摘 要:" 維管植物是地球生物多樣性的重要組成部分,維管植物的系統(tǒng)分類、多樣性起源和演化等問題一直備受關(guān)注。隨著測序技術(shù)的發(fā)展,越來越多的維管植物質(zhì)體基因組序列被解析和發(fā)表,為深入認(rèn)識(shí)維管植物多樣性的起源和演化提供了新的證據(jù)。該文介紹了維管植物質(zhì)體基因組的基本特征和結(jié)構(gòu)多樣性,并以寄生植物為例簡述了質(zhì)體基因組退化;回顧了當(dāng)前主流的質(zhì)體基因組的測序技術(shù)及組裝策略,并探討了獲取標(biāo)本DNA和特殊類群的質(zhì)體基因組時(shí)需要注意的問題。此外,該文還探討了質(zhì)體基因組在系統(tǒng)發(fā)育和超級DNA條形碼研究中面臨的問題與挑戰(zhàn),并提出了相應(yīng)的建議。
關(guān)鍵詞: 質(zhì)體基因組演化, 基因組結(jié)構(gòu)變異, 質(zhì)體基因組獲取, 系統(tǒng)發(fā)育, 超級條形碼
中圖分類號:" Q943
文獻(xiàn)標(biāo)識(shí)碼:" A
Plastome diversity of vascular plants and its acquisition and applications: A review
CHEN Liqiong1, LI Ruozhu1,2, LI Xin1,3, YAO Xin1,YANG Junbo4, LI Dezhu4, YU Wenbin1,5*
( 1. Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China;
2. Qinzhou Agricultural Technology Promotion Center,Qinzhou 535000, Guangxi, China;
3. Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 6300192,Japan;
4. The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
5. Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Mengla 666303, Yunnan, China )
Abstract:" Vascular plants are crucial to global biodiversity, so their systematic taxonomy, origin and evolution of diversity have been the hot topics. With the rapid development of sequencing technology, more and more vascular plant plastomes have been sequenced and published, offering
new evidence for further understanding of the origin and evolution of vascular plants diversity. This paper introduces the basic characteristics and structural variations of vascular plant plastomes, as well as plastome degradation in parasitic plants; reviews the current main methods of plastome sequencing and assembly; and discusses the important considerations for herbarium DNA and lineages with challenging plastome assemblies. In addition, this study discusses the difficulties with applying plastomes to phylogenetic and super-barcode studies, and proposes corresponding suggestions to address these issues.
Key words: plastome evolution, genome structure variation, acquiring plastomes, phylogeny, super-barcodes
植物基因組中蘊(yùn)含著豐富的遺傳信息,編碼遺傳信息的DNA序列和氨基酸序列是系統(tǒng)發(fā)育和演化分析的重要性狀,為探討植物的起源與演化提供了重要證據(jù)(Gitzendanner et al., 2018a; Li HT et al., 2021)。植物細(xì)胞中通常含有3套基因組,即核基因組、質(zhì)體基因組和線粒體基因組,其中質(zhì)體基因組和線粒體基因組合稱為細(xì)胞器基因組。核基因組為雙親遺傳;細(xì)胞器基因組中的線粒體基因組為母系遺傳;質(zhì)體基因組多為母系遺傳,但在裸子植物松柏類中為父系遺傳,極少物種是雙親遺傳的(Corriveau amp; Coleman, 1988; Zhang amp; Sodmergen, 2010)。
質(zhì)體基因組常被稱為葉綠體基因組,這是因?yàn)橘|(zhì)體基因組通常來源于葉片中的葉綠體。實(shí)際上,葉綠體是質(zhì)體的一種,根據(jù)所含色素和功能不同,質(zhì)體可分為有色體、黃化體、造油體和淀粉體等。質(zhì)體的光合作用能力被證實(shí)源自藍(lán)菌類祖先,藍(lán)藻祖先主動(dòng)侵染或被真核生物吞噬后因未被消化而形成共生關(guān)系,之后退化為細(xì)胞器(Gould et al., 2008; Wicke et al., 2011; Botte amp; Marechal, 2014)。相較于核基因組和線粒體基因組,質(zhì)體基因組大小及核苷酸置換速率適中,因其廣泛存在于各類植物組織細(xì)胞中而易獲得,是研究植物系統(tǒng)發(fā)育和演化的重要手段(張韻潔和李德銖, 2011; Gitzendanner et al., 2018b)。
全球已知的維管植物約369 054萬種,是地球生物多樣性的重要組成部分,包括廣義蕨類(石松植物和狹義蕨類植物)、裸子植物和被子植物(Borsch et al., 2020; 錢宏等, 2022)。測序技術(shù)的快速發(fā)展促使維管植物諸多類群的質(zhì)體基因組被解析和發(fā)表,為解決物種鑒定、起源和演化等重要問題提供了新手段。本文綜述了維管植物質(zhì)體基因組的基本特征和結(jié)構(gòu)多樣性,并以異養(yǎng)植物為例概述質(zhì)體基因組的演化;簡要概述主流的質(zhì)體基因組的獲取及組裝策略,探討獲取標(biāo)本DNA和特殊類群質(zhì)體基因組的常用策略;進(jìn)一步探討質(zhì)體基因組在系統(tǒng)發(fā)育和超級DNA條形碼研究中面臨的問題與挑戰(zhàn),以期為未來質(zhì)體基因組的研究方法和研究方向提供參考。
1 質(zhì)體基因組結(jié)構(gòu)多樣性與演化
1.1 質(zhì)體基因組的基本特征
截至2024年3月,葉綠體基因組綜合數(shù)據(jù)庫(chloroplast genome information resource,CGIR,https://ngdc.cncb.ac.cn/cgir)共收錄了27 901條質(zhì)體基因組序列,維管植物15 624種(約占已知物種的4.23%),其中被子植物占比最多(94.88%),石松類植物占比最少(0.45%)(圖1)。在維管植物中,被子植物的質(zhì)體基因組結(jié)構(gòu)因相對保守而更易測序組裝,石松類部分類群因存在多種復(fù)雜基因組構(gòu)型而不易組裝(圖2)。維管植物質(zhì)體基因組大小相差24倍,最小的是質(zhì)體基因組完全退化的寄生植物大花草屬(Rafflesia)和菟絲子屬(Cuscuta)下Subulatae組(Molina et al., 2014; Banerjee et al., 2023),而最大的是牦牛兒苗科Pelargonium transvaalense (KM527900)可以達(dá)到242 575 bp (Weng et al., 2017),存在大量重復(fù)序列。維管植物的質(zhì)體基因組大小平均為150 kb,不同類群的質(zhì)體基因組平均大小略有差異,依次為155 kb(石松類)、152 kb(被子植物)、151 kb(蕨類植物)、131 kb(裸子植物)。相較于維管植物,非維管植物質(zhì)體基因組大小相差10倍左右,最小的劍葉蘚(Scopelophila cataractae, LC634773)為122 290 bp,最大的綠藻門紅球藻(Haematococcus lacustris, MG677935)為1 352 306 bp (Bauman et al., 2018; Inoue et al., 2022)。維管植物的質(zhì)體基因組GC含量相差2倍,最低的是寄生植物Pilostyles hamiltonii僅為22.7% (Bellot amp; Renner, 2016),最高的是石松類的翠云草(Selaginella uncinata)為57.5% (Mower et al., 2019)。
