.iastate.edu/cropnews/1308.

[102]VAN DER HEYDEN H, DUTILLEUL P, BRODEUR L, et al. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling [J]. Phytopathology, 2014, 104(6): 604613.

[103]THIESSEN L D, KEUNE J A, NEILL T M, et al. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew [J]. Plant Pathology, 2016, 65(2): 238249.

[104]SCHOLTHOF K B G. The disease triangle: Pathogens, the environment and society [J]. Nature Reviews Microbiology, 2007, 5(1): 152156.

[105]AYLOR D E. A framework for examining inter-regional aerial transport of fungal spores [J]. Agricultural and Forest Meteorology, 1986, 8(4): 263288.

[106]HIRST J M. Changes in atmospheric spore content: Diurnal periodicity and the effects of weather [J]. Transactions British Mycological Society, 1953, 36(4): 375393.

[107]FERNANDO W G D, MILLER J D, SEAMAN W L, et al. Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots [J]. Canadian Journal of Botany-Revue Canadienne de Botanique, 2000, 78(4): 497505.

[108]PAULITZ T C. Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots [J]. Plant Disease, 1996, 80: 674678.

[109]CARISSE O, VAN DER HEYDEN H. Networked real time disease risk evaluation: A cost-effective approach to disease management [J]. Phytopathology, 2017, 107(12): 145147.

[110]SEVERNS P M, SACKETT K E, FARBER D H, et al. Consequences of long-distance dispersal for epidemic spread: patterns, scaling, and mitigation [J]. Plant Disease, 2018, 103(2): 177191.

[111]KLOSTERMAN S J, ANCHIETA A, MCROBERTS N, et al. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P.schachtii) [J]. Phytopathology, 2014, 104(12): 13491359.

[112]劉偉, 趙亞男, 韓翠仙, 等. 小麥白粉病菌分生孢子田間傳播的初步研究[J]. 植物保護(hù), 2020, 46(3): 4751.

[113]王奧霖. 田間空氣中小麥白粉菌分生孢子的動(dòng)態(tài)監(jiān)測(cè)及遠(yuǎn)程傳播氣流軌跡分析[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2021.

[114]WANG Aolin, SHANG Zhaoyue, JIANG Ru, et al. Development and application of a qPCR-based method coupled with spore trapping to monitor airborne pathogens of wheat causing stripe rust, powdery mildew, and Fusarium head blight [J/OL]. Plant Disease, 2024. DOI: 10.1094/PDIS-03-24-0548-SR.

[115]MAHAFFEE W F, STOLL R. The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions [J]. Phytopathology, 2016, 106(5): 420431.

[116]MADDEN L V, HUGHES G. Sampling for plant disease incidence [J]. Phytopathology, 1999, 89(11): 10881103.

[117]AYLOR D E, IRWIN M E. Aerial dispersal of pests and pathogens: implications for integrated pest management [J]. Agricultural and Forest Meteorology, 1999, 97(4): 233234.

[118]SKELSEY P, ROSSING W A H, KESSEL G J T, et al. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans [J]. Phytopathology, 2009, 99(7): 887895.

[119]RIEUX A, SOUBEYRAND S, BONNOT F, et al. Long-distance wind-dispersal of spores in a fungal plant pathogen: Estimation of anisotropic dispersal kernels from an extensive field experiment [J/OL]. PLoS ONE, 2014, 9(8): e103225. DOI: 10.1371/journal.pone.0103225.

[120]AYLOR D E, ANAGNOSTAKIS S L. Active discharge distance of ascospores of Venturia inaequalis [J]. Phytopathology, 1991, 81(4): 548551.

[121]WAGGNONER P E. The removal of Helminthosporium maydis spores by wind [J]. Phytopathology, 1973, 63(10): 12521255.

[122]AYLOR D E. Force required to detach conidia of Helminthosporium maydis [J]. Plant Physiology, 1975, 55: 99101.

[123]AIST J R, AYLOR D E, PARLANGE J Y. Ultrastructure and mechanics of the conidium-conidiophore attachment of Helminthosporium maydis [J]. Phytopathology, 1976, 66(9): 10501055.

[124]KLJUN N, CALANCA P, ROTACH M W, et al. A simple parameterization for flux footprint predictions [J]. Boundary-Layer Meteorology, 2004, 112(3): 503523.

[125]MARGAIRAZ F, ESHAGH H, HAYATI A N, et al. Development and evaluation of an isolated-tree flow model for neutral-stability conditions [J/OL]. Urban Climate, 2022, 42: 101083. DOI: 10.1016/j.uclim.2022.101083.

[126]BAILEY B N, STOLL R. Turbulence in sparse, organized vegetative canopies: A large-eddy simulation study [J]. Boundary-Layer Meteorology, 2013, 147(3): 369400.

[127]BAILEY B N, STOLL R, PARDYJAK E R, et al. Effect of vegetative canopy architecture on vertical transport of massless particles [J]. Atmospheric Environment, 2014, 95: 480489.

[128]TORKELSON G, PRICE T A, STOLL R. Momentum and turbulent transport in sparse, organized vegetative canopies [J]. Boundary-Layer Meteorology, 2022, 184(1): 124.

[129]RAUPACH M R. Drag and drag partition on rough surfaces [J]. Boundary-Layer Meteorology, 1992, 60(4): 375395.