在維管植物中,95%以上物種質(zhì)體基因組為四分體結(jié)構(gòu),包括大單拷貝區(qū)(large single copy, LSC)約80 kb、小單拷貝區(qū)(small single copy, SSC)約20 kb和2個(gè)反向重復(fù)區(qū)(inverted repeat, IR)為15~30 kb (Bock amp; Knoop, 2012; Zhu et al., 2016)(圖2)。質(zhì)體基因組通常含有101~118個(gè)基因,包括66~82個(gè)蛋白質(zhì)編碼基因(protein-coding sequence, CDS)、4個(gè)核糖體RNA和29~32個(gè)轉(zhuǎn)運(yùn)RNA(Bock amp; Knoop, 2012)(表1)。相較于植物核基因組或線粒體基因組,質(zhì)體基因密度較高,占50%~70% (Ruhlman amp; Jansen, 2014)。質(zhì)體基因組通常富含AT,GC含量為25%~40%。質(zhì)體基因組的GC含量分布不均勻現(xiàn)象明顯,通常IR區(qū)GC含量最高,LSC區(qū)次之,SSC區(qū)最低;編碼區(qū)和非編碼區(qū)之間也存在GC含量差異,蛋白質(zhì)編碼區(qū)顯著高于非編碼區(qū)(表1)。此外,編碼基因的GC含量又因功能不同而有所差異,光合作用相關(guān)基因?yàn)樽罡?,NAD(P)H基因最低(Ruhlman amp; Jansen, 2014; Li X et al., 2021; Chen et al., 2024)。
在質(zhì)體基因組中,蛋白質(zhì)編碼基因按功能主要分為3大類,即光合作用相關(guān)基因、質(zhì)體遺傳表達(dá)相關(guān)基因和其他功能基因。光合作用相關(guān)基因包括光系統(tǒng)I和光系統(tǒng)Ⅱ蛋白質(zhì)亞基(psa/psb)、細(xì)胞色素復(fù)合物(pet)、ATP合成酶(atp)、NAD(P)H復(fù)合物(ndh)、調(diào)控光合作用強(qiáng)度(rbcL、ccsA和cemA)、光系統(tǒng)I組裝蛋白(ycf3和ycf4)和不依賴光的原葉綠素酸酯還原酶(Wicke et al., 2011)。其中,chl基因在葉綠素合成途徑中起關(guān)鍵作用,但僅存在于苔蘚類、石松類、蕨類和多數(shù)裸子植物中(McCoy et al., 2008; Wicke et al., 2011)。質(zhì)體遺傳表達(dá)的相關(guān)基因,包括編碼核糖體蛋白質(zhì)大小亞基(rpl和rps)和質(zhì)體編碼的聚合酶復(fù)合物(rpo),以及Ⅱ型內(nèi)含子剪切酶(matK)。其他功能基因包括3種基因,即乙酰輔酶A羧化酶亞基D(accD)、Clp蛋白水解酶催化亞基(clpP)、蛋白質(zhì)翻譯起始因子1(infA),以及功能未知的ycf1、ycf2和ycf15。乙酰輔酶A羧化酶是脂肪酸合成的關(guān)鍵酶,由4種ACC族基因共同編碼,其中3種(accA、accB和accC)已轉(zhuǎn)移到核基因組中,僅accD基因保留在質(zhì)體基因組中(John amp; Grover, 2002)。已有研究表明accD基因的轉(zhuǎn)錄表達(dá)在煙草葉片的形態(tài)建成與發(fā)育中必不可缺(Kode et al., 2005),并且accD基因功能表達(dá)可間接調(diào)控植物的耐熱性 (Huang et al., 2023)。在牻牛兒苗科、廣義柏類等類群中,質(zhì)體基因組中accD基因(pt-accD)已向核基因組發(fā)生了轉(zhuǎn)移,核基因中accD基因(n-accD)替代pt-accD的功能,從而導(dǎo)致pt-accD基因出現(xiàn)假基因化或丟失(Rousseau-Gueutin et al., 2013; Sudianto amp; Chaw, 2019)。此外,這些類群的部分屬同時(shí)存在于pt-accD和 n-accD中,并且都能正常轉(zhuǎn)錄表達(dá)(Rousseau-Gueutin et al., 2013; Park et al., 2017; Sudianto amp; Chaw, 2019)。值得關(guān)注的是,買麻藤屬(Gnetum) pt-accD完全丟失,但有2個(gè)n-accD拷貝且靶向不同的質(zhì)體亞結(jié)構(gòu),其各自功能和起源未能確定(Sudianto amp; Chaw, 2019)。由于編碼蛋白質(zhì)翻譯起始因子的infA基因頻繁向核基因組轉(zhuǎn)移,因此導(dǎo)致維管植物的質(zhì)體基因組發(fā)生多次獨(dú)立假基因化或丟失(Millen et al., 2001; Robert et al., 2007; Yang et al., 2021)。功能未知的ycf1和ycf2是質(zhì)體基因組中最長的基因,也是維管植物中最為保守的質(zhì)體基因之一(Drescher et al., 2000; Wicke et al., 2011),現(xiàn)僅部分寄生植物和禾本科植物,以及少數(shù)被子植物的ycf1和ycf2基因會(huì)出現(xiàn)不同程度的假基因化和丟失,具體原因不詳(Wicke et al., 2011; Ruhlman amp; Jansen, 2014; de Vries et al., 2015; Jin DM et al., 2020)。因此,深入解析質(zhì)體基因組的功能,質(zhì)體和核基因組之間如何協(xié)作,并厘清哪些質(zhì)體基因可以被線粒體或核基因替代,這將有助于光合生物遺傳學(xué)和質(zhì)體合成生物學(xué)等技術(shù)的研發(fā)與突破。
1.2 質(zhì)體基因組結(jié)構(gòu)多樣性
維管植物質(zhì)體全基因組序列表現(xiàn)出基因組結(jié)構(gòu)和基因次序的多樣化,可劃分為3種主要類型:第一種是LSC-IR-SSC邊界區(qū)域變異,4個(gè)邊界區(qū)域是基因組結(jié)構(gòu)變異的熱點(diǎn)區(qū)域,表現(xiàn)形式為IR/SSC邊界區(qū)發(fā)生擴(kuò)張或收縮,甚至出現(xiàn)1個(gè)IR區(qū)完全丟失,或直接重復(fù)結(jié)構(gòu)(directed repeats, DR);第二種是質(zhì)體基因組動(dòng)態(tài)結(jié)構(gòu),無IR結(jié)構(gòu),但存在多個(gè)重復(fù)片段介導(dǎo)質(zhì)體基因組結(jié)構(gòu)變異;第三種是基因或大片段序列重排,常見有倒位和移位(Wicke et al., 2011; Wu et al., 2011; Xiang et al., 2022; Zhou et al., 2022)(圖2、圖3)。
維管植物的質(zhì)體基因組IR區(qū)的基因含量雖然比較保守,但在一些類群中也存在差異。保守的IR區(qū)通常包含4個(gè)rRNA(4.5S、5S、16S和23S)和5個(gè)tRNA基因(trnA-UGC、trnI-GAU、trnN-GUU、trnR-ACG 和trnV-GAC),以及5個(gè)編碼基因(rpl2、rpl23、rps7、部分rps12和ycf2)(Zhu et al., 2016)。在維管植物演化歷史上,IR區(qū)經(jīng)歷了無數(shù)次小的變異和至少2次獨(dú)立的大規(guī)模擴(kuò)張:一次是裸子植物祖先IR區(qū)擴(kuò)張使得rps12、rps7、ndhB、trnL-CAA和ycf2基因轉(zhuǎn)移到IR區(qū)內(nèi);另一次則是被子植物祖先再次擴(kuò)張將trnI-GAU、rpl23和rpl2基因移入IR區(qū)內(nèi)(Zhu et al., 2016)。IR區(qū)的擴(kuò)張使得個(gè)別基因擁有2份拷貝,從而影響質(zhì)體基因組的大小與基因數(shù)量。例如,Pelargonium transvaalense(天竺葵屬和牻牛兒苗科,KM527900)的質(zhì)體基因組大小為242 575 bp、基因含量為183個(gè),IR區(qū)已擴(kuò)張至87 724 bp(序列占比72.33%,含63個(gè)基因)(Ruhlman amp; Jansen, 2018)(圖2,表1)。IR區(qū)擴(kuò)張廣泛存在于維管植物不同支系中,如松葉蕨科(Psilotaceae)、麻黃屬(Ephedra)、馬先蒿屬(Pedicularis)等(Zhu et al., 2016; Li X et al., 2021; Du et al., 2022)。同樣,IR的收縮也出現(xiàn)在多個(gè)類群中,如柳杉(Cryptomeria japonica)、松科(Pinaceae)和廣義柏類等(Wu et al., 2011; Zhu et al., 2016)。IR區(qū)的完全丟失是IR收縮的極端情況,松科和廣義柏科以及被子植物8個(gè)分支(豆科IRLC分支、牻牛兒苗科、菟絲子屬和仙人掌科等)均有報(bào)道(Wu et al., 2011; Zhu et al., 2016; Ping et al., 2022; Chen et al., 2024)(圖2)。IR區(qū)丟失的類群表現(xiàn)出更多的基因重排,由此推測IR區(qū)可能具有維持質(zhì)體基因組穩(wěn)定的作用(Palmer, 1983; Sinn et al., 2018)。最新的一些研究結(jié)果表明,IR區(qū)變化與基因重排不存在明顯的關(guān)聯(lián)性(Jin DM et al., 2020),可能是某種調(diào)控機(jī)制崩潰造成IR區(qū)變化和基因重排同時(shí)發(fā)生(Mower amp; Vickrey, 2018; Maciszewski et al., 2022; Wang et al., 2022)。此外,IR區(qū)變異具有很強(qiáng)的系統(tǒng)發(fā)育信號,可以用于定義單系群,如豆科蝶形花亞科的IRLC分支共享IR區(qū)丟失(王銀環(huán), 2017)、菟絲子亞屬共享IR區(qū)丟失(Banerjee amp; Stefanovic', 2020; Chen et al., 2024)。
DNA復(fù)制、重組和修復(fù)系統(tǒng)的功能障礙和保真性下降,以及短串聯(lián)重復(fù)序列被認(rèn)為是驅(qū)動(dòng)質(zhì)體基因組重排的主要原因(Weng et al., 2014; Zhang et al., 2016)。在DNA修復(fù)過程中,重復(fù)基因區(qū)域可參與結(jié)構(gòu)的修復(fù),而精度不同的修復(fù)可能會(huì)導(dǎo)致結(jié)構(gòu)變異(Carvalho amp; Lupski, 2016)。通常低復(fù)雜度的串聯(lián)重復(fù)序列因相似性高而易發(fā)生復(fù)制移位和倒位,進(jìn)而導(dǎo)致結(jié)構(gòu)重排,如馬兜鈴科馬蹄香屬(Saruma)和豆科的IRLC分支(Sinn et al., 2018; Wang et al., 2022),而長重復(fù)序列則可阻礙結(jié)構(gòu)變異的發(fā)生(Mower amp; Vickrey, 2018; Wang et al., 2022)。同時(shí),(近)回文序列由于能與編碼鏈和模板鏈配對,構(gòu)成十字型DNA結(jié)構(gòu),因此可誘發(fā)重組導(dǎo)致基因組結(jié)構(gòu)重排(Sinn et al., 2018)。此外,IR區(qū)的擴(kuò)張收縮也是質(zhì)體基因組結(jié)構(gòu)變異的驅(qū)動(dòng)因素之一,如菟絲子屬的IR擴(kuò)張促使ycf1基因鏡像拷貝,隨后SSC區(qū)擴(kuò)張使其丟失一份拷貝,從而導(dǎo)致ycf1基因發(fā)生倒位(Chen et al., 2024)。
1.3 異養(yǎng)植物質(zhì)體基因組退化和基因丟失
自養(yǎng)植物依賴質(zhì)體進(jìn)行光合作用產(chǎn)生能量,其質(zhì)體基因組的大小、結(jié)構(gòu)和基因含量相對保守(Wicke et al., 2011; Bock amp; Knoop, 2012; Wicke et al., 2016)。相比較而言,異養(yǎng)植物(包括寄生植物和菌根異養(yǎng)植物)利用根/莖或菌根真菌從別的植物或有機(jī)體“盜取”生長發(fā)育必需的營養(yǎng)物質(zhì),其特殊的營養(yǎng)方式促使質(zhì)體基因組發(fā)生退化(Westwood et al., 2010)。根據(jù)對宿主依賴程度的不同,異養(yǎng)植物可分為半異養(yǎng)植物和全異養(yǎng)植物。半異養(yǎng)植物主要從寄主獲得水分和無機(jī)鹽等,可獨(dú)立進(jìn)行光合作用。全異養(yǎng)植物喪失光合作用,依賴寄主獲取營養(yǎng)物質(zhì)。
目前,異養(yǎng)植物質(zhì)體基因組的研究已涵蓋半異養(yǎng)到全異養(yǎng)的范疇,基因組特征表現(xiàn)出高度異質(zhì)性,基因組大小從小葉刺球果(Krameria erecta, OL889926)為177 797 bp退化至質(zhì)體基因完全丟失(如大花草屬,菟絲子屬下Subulatae組) (Molina et al., 2014; Wicke amp; Naumann, 2018; Cai et al., 2021; Banerjee et al., 2022; Banerjee amp; Stefanovic, 2023)(圖3)。半異養(yǎng)植物質(zhì)體基因組大小為110~172 kb,與自養(yǎng)植物相近,含有110~130個(gè)基因,僅部分基因假基因化或丟失(Goncalves et al., 2019; Li X et al., 2021)。全異養(yǎng)植物的質(zhì)體基因組在基因組大小和基因含量上發(fā)生快速退化,基因組大小從100 kb到完全丟失(如大花草屬),最多可含57個(gè)基因 (McNeal et al., 2007; Molina et al., 2014; Wicke amp; Naumann, 2018; Cai et al., 2021)。在列當(dāng)科中,隨著對寄主依賴程度的增加,寄生植物質(zhì)體基因組大小和基因含量均逐步降低,這暗示質(zhì)體基因組特征與寄生習(xí)性轉(zhuǎn)變有關(guān)(Wicke amp; Naumann, 2018)。盡管異養(yǎng)生活型的轉(zhuǎn)變與基因丟失顯著相關(guān)(Wicke amp; Naumann, 2018),但選擇壓力的改變對基因丟失和生活型轉(zhuǎn)變的影響等尚未經(jīng)過實(shí)驗(yàn)驗(yàn)證。Chen等(2024)研究表明,菟絲子屬寄生習(xí)性的轉(zhuǎn)變可能放松了質(zhì)體基因的選擇壓力,引發(fā)GC含量降低、密碼子偏好性改變、重復(fù)序列增多、dN和dS升高等微變異,從而導(dǎo)致其基因組退化和質(zhì)體基因組結(jié)構(gòu)變異。因此,深入探究異養(yǎng)生活型與質(zhì)體基因組特征的關(guān)系還需納入更多種可能因素,如重排率、結(jié)構(gòu)變異區(qū)段內(nèi)的dN和dS、倒位區(qū)域前后的重復(fù)片段等。同時(shí),還需考慮數(shù)據(jù)之間的自相關(guān)以減小結(jié)果誤差,如基因的數(shù)量直接影響質(zhì)體基因組大小、GC含量變化與dN和dS相關(guān)。現(xiàn)有研究表明,異養(yǎng)習(xí)性的轉(zhuǎn)變促使整個(gè)質(zhì)體基因組發(fā)生退化(Wicke amp; Naumann, 2018; Chen et al., 2024),一些質(zhì)體基因可能轉(zhuǎn)移到核或被核基因替代,不過大部分全異養(yǎng)植物仍保留了部分質(zhì)體基因,這些基因是否還有執(zhí)行功能仍未解析。此外,質(zhì)體也參與多種激素合成,若將所有質(zhì)體基因沉默,異養(yǎng)植物是否能夠存活等問題仍需進(jìn)一步的探究。
不同譜系的異養(yǎng)植物質(zhì)體基因丟失表現(xiàn)出趨同現(xiàn)象,整合現(xiàn)有的質(zhì)體基因組,質(zhì)體基因組退化可分為6個(gè)階段 (Barrett et al., 2014; Graham et al., 2017; Wicke amp; Naumann, 2018; Barrett et al., 2019)(圖4)。從自養(yǎng)生活到異養(yǎng)生活型轉(zhuǎn)變時(shí),NAD(P)H復(fù)合物(ndh)基因最先開始丟失;從半異養(yǎng)到全異養(yǎng)過渡時(shí),個(gè)別光合作用相關(guān)基因(psa、psb、pet、ycf3/ycf4、cemA和ccsA)、質(zhì)體編碼的聚合酶基因(rpo)和ATP合酶復(fù)合體(atp)開始出現(xiàn)假基因化和丟失;全異養(yǎng)階段,光合作用相關(guān)基因進(jìn)一步丟失,與光合作用無關(guān)的基因核心非生物能基因(accD、clpP和ycf1/ycf2)和trnE-UUC也陸續(xù)假基因化和丟失,最終質(zhì)體基因完全丟失(圖4)。然而,異養(yǎng)習(xí)性是獨(dú)立演化的性狀,取樣偏差、缺失關(guān)鍵過渡類群和注釋標(biāo)準(zhǔn)的不統(tǒng)一等問題導(dǎo)致尚未有一個(gè)演化模型能適用所有異養(yǎng)植物。比如,一個(gè)基因注釋為假基因還是基因丟失標(biāo)準(zhǔn)的偏差將導(dǎo)致不同的注釋,假基因化是個(gè)體水平突變造成還是種水平共有的特征。因此,為了獲得更為精細(xì)的質(zhì)體基因組演化模式,需要沿著從自養(yǎng)生活型到全寄生生活型梯度、統(tǒng)一注釋的原則、規(guī)范注釋的流程,并結(jié)合跨譜系類群、高取樣密度和大數(shù)據(jù)進(jìn)行探索。
2 質(zhì)體基因組的獲取
2.1 文庫制備和測序
隨著測序技術(shù)的快速革新,質(zhì)體基因組測序技術(shù)日臻成熟。Shinozaki等(1986)利用限制性內(nèi)切酶法且克隆測序煙草(Nicotiana tabacum),獲得首條質(zhì)體基因組序列。隨后該方法被PCR擴(kuò)增和雙脫氧核苷酸末端終止法(或稱Sanger測序法)替代(Tabarlet et al., 1991)。如今,借助二代測序(next-generation sequencing, NGS)的全基因組淺層測序(genome skimming) 技術(shù),獲得全基因組(gDNA)較低測序深度的基因組數(shù)據(jù),便能組裝出完整的質(zhì)體全基因組、線粒體全基因組和部分核基因序列。3套基因組組裝效率差異主要是由于植物細(xì)胞中包含了大量質(zhì)體,單個(gè)細(xì)胞的質(zhì)體基因組數(shù)量超過核基因組的100倍,因此使用相對較低的測序深度便可獲得足夠的數(shù)據(jù)來組裝質(zhì)體全基因組(Straub et al., 2012)。全基因組淺層測序因無需事先富集或者分離純化質(zhì)體,可直接使用較低測序深度(0.1x~10x)的優(yōu)點(diǎn),被認(rèn)為是目前獲得質(zhì)體基因組最直接且成本最低的方法(Dodsworth, 2015; Twyford amp; Ness, 2017)。相比較之下,盡管質(zhì)體分離純化富集法易從頭組裝,但因其耗時(shí)、耗力、耗錢且僅能獲得質(zhì)體基因組而被淘汰。
NGS文庫核心步驟為基因組打斷-末端修復(fù)-加接頭-PCR-測序前信號放大,根據(jù)是否進(jìn)行PCR可以分為2類,依賴PCR的NGS文庫和PCR-free的NGS文庫。盡管后者因避免擴(kuò)增錯(cuò)誤和偏向性,以及高保真性和高數(shù)據(jù)利用率而備受研究人員的青睞,但必需的起始DNA量是前者的100倍(為1 ug DNA)。常用的建庫試劑盒有用酶切法的Illumina DNA Prep、片段化的Illumina TruSeq、兼容型的NEB Ultra和磁珠型DNA selection beads。維管植物的質(zhì)體基因組大小和測序的組織類型存在差異,其gDNA中所含的質(zhì)體基因片段含量浮動(dòng)巨大,從0.3%[歐洲云杉(Picea abies)]到接近40%[敘利亞馬利筋(Asclepias syriaca)](Twyford amp; Ness, 2017)。因此,開發(fā)一種具有廣泛高兼容性的試劑盒,使其提取所需數(shù)量的質(zhì)體基因組片段進(jìn)行測序是非常有必要的。
標(biāo)本材料的DNA由于儲(chǔ)藏時(shí)間、組織特性、干燥條件等因素的影響,標(biāo)本DNA高度降解的DNA提取濃度低,并且易受外源DNA 污染,因此標(biāo)本的質(zhì)體全基因組不易獲得。Zeng等 (2018)開發(fā)了適合館藏標(biāo)本材料的基因組淺層測序的實(shí)用流程,僅以500 pg的起始DNA量,通過模板分子不打斷、不作片段選擇、不少于8個(gè)PCR循環(huán)富集barcode文庫,便可獲得完整或幾近完整的質(zhì)體基因組序列,這為基于館藏標(biāo)本遺傳信息的生物學(xué)研究帶來了新的機(jī)遇。Alsos等(2020)對上千份館藏標(biāo)本和硅膠干燥材料進(jìn)行比較研究,發(fā)現(xiàn)硅膠干燥材料的質(zhì)體基因組組裝成功率大于館藏標(biāo)本,表明植物野外科考調(diào)查除標(biāo)本和種子收集以外,還應(yīng)留有硅膠干燥的分子材料。
目前,NGS平臺(tái)的讀長為35~700 bp,盡管這比Sanger測序長度要短,但足以用于質(zhì)體基因組的從頭組裝。NGS測序通常選擇短片段測序或雙端測序,即2 ×150 bp。測序時(shí)應(yīng)注意,質(zhì)體片段的覆蓋度(coverage)應(yīng)大于30x,但覆蓋度并非越大越好,100x~200x為最佳 (Twyford amp; Ness, 2017)。測序后的數(shù)據(jù)大于500 Mb就足以組裝出質(zhì)體全基因組,但根據(jù)類群的質(zhì)體基因組大小和結(jié)構(gòu)復(fù)雜性的區(qū)別,一般需要2~5 Gb數(shù)據(jù),除能提取出質(zhì)體基因組以外,還能組裝nrDNA和線粒體基因(Twyford amp; Ness, 2017)。對于個(gè)別復(fù)雜類群,如寄生植物質(zhì)體拷貝數(shù)低或GC含量異常,卷柏科質(zhì)體基因組存在同向重復(fù)(direct repeat, DR)結(jié)構(gòu)和重排,可考慮長片段測序或結(jié)合三代測序技術(shù),這能有效克服質(zhì)體全基因組重復(fù)和結(jié)構(gòu)變異等問題(Bleidorn, 2016; Hu et al., 2021)。不過,三代測序儀較高的錯(cuò)誤率和成本較高且通量較低,使其不能完全取代第二代測序平臺(tái)。因此,質(zhì)體基因組結(jié)構(gòu)復(fù)雜類群的研究需要組合二代和三代的測序方法。
2.2 植物質(zhì)體基因組組裝策略和方法
基因組組裝策略和方法的選取直接影響質(zhì)體基因組數(shù)據(jù)的完整性和準(zhǔn)確性,而組裝策略的選擇不僅要與其測序方法相匹配,而且還應(yīng)考慮測序質(zhì)量的好壞、質(zhì)體結(jié)構(gòu)的復(fù)雜多變、組裝結(jié)果的片段化、不同細(xì)胞器片段錯(cuò)配等問題。二代測序的數(shù)據(jù)多為短片段測序,對應(yīng)的組裝策略可分為有參組裝(reference-guided assembly)和從頭組裝(de novo assembly)2種。有參組裝將測序數(shù)據(jù)映射到參考質(zhì)體基因組序列獲得一致性序列為組裝結(jié)果,通常需要較少的計(jì)算時(shí)間和虛擬內(nèi)存,適合于已有近緣參考基因組的類群組裝(常為同屬植物)。但是,若無參考質(zhì)體基因組,或是質(zhì)體基因組結(jié)構(gòu)變異較大的類群,又或是質(zhì)體基因大量缺失的類群,如果采用有參組裝就會(huì)產(chǎn)生很多錯(cuò)配,只有采用從頭組裝才能獲得準(zhǔn)確的組裝結(jié)果。優(yōu)先采用從頭組裝的策略,以避免信息遺漏,并且無需質(zhì)體基因組的先驗(yàn)知識(shí)。若從頭組裝失敗,可考慮以下3種方法獲得質(zhì)體基因組,即使用有參組裝,或從頭組裝中引入近緣參考序列,或利用LASTZ等軟件基于參考序列進(jìn)行手動(dòng)拼接,但手動(dòng)拼接比較依賴豐富的先驗(yàn)經(jīng)驗(yàn)。常用的有參組裝程序有ORTHOSKIM(Pouchon et al., 2022)和chloroExtractor (Ankenbrand et al., 2018);常用的從頭組裝程序有GetOrganelle (Jin JJ et al., 2020)、NOVOPlasty (Dierckxsens et al., 2017)、SOAPdenovo 2 (Luo et al., 2012)、Fast-Plast (https://github.com/mrmckain)、CLC基因組學(xué)工作平臺(tái)(http://www.clcbio.com/)(表2)。
Dierckxsens等(2017)以擬南芥(Arabidopsis thaliana)和水稻(Oryza sativa)測序數(shù)據(jù)進(jìn)行測試,結(jié)果表明僅NOVOPlasty組裝出完整的質(zhì)體基因組,耗時(shí)和資源占用明顯優(yōu)于其他程序。Jin JJ等(2020)選取了50個(gè)植物樣本對不同軟件進(jìn)行組裝效果測試,結(jié)果表明GetOrganelle的質(zhì)體組裝成環(huán)率遠(yuǎn)高于NOVOPlasty。Freudenthal等(2020)以擬南芥為原始數(shù)據(jù)定量/定性評述了7種常用細(xì)胞器基因組組裝程序,結(jié)果發(fā)現(xiàn)用戶在安裝和運(yùn)行分析方面體驗(yàn)最佳的是chloroExtractor,資源損耗最小的是NOVOPlasty,組裝結(jié)果成功率和準(zhǔn)確性最佳的是GetOrganelle。從總體上看,GetOrganelle可作為質(zhì)體基因組從頭組裝程序的首選,其次是NOVOPlasty和Fast-Plast。此外,個(gè)別類群如杜鵑花科(Ericaceae)和燈心草屬(Juncus),由于其質(zhì)體基因組含有大于k-mer值的長重復(fù)區(qū)域,二代測序的短片段不足以連接重復(fù)片段及其側(cè)翼區(qū)域,因此導(dǎo)致包含數(shù)百個(gè)scaffolds或contigs的結(jié)果文件無法獲得完整的質(zhì)體基因組(Mo et al., 2022; Zhou et al., 2022)。對于此類復(fù)雜類群推薦優(yōu)先使用ORTHOSKIM軟件(Pouchon et al., 2022),或?qū)ζ洳淮_定的區(qū)域可以通過參考序列或可視化每個(gè)scaffold或contig的深度進(jìn)行拼接,但這很依賴現(xiàn)有的參考序列和測序深度,并且該結(jié)果無法直接用于質(zhì)體基因組結(jié)構(gòu)分析。由于三代測序的長序列有可能跨越長重復(fù)序列,Zhou等(2022) 通過利用二代測序和三代測序的混合數(shù)據(jù),成功獲得燈心草屬的質(zhì)體全基因組數(shù)據(jù),表明二代測序和三代測序的混合數(shù)據(jù)有助于解決含有長片段的重復(fù)序列組裝。常用軟件包括Organelle_PBA (Soorni et al., 2017)、Hifiasm (Cheng et al., 2022)和ptGAUL (Zhou, 2023)。因此,在質(zhì)體基因組組裝過程中,應(yīng)優(yōu)先從頭測序,若不能獲得其完整的質(zhì)體基因組,需針對類群質(zhì)體基因組特征選取適合的組裝策略(表2)。
3 基于葉綠體基因組的系統(tǒng)發(fā)育分析與超級條形碼
3.1 系統(tǒng)發(fā)育分析——從質(zhì)體基因片段到質(zhì)體基因組
系統(tǒng)發(fā)育分析既可用于重建物種演化關(guān)系和歷史,也可用于生物分類物種鑒定,澄清物種之間的遺傳關(guān)系。質(zhì)體基因?yàn)閱慰截惢?,因中等的演化速率、單親遺傳、易獲取而使其在植物分子系統(tǒng)學(xué)研究中備受青睞(Gitzendanner et al., 2018a, b; Daniell et al., 2021)。早期的植物系統(tǒng)發(fā)育分析主要利用單個(gè)或少數(shù)幾個(gè)質(zhì)體基因片段進(jìn)行構(gòu)建,如rbcL、matK、atpB和ndhF等。這些基因片段的應(yīng)用極大地推動(dòng)了植物系統(tǒng)發(fā)育研究的發(fā)展,進(jìn)而出現(xiàn)基于大尺度的分子系統(tǒng)發(fā)育框架的目、科分類階元的被子植物系統(tǒng)發(fā)育組系統(tǒng)(angiosperm phylogeny group, 簡稱APG) (APG I, 1998; APG Ⅱ, 2003; APG Ⅲ, 2009; APG Ⅳ, 2016)以及各科的線性排列(Haston et al., 2009),石松類與蕨類植物系統(tǒng)發(fā)育組系統(tǒng)(pteridophyte phylogeny group,簡稱PPG)(PPG, 2016)。隨著分子系統(tǒng)學(xué)研究尺度的深入,基因樹不一致現(xiàn)象越發(fā)普遍(Goremykin et al., 2004; Guo amp; Ge, 2005; Qiu et al., 2006),表明僅靠少數(shù)幾個(gè)基因片段所構(gòu)建的基因樹,只是反映基因水平的演化歷史,不能完全等同于物種的演化歷史,需要將更多的系統(tǒng)發(fā)育信號“嵌入”到物種歷史的重建之中(Heled amp; Drummond, 2009; 張韻潔和李德銖,2011)。Eisen和Fraser(2003)正式提出了系統(tǒng)發(fā)育基因組學(xué)(phylogenomics)的概念,標(biāo)志進(jìn)入系統(tǒng)發(fā)育基因組學(xué)時(shí)代。目前,質(zhì)體基因組在植物科級水平的系統(tǒng)發(fā)育研究和解決系統(tǒng)發(fā)育支系內(nèi)的演化關(guān)系方面作出了重要貢獻(xiàn)(Whitfeld, 1945; APG IV, 2016; Daniell et al., 2016; Li et al., 2019; Li HT et al., 2021)。例如,Xi等(2012)利用82個(gè)質(zhì)體編碼基因解析了金虎尾目內(nèi)部的系統(tǒng)發(fā)育關(guān)系;Li HT等(2021)基于質(zhì)體全基因組數(shù)據(jù)集構(gòu)建了被子植物科級水平的葉綠體系統(tǒng)發(fā)育樹2.0 (PPA Ⅱ),其中75%以上的目間關(guān)系和78%科級關(guān)系得到大于90%的統(tǒng)計(jì)支持。除質(zhì)體基因組以外,線粒體基因組也被用于維管植物的系統(tǒng)發(fā)育分析。由于線粒體基因演化速率慢,不易受長枝吸引的影響,因此常用于科級及以上高分類階元和異養(yǎng)植物的系統(tǒng)學(xué)研究。Lin等(2022)利用線粒體基因組有效解決含真菌異養(yǎng)的單子葉植物和杜鵑花科的系統(tǒng)發(fā)育關(guān)系,明確杜鵑花科并非單系。但是,線粒體基因組高度富集的重復(fù)序列和頻繁的重組,同時(shí)受限于淺層測序的讀取長度,導(dǎo)致難以獲得完整且準(zhǔn)確的線粒體基因組。此外,獲取線粒體基因組數(shù)據(jù)通常還需要整合Hi-C文庫與PacBio長讀測序。
3.2 質(zhì)體基因組系統(tǒng)發(fā)育分析
目前,構(gòu)建質(zhì)體基因組系統(tǒng)發(fā)育關(guān)系的數(shù)據(jù)主要有3類,即質(zhì)體全基因組、質(zhì)體編碼基因和分區(qū)數(shù)據(jù)(LSC、IR和SSC)。質(zhì)體基因組建樹的流程較為簡單,原始測序數(shù)據(jù)經(jīng)組裝后,先進(jìn)行序列比對、構(gòu)建矩陣,剔除矩陣中不可靠區(qū)段,再用于系統(tǒng)發(fā)育樹的構(gòu)建(圖5)(Jiang et al., 2022)。值得注意的是,使用質(zhì)體編碼基因數(shù)據(jù)建樹時(shí),需先將每個(gè)基因單獨(dú)進(jìn)行多序列比對避免不同的基因錯(cuò)配,再進(jìn)行系統(tǒng)發(fā)育樹構(gòu)建。質(zhì)體基因組系統(tǒng)發(fā)育分析方法大致上可以分為串聯(lián)法(concatenation)和溯祖法(coalescence)2種(Huelsenbeck et al., 1996; Liu et al., 2009; Sarker amp; Sutherl, 2022)。串聯(lián)法又叫超級矩陣(supermatrix)法,即先將比對后的質(zhì)體基因矩陣首尾相連,構(gòu)成質(zhì)體基因串聯(lián)矩陣,再將串聯(lián)矩陣用于系統(tǒng)發(fā)育樹的構(gòu)建。溯祖法則是先利用單個(gè)質(zhì)體基因比對矩陣構(gòu)建單基因樹,再根據(jù)所有基因樹進(jìn)行溯祖分析,最后推斷最有可能的系統(tǒng)發(fā)育樹。質(zhì)體基因串聯(lián)法或稱多基因組聯(lián)合建樹盡管是質(zhì)體基因組系統(tǒng)發(fā)育分析的首選,但不適合寄生植物這種特殊類群。這主要是該類群質(zhì)體基因組的演化速率快、種間演化速率和不同家族基因的堿基替換率差異大,若直接將所有質(zhì)體基因串聯(lián)在一起,推斷出的系統(tǒng)發(fā)育樹可能是由部分高突變的“主效”基因所決定。例如,全寄生植物菟絲子屬,其亞屬間的演化速率差異大,并且質(zhì)體基因間顯著的演化速率差異易引起長枝吸引,若使用質(zhì)體基因串聯(lián)法會(huì)將該屬誤認(rèn)為旋花亞科的基部類群(Chen et al., 2024)。因此,演化速率快的特殊類群系統(tǒng)發(fā)育關(guān)系的解析還需要結(jié)合溯祖法是綜合考慮不同基因的進(jìn)化歷史,并使用合適的模型如IQ-tree的Ghost模型來推斷系統(tǒng)發(fā)育關(guān)系。
目前,系統(tǒng)發(fā)育樹的構(gòu)建常面臨系統(tǒng)誤差(systematic error)的問題,系統(tǒng)誤差的主要來源包括堿基突變率不同 (heterotachy)、序列組成異質(zhì)性(compositional heterogeneity)、速率異質(zhì)性(rate heterogeneity)。因此,僅增加物種取樣密度,既不能改變系統(tǒng)發(fā)育樹框架的拓?fù)浣Y(jié)構(gòu),也不能給之前存在問題的節(jié)點(diǎn)增加支持率;相較而言,填補(bǔ)基因數(shù)據(jù)量、模型優(yōu)化法、增加的近緣外類群取樣、去除分類群中進(jìn)化速率較快的長枝分類元和具有非常高演化速率的基因或區(qū)段,使用多種建樹方法(相較于ML和BI,MP更易出現(xiàn)LBA)、采用基于氨基酸翻譯的多序列比對方法,并考慮了幀移和終止密碼子有助于解決一些快速演化的復(fù)雜類群系統(tǒng)發(fā)育關(guān)系(Gitzendanner et al., 2018a; Li et al., 2019; Sarker amp; Sutherl, 2022)。由于質(zhì)體基因組并未包含植物所有的遺傳信息,因此僅依靠質(zhì)體基因組數(shù)據(jù)無法解決一些快速演化支系間的關(guān)系,需結(jié)合其他基因組數(shù)據(jù),如核基因組數(shù)據(jù)或線粒體基因組數(shù)據(jù)。若是利用所有基因組數(shù)據(jù)也無法解決,不同基因組推斷的系統(tǒng)發(fā)育結(jié)果之間常存在明顯沖突,則可能為雜交和漸滲起源 (Soltis amp; Kuzoff, 1995; 鄒新慧和葛頌, 2008; Yu et al., 2013)。質(zhì)體基因組、核基因組和線粒體基因組之間的基因交換和共享亦會(huì)導(dǎo)致系統(tǒng)發(fā)育關(guān)系沖突的出現(xiàn)(Straub et al., 2013)。
3.3 質(zhì)體基因組超級條形碼和物種鑒定
DNA條形碼(DNA barcoding)是指基因組中普遍存在的、較短的、標(biāo)準(zhǔn)化的且能用于物種鑒定的基因序列(Hebert et al., 2003; Mark amp; Michael, 2009)。因其可鑒別破損標(biāo)本或加工后組織樣品而廣泛應(yīng)用于物種資源調(diào)查分類、食品安全、中藥質(zhì)控和海關(guān)檢查等方面,為準(zhǔn)確處理生物分類地位提供了科學(xué)依據(jù),從而促進(jìn)合理有效地保護(hù)、開發(fā)和利用自然生物資源、保護(hù)生物多樣性和環(huán)境保護(hù)(Chac amp; Thinh, 2023)。截至2024年3月,生命條形碼數(shù)據(jù)庫(BOLD,http://www.boldsystems.org/)共收錄了129 726種維管植物的DNA條形碼,其中被子植物占比最多(94.2%)、石松類植物最少(0.3%)。目前,植物常用的DNA條形碼主要包括質(zhì)體中的atpF-atpH、matK、rbcL、rpoB、rpoC1、psbK-psbI和trnH-psbA (Hollingsworth et al., 2009)和核糖體DNA的內(nèi)部轉(zhuǎn)錄間隔區(qū)(ITS) (CBOL, 2009; Chac amp; Thinh, 2023)。由于每個(gè)DNA條形碼序列長度和變異位點(diǎn)數(shù)量不同,鑒別不同水平的植物,如rbcL和ndhF片段可用于屬水平和種水平上的鑒別,matK、rpoB和rpoC1可用于種水平和亞種水平上的區(qū)分 (Li et al., 2015; Chac amp; Thinh, 2023)。此外,部分相對較短、不完整的質(zhì)體基因片段可作為迷你DNA,如trnL-UAA的內(nèi)含子、ycf1a、ycf1b, 部分rbcL片段和ITS2中的短區(qū)域,可有效識(shí)別中藥類DNA高度降解樣品(Liu et al., 2018; Zhu et al., 2022)。但是,沒有一個(gè)基因片段可鑒別出所有物種,條形碼組合可有效提升分辨率(Mark amp; Michael, 2009; Chen et al., 2010)。CBOL植物工作組(2009)分析發(fā)現(xiàn),rbcL+matK的組合片段可作為維管植物核心通用的DNA條形碼,其區(qū)分效率為72%,trnH-psbA和ITS作為補(bǔ)充DNA條形碼。Hu等(2022)研究表明,matK+trnH-psbA+ITS2可高效鑒別出世界常用木材樹種。DNA條形碼組合所含遺傳信號有限,不能很好地鑒定近緣物種、近期分化和輻射演化的類群。然而,近期快速發(fā)展的質(zhì)體基因組學(xué)為解決上述問題提供了新的轉(zhuǎn)機(jī)。
質(zhì)體全基因組因包含了所有的高變區(qū),分辨率高,可避免因引物錯(cuò)配、測序失敗而對數(shù)據(jù)分析所帶來的困難,被作為超級條形碼(super-barcodes)用于鑒定困難類群(Zhu et al., 2022)。例如,相比于標(biāo)準(zhǔn)DNA條形碼組合,超級條形碼將蘭屬(Cymbidium)物種的分辨率從58%提升到68% (Zhang et al., 2023)。在鑒別紅豆杉屬(Taxus)近緣物種中,超級條形碼展現(xiàn)出100%的分辨率(Fu et al., 2019);在鑒定分類困難類群的人參屬(Panax)中,展現(xiàn)出超50%的分辨率(Ji et al., 2019);在鑒定藥用植物貝母屬(Fritillaria)近緣物種中則表現(xiàn)出100%的分辨率(Wu et al., 2021)。盡管超級條形碼大大提高了植物的物種分辨率,但還不足以完全區(qū)分所有物種,特別是不完全譜系分選、人工栽培、自然雜交和葉綠體捕獲等復(fù)雜進(jìn)化類群,單拷貝/低拷貝核基因有望成為下一代DNA條形碼(Zhang et al., 2023)。此外,DNA條形碼數(shù)據(jù)庫是DNA條形碼鑒定執(zhí)行的基礎(chǔ),但由于目前各個(gè)數(shù)據(jù)庫的質(zhì)量參差不齊,超半數(shù)的數(shù)據(jù)庫無法正常訪問,因此未來應(yīng)統(tǒng)一數(shù)據(jù)庫構(gòu)建的標(biāo)準(zhǔn),針對性構(gòu)建和完善重要類群的數(shù)據(jù)庫,如中藥材、民族藥用植物和珍稀木材等。除傳統(tǒng)DNA條形碼以外,超級條形碼的數(shù)據(jù)庫和下一代核基因條形碼也應(yīng)被收錄在數(shù)據(jù)庫中。
4 展望
質(zhì)體基因組數(shù)據(jù)和大量相關(guān)的研究正逐年快速增加,復(fù)雜多樣的變異和獨(dú)特的質(zhì)體基因組退化過程逐漸被發(fā)現(xiàn),加深了我們對于植物質(zhì)體基因組多樣性的認(rèn)識(shí)和理解。但是,大多對質(zhì)體基因組演化機(jī)制的研究仍處于描述報(bào)道、簡單相關(guān)性推測等層次,深入其機(jī)制研究的較少。因此,未來需加強(qiáng)對質(zhì)體基因組多樣化成因及其演化機(jī)制的探索和驗(yàn)證。海量的質(zhì)體基因組數(shù)據(jù)也增加了數(shù)據(jù)分析計(jì)算量和時(shí)間耗費(fèi)。因此,提升計(jì)算量、縮短運(yùn)算時(shí)間和分析流程化是未來質(zhì)體基因組組裝、注釋和分析軟件、算法優(yōu)化的方向。此外,質(zhì)體基因組數(shù)據(jù)已廣泛應(yīng)用于系統(tǒng)發(fā)育和DNA條形碼篩選,對于異養(yǎng)植物或演化速率較快的類群需根據(jù)類群的差異性選擇合適的模型和建樹策略構(gòu)建系統(tǒng)發(fā)育樹,也應(yīng)結(jié)合核基因用于構(gòu)建系統(tǒng)發(fā)育和開發(fā)下一代DNA條形碼,為物種鑒定、物種起源和時(shí)空演化格局,以及識(shí)別藥材等提供重要信息,并提高質(zhì)體基因組數(shù)據(jù)在植物的資源開發(fā)和可持續(xù)利用中的應(yīng)用。
參考文獻(xiàn):
ALSOS IG, LAVERGNE S, MERKEL MKF, et al., 2020. The treasure vault can be opened: Large-scale genome skimming works well using herbarium and silica gel dried material" [J]. Plants, 9(4): 432.
ANKENBRAND MJ, PFAFF S, TERHOEVEN N, et al., 2018.chloroExtractor: Extraction and assembly of the chloroplast genome from whole genome shotgun data" [J]. The Journal of Open Source Software, 3(21): 464.
APG I, 1998. An ordinal classification for the families of flowering plants [J]. Annals of the Missouri Botanical Garden, 85(4): 531-553.
APG Ⅱ, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Ⅱ" [J]. Botanical Journal of the Linnean Society, 141(4): 399-436.
APG Ⅲ, 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG Ⅲ" [J]. Botanical Journal of the Linnean Society, 161(2): 105-121.
APG IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV" [J]. Botanical Journal of the Linnean Society, 181(1): 1-20.
BANERJEE A, SCHNEIDER AC, STEFANOVIC' S, 2022. Plastid genomes of the hemiparasitic genus Krameria (Zygophyllales) are intact and exhibit little relaxation in selection" [J]. International Journal of" Plant Sciences, 183(5): 393-403.
BANERJEE A, STEFANOVIC' S, 2023. A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae" [J]. Planta: An International Journal of Plant Biology, 257(4): 66.
BANERJEE A, STEFANOVIC' S, 2020. Reconstructing plastome evolution across the phylogenetic backbone of the parasitic plant genus Cuscuta (Convolvulaceae)" [J]. Botanical Journal of the Linnean Society, 194(4): 423-438.
BARRETT CF, FREUDENSTEIN JV, LI J, et al., 2014.Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms" [J]. Molecular Biology and" Evolution, 31(12): 3095-3112.
BARRETT CF, SINN BT, KENNEDY AH, 2019. Unprecedented parallel photosynthetic losses in a heterotrophic orchid genus" [J]. Molecular Biology and" Evolution, 36(9): 1884-1901.
BAUMAN N, AKELLA S, HANN E, et al., 2018.Next-generation sequencing of Haematococcus lacustris reveals an extremely large 1.35-Megabase chloroplast genome" [J]. Genome Announcements, 6(12): e00181-18.
BELLOT S, RENNER SS, 2016. The plastomes of two species in the endoparasite genus Pilostyles (Apodanthaceae) each retain just five or six possibly functional genes" [J]. Genome Biology and Evolution, 8(1): 189-201.
BLEIDORN C, 2016. Third generation sequencing: Technology and its potential impact on evolutionary biodiversity research" [J]. Systematics and Biodiversity, 14(1): 1-8.
BOCK R, KNOOP V, 2012. Genomics of chloroplasts and mitochondria" [M]. Dordrecht: Springer: 103-120.
BORSCH T, BERENDSOHN W, DALCIN E, et al., 2020. World Flora Online: Placing taxonomists at the heart of a definitive and comprehensive global resource on the worlds plants" [J]. Taxon, 69(6): 1311-1341.
BOTTE CY, MARECHAL E, 2014. Plastids with or without galactoglycerolipids" [J]. Trends in Plant Science, 19(2): 71-78.
CAI L, ARNOLD BJ, XI Z, et al., 2021.Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae)" [J]. Current Biology, 31(5): 1002-1011.
CARVALHO CMB, LUPSKI JR, 2016. Mechanisms underlying structural variant formation in genomic disorders" [J]. Nature Reviews Genetics, 17(4): 224-238.
CBOL Plant Working Group, 2009. A DNA barcode for land plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 106: 12794-12797.
CHAC LD, THINH BB, 2023. Species identification through DNA barcoding and its applications: A review" [J]. Biology Bulletin, 50(6): 1143-1156.
CHEN LQ, LI X, YAO X, et al., 2024. Variations and reduction of plastome are associated with the evolution of parasitism in Convolvulaceae" [J]. Plant Molecular Biology, 114(3): 40.
CHEN SL, YAO H, HAN JP, et al., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species" [J]. PLoS ONE, 5(1): e8613.
CHENG HY, JARVIS ED, FEDRIGO O, et al., 2022. Haplotype-resolved assembly of diploid genomes without parental data" [J]. Nature Biotechnology, 40(9): 1332-1335.
CORRIVEAU JL, COLEMAN AW, 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species" [J]. American Journal of" Botany, 75(10): 1443-1458.
DANIELL H, JIN SX, ZHU XG, et al., 2021. Green giant — a tiny chloroplast genome with mighty power to produce high-value proteins: History and phylogeny" [J]. Plant Biotechnology Journal, 19(3): 430-447.
DANIELL H, LIN CS, YU M, et al., 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering" [J]. Genome Biology, 17(1): 134.
DE VRIES J, SOUSA FL, BLTER B, et al., 2015. YCF1: A green TIC?" [J]. Plant Cell, 27(7): 1827-1833.
DIERCKXSENS N, MARDULYN P, SMITS G, 2017. NOVOPlasty: De novo assembly of organelle genomes from whole genome data" [J]. Nucleic Acids Research, 45(4): e18.
DODSWORTH S, 2015. Genome skimming for next-generation biodiversity analysis" [J]. Trends in Plant Science, 20(9): 525-527.
DRESCHER A, RUF S, CALSA JR T, et al., 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes" [J]. The Plant Journal, 22(2): 97-104.
DU XY, KUO LY, ZUO ZY, et al., 2022. Structural variation of plastomes provides key insight into the deep phylogeny of ferns" [J]. Frontiers in" Plant Science, 13: 862772.
EISEN JA, FRASER MC, 2003. Phylogenomics: Intersection of evolution and genomics" [J]. Science, 300(5626): 1706-1707.
FREUDENTHAL JA, PFAFF S, TERHOEVEN N, et al., 2020. The landscape of chloroplast genome assembly tools" [J]. Genome Biology: 665869.
FU CN, WU CS, YE LJ, et al., 2019. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide" [J]. Scientific Reports, 9(1): 2773.
GITZENDANNER MA, SOLTIS PS, WONG GKS, et al., 2018a. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history" [J]. American Journal of Botany, 105(3): 291-301.
GITZENDANNER MA, SOLTIS PS, YI TS, et al., 2018b. Plastome phylogenetics: 30 years of inferences into plant evolution" [J]. Advances in" Botanical Research, 85: 293-313.
GONCALVES JPD, SIMPSON BB, ORTIZ EM, et al., 2019. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes" [J]. Molecular Phylogenetics Evolution, 138: 219-232.
GOREMYKIN VV, HIRSCH-ERNST KI, WLFL S, et al., 2004. The chloroplast genome of Nymphaea alba: Whole-genome analyses and the problem of identifying the most basal angiosperm" [J]. Molecular Biology and Evolution, 21(7): 1445-1454.
GOULD SB, WALLER RF, MCFADDEN GI, 2008. Plastid evolution" [J]. Annual Review of" Plant Biology, 59: 491-517.
GRAHAM SW, LAM VK, MERCKX VS, 2017. Plastomes on the edge: The evolutionary breakdown of mycoheterotroph plastid genomes" [J]. The New Phytologist, 214(1): 48-55.
GUO YL, GE S, 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes" [J]. American Journal of" Botany, 92(9): 1548-1558.
HOLLINGSWORTH PM, FORREST LL, SPOUSE JL, et al., 2009. A DNA barcode for land plants" [J]. Proceedings of the National Academy of" Science of the United States of America, 106(31): 12794-12797.
HASTON E, RICHARDSON JE, STEVENS PF, et al., 2009. The Linear Angiosperm Phylogeny Group (LAPG) Ⅲ: A linear sequence of the families in APG Ⅲ" [J]. Botanical Journal of" Linnean Society, 2(161): 128-131.
HEBERT PDN, CYWINSKA A, BALL SL, et al., 2003. Biological identifications through DNA barcodes" [J]. Proceedings of the Royal" Society of London Series B: Biological Sciences, 270(1512): 313-321.
HELED J, DRUMMOND AJ, 2009. Bayesian inference of species trees from multilocus data" [J]. Molecular Biology and" Evolution, 27(3): 570-580.
HU JL, CI XQ, LIU ZF, et al., 2022. Assessing candidate DNA barcodes for Chinese and internationally traded timber species" [J]. Molecular Ecology Resources, 22(4): 1478-1492.
HU TS, CHITNIS N, MONOS D, et al., 2021. Next-generation sequencing technologies: An overview" [J]. Human Immunology, 82(11): 801-811.
HUANG C, LIU D, LI ZA, et al., 2023.The PPR protein RARE1-mediated editing of chloroplast accD transcripts is required for fatty acid biosynthesis and heat tolerance in Arabidopsis" [J]. Plant Communications, 4(1): 100461.
HUELSENBECK JP, Bull JJ, CUNNINGHAM WC, 1996. Combining data in phylogenetic analysis" [J].Trends in Ecology amp; Evolution, 11(4): 152-158.
INOUE Y, NAKAHARA-TSUBOTA M, TSUBOTA H, 2022. The complete chloroplast and mitochondrial genomes of Scopelophila cataractae (Mitt.) Broth. (Pottiaceae, Bryophyta)" [J]. Mitochondrial DNA Part B, 7(1): 125-127.
JIANG N, DONG LN, YANG JB, et al., 2022. Herbarium phylogenomics: Resolving the generic status of the enigmatic Pseudobartsia (Orobanchaceae) [J]. Journal of Systematics and Evolution, 60: 1218-1228.
JI YH, LIU CK, YANG ZY, et al., 2019. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae)" [J]. Molecular Ecology Resources, 19(5): 1333-1345.
JIN DM, WICKE S, GAN L, et al., 2020. The loss of the inverted repeat in the Putranjivoid clade of Malpighiales" [J]. Frontiers in" Plant Science, 11: 942.
JIN JJ, YU WB, YANG JB, et al., 2020. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes" [J]. Genome Biology, 21(1): 241.
JOHN CE, GROVER WL, 2002. Multi-subunit acetyl-CoA carboxylases" [J]. Progress in" Lipid Research, 41(5): 407-435.
KODE V, MUDD EA, IAMTHAM S, et al., 2005. The tobacco plastid accD gene is essential and is required for leaf development" [J]. The Plant Journal, 44(2): 237-244.
LI HT, LUO Y, GAN L, et al., 2021. Plastid phylogenomic insights into relationships of all flowering plant families" [J]. BMC Biology, 19: 232.
LI HT, YI TS, GAO LM, et al., 2019. Origin of angiosperms and the puzzle of the Jurassic gap" [J]. Nature Plants, 5(5): 461-470.
LI X, YANG JB, WANG H, et al., 2021. Plastid NDH pseudogenization and gene loss in a recently derived lineage from the largest hemiparasitic plant genus Pedicularis (Orobanchaceae)" [J]. Plant and Cell Physiology, 62(6): 971-984.
LI X, YANG Y, HENRY RJ, et al., 2015. Plant DNA barcoding: From gene to genome" [J]. Biological Reviews Cambridge Philosophical Society, 90(1): 157-166.
LIN QS, BRAUKMANN WAT, GOMEZ SM, et al., 2022. Mitochondrial genomic data are effective at placing mycoheterotrophic lineages in plant phylogeny" [J]. The New Phytologist, 236(5): 1908-1921.
LIU L, YU LL, KUBATKO L, et al., 2009. Coalescent methods for estimating phylogenetic trees" [J]. Molecular Phylogenetics and Evolution, 53(1): 320-328.
LIU Y, WANG XY, WEI XM, et al., 2018.Rapid authentication of Ginkgo biloba herbal products using the recombinase polymerase amplification assay" [J]. Scientific Reports, 8(1): 8002.
LUO RB, LIU BH, XIE YL, et al., 2012. SOAPdenovo 2: An empirically improved memory-efficient short-read de novo assembler" [J]. Giga Science, 1(1): 18-24.
MACISZEWSKI K, FELLS A, KARNKOWSKA A, et al., 2022. Challenging the importance of plastid genome structure conservation: New insights from Euglenophytes" [J]. Molecular Biology and Evolution, 39(12): msac255.
MARK WC, MICHAEL FF, 2009. Barcoding of plants and fungi" [J]. Science, 325(5941): 682-683.
MCCOY SR, KUEHL JV, BOORE JL, et al., 2008.The complete plastid genome sequence of Welwitschia mirabilis: An unusually compact plastome with accelerated divergence rates" [J]. BMC Evolutionary Biology, 8(1): 130.
MCNEAL JR, KUEHL JV, BOORE JL, et al., 2007. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta" [J]. BMC Plant Biology, 7(1): 57.
MILLEN SR, OLMSTEAD GR, ADAMS LK, et al., 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple indepen dent transfers to the nucleus" [J]. The Plant Cell, 13(3): 645-658.
MO ZQ, FU CN, ZHU MS, et al., 2022. Resolution, conflict and rate shifts: Insights from a densely sampled plastome phylogeny for Rhododendron (Ericaceae) [J]. Annals of Botany, 130(5): 687-701.
MOLINA J, HAZZOURI KM, NICKRENT D, et al., 2014.Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae)" [J]. Molecular Biology and Evolution, 31(4): 793-803.
MOWER JP, MA PF, GREWE F, et al., 2019. Lycophyte plastid genomics: Extreme variation in GC, gene and intron content and multiple inversions between a direct and inverted orientation of the rRNA repeat" [J]. The New Phytologist, 222(2): 1061-1075.
MOWER JP, VICKREY TL, 2018. Structural diversity among plastid genomes" of land plants" [J]. Advances in Botanical Research, 85: 263-292.
PALMER JD, 1983. Chloroplast DNA exists in two orientations" [J]. Nature, 301(5895): 92-93.
PARK S, RUHLMAN TA, WENG ML, et al., 2017. Contrasting patterns of nucleotide substitution rates provide insight into dynamic evolution of plastid and mitochondrial genomes of Geranium" [J]. Genome Biology and Evolution, 9(6): 1766-1780.
PING JY, HAO J, LI JY, et al., 2022. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes" [J]. Ecology and" Evolution, 12(1): e8499.
POUCHON C, BOYER F, ROQUET C, et al., 2022.ORTHOSKIM: In silico sequence capture from genomic and transcriptomic libraries for phylogenomic and barcoding applications" [J]. Molecular Ecology Resources, 22(5): 2018-2037.
PPG, 2016. A community-derived classification for extant lycophytes and ferns" [J]. Journal of Systematics and Evolution, 54(6): 563-603.
QIAN H, ZHANG J, ZHAO JC, 2022. How many known vascular plant species are there in the world? An integration of multiple global plant databases" [J]. Biodiversity Science, 30(7): 22254." [錢宏, 張健, 趙靜超, 2022. 世界上已知維管植物有多少種? 基于多個(gè)全球植物數(shù)據(jù)庫的整合" [J]. 生物多樣性, 30(7): 22254.]
QIU YL, LI LB, WANG B, et al., 2006. The deepest divergences in land plants inferred from phylogenomic evidence" [J]. Proceedings of the" National Academy of" Science of USA, 103(42): 15511-15516.
ROBERT JK, ZHENGQIU C, RAUBESON AL, et al., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns" [J]. Proceedings of the" National Academy of" Science of USA, 104(49): 19369-19374.
ROUSSEAU-GUEUTIN M, HUANG X, HIGGINSON E, et al., 2013. Potential functional replacement of the plastidic acetyl-CoA Carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages" [J]. Plant Physiology, 161(4): 1918-1929.
RUHLMAN TA, JANSEN RK, 2014. The plastid genomes of flowering plants" [M]. Berlin: Springer: 3-38.
RUHLMAN TA, JANSEN RK, 2018. Aberration or analogy? The atypical plastomes of Geraniaceae [J]. Advances in" Botanical Research, 85: 223-262.
SARKER S, SUTHERLAND M, 2022. Molecular characteri-sation of a novel pathogenic avipoxvirus from an Australian little crow (Corvus bennetti) directly from the clinical sample" [J]. Scientific Reports, 12(1): 15053.
SHINOZAKI K, OHME M, TANAKA M, et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression" [J]. The EMBO Journal, 5(9): 2043-2049.
SINN BT, SEDMAK DD, KELLY LM, et al., 2018. Total duplication of the small single copy region in the angiosperm plastome: Rearrangement and inverted repeat instability in Asarum" [J]. American Journal of" Botany, 105(1): 71-84.
SOLTIS DE, KUZOFF RK, 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae)" [J]. Evolution, 49(4): 727-742.
SOORNI A, HAAK D, ZAITLIN D, et al., 2017. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data" [J]. BMC Genomics, 18(1): 49.
STRAUB SCK, CRONN RC, EDWARDS C, et al., 2013. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milk weeds (Apocynaceae)" [J]. Genome Biology and Evolution, 5(10): 1872-1885.
STRAUB SCK, PARKS M, WEITEMIER K, et al., 2012. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics" [J]. American Journal of" Botany, 99(2): 349-364.
SUDIANTO E, CHAW SM, 2019. Two independent plastid accD transfers to the nuclear genome of Gnetum and other insights on Acetyl-CoA carboxylase evolution in gymnosperms "[J]. Genome Biology and Evolution, 11(6): 1691-1705.
TABARLET P, GIELLY L, PAUTOU G, et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA" [J]. Plant Molecular Biology, 17: 1105-1109.
TWYFORD DA, NESS WR, 2017. Strategies for complete plastid genome sequencing" [J]. Molecular Ecology Resources, 17(5): 858-868.
WANG YH, 2017. Plastid phylogenomics of Fabaceae [D]. Kunming: Yunnan University: 20-75." [王銀環(huán), 2017. 豆科的葉綠體系統(tǒng)發(fā)育基因組學(xué) [D]. 昆明: 云南大學(xué): 20-75.]
WANG ZX, WANG DJ, YI TS, 2022. Does IR-loss promote plastome structural variation and sequence evolution?" [J]. Frontiers Plant Science, 13: 888049.
WENG ML, RUHLMAN TA, JANSEN RK, 2017. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes" [J]. The New Phytologist, 214(2): 842-851.
WENG ML, BLAZIER JC, GOVINDU M, et al., 2014.Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates" [J]. Molecular Biology and Evolution, 31(3): 645-659.
WESTWOOD JH, YODER JI, TIMKO MP, et al., 2010. The evolution of parasitism in plants" [J]. Trends in Plant Science, 15(4): 227-235.
WHITFELD PR, 1945. A method for the determination of nucleotide sequence in polyribonucleotides" [J]. The Biochemical Journal, 58(3): 390-396.
WICKE S, MULLER KF, DEPAMPHILIS CW, et al., 2016. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants" [J]. Proceedings of the" National Academy of" Science of the United States of America, 113(32): 9045-9050.
WICKE S, NAUMANN J, 2018. Molecular evolution of plastid genomes in parasitic