[130]MILLER N E, STOLL R, MAHAFFEE W F, et al. Heavy particle transport in a trellised agricultural canopy during non-row-aligned winds [J]. Agricultural and Forest Meteorology, 2018(256/257): 125136.

[131]DEDEURWAERDER G, DUVIVIER M, MVUYENKURE S, et al. Spore traps network: a new tool for predicting epidemics of wheat yellow rust [J]. Communications in Agricultural and Applied Biological Sciences, 2011, 76(4): 667670.

[132]GONZALEZ F, GLASSOCK R, DUMBLETON S. Flying spore trap airborne based surveillance: towards a biosecure Australia [Z]. 2011.

[133]HIRST J M, HURST G H, HURST G H. Long-distance spore transport: Vertical sections of spore clouds over the sea [J]. Journal of General Microbiology, 1967, 48(3): 357377.

[134]AYLOR D E, BOEHM M T, SHIELDS E J. Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modeling [J]. Journal of Applied Meteorology and Climatology, 2006, 45(7): 10031015.

[135]SCHMALE Ⅲ D G, DINGUS B R, REINHOLTZ C. Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields [J]. Journal of Field Robotics, 2008, 25(3): 133147.

[136]LIN B, ROSS S D, PRUSSIN Ⅱ A J, et al. Seasonal associations and atmospheric transport distances of fungi in the genus Fusarium collected with unmanned aerial vehicles and ground-based sampling devices [J]. Atmospheric Environment, 2014, 94: 385391.

[137]TECHY L, SCHMALE Ⅲ D G, WOOLSEY C A. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles [J]. Journal of Field Robotics, 2010, 27(3): 335343.

[138]MALDONADO-RAMIREZ S L, SCHMALE Ⅲ D G, SHIELDS E J, et al. The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight [J]. Agricultural and Forest Meteorology, 2005, 132(1): 2027.

[139]GOTTWALD T R, TEDDERS W L. A spore and pollen trap for use on aerial remotely piloted vehicles [J]. Phytopathology, 1985, 75(7): 801807.

[140]GONZALEZ F, CASTRO M P G, NARAYAN P, et al. Development of an autonomous unmanned aerial system to collect time-stamped samples from the atmosphere and localize potential pathogen sources [J]. Journal of Robotic Systems, 2011, 28(6): 961976.

[141]FLEISCHER S J, BLOM P E, WEISZ R. Sampling in precision IPM: When the objective is a map [J]. Phytopathology, 1999, 89(11): 11121118.

[142]LACY M L, PONTIUS G A. Prediction of weather-mediated release of conidia of Botrytis squamosa from onion leaves in the fields [J]. Phytopathology, 1983, 73(5): 670676.

[143]FALL M L, TREMBLAY D M, GOBEIL-RICHARD M, et al. Infection efficiency of four Phytophthora infestans clonal lineages and DNA-based quantification of sporangia [J/OL]. PLoS ONE, 2015, 10(8): e0136312. DOI: 10.1371/journal.pone.0136312.

[144]CARISSE O, TREMBLAY D M, HBERT P O, et al. Evidence for differences in the temporal progress of Plasmopara viticola clades riparia and aestivalis airborne inoculum monitored in vineyards in eastern Canada using a specific multiplex qPCR assay [J]. Plant Disease, 2021, 105(6): 16661676.

[145]WANG Chenzhi, WANG Xuhui, JIN Zhenong, et al. Occurrence of crop pests and diseases has largely increased in China since 1970 [J]. Nature Food, 2022, 3(1): 5765.

[146]MLISSA S A, GUILLAUME J B, DAVID M T, et al. Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves [J]. Plant Disease, 2017, 101(7): 12691277.

[147]胡小平, 戶雪敏, 馬麗杰, 等. 作物病害監(jiān)測(cè)預(yù)警研究進(jìn)展[J]. 植物保護(hù)學(xué)報(bào), 2022, 49(1): 298315.

(責(zé)任編輯:楊明麗)

猜你喜歡
采樣器冠層孢子
基于低空遙感的果樹冠層信息提取方法研究
基于激光雷達(dá)的樹形靶標(biāo)冠層葉面積探測(cè)模型研究
安徽省淮南森林冠層輻射傳輸過程的特征
粉塵采樣器檢定和校準(zhǔn)證書中不確定度區(qū)別
施氮水平對(duì)冬小麥冠層氨揮發(fā)的影響
鯽魚黏孢子蟲病的診斷與防治
制作孢子印
無所不在的小孢子
PM2.5小流量采樣器數(shù)據(jù)采集與導(dǎo)出系統(tǒng)優(yōu)化研究
基于VB的PM2.5采樣器數(shù)據(jù)處理軟件的研究
成武县| 浏阳市| 岗巴县| 伊宁市| 万山特区| 揭阳市| 左权县| 洛宁县| 聂荣县| 芦溪县| 临洮县| 辽阳县| 鹤峰县| 简阳市| 临城县| 屯留县| 交口县| 凤城市| 新巴尔虎右旗| 孝义市| 金秀| 马鞍山市| 张家港市| 白山市| 和平区| 甘德县| 赤壁市| 连城县| 浪卡子县| 玉树县| 柘荣县| 布尔津县| 鄄城县| 瓮安县| 榆树市| 尤溪县| 田东县| 清涧县| 华池县| 黔江区| 琼中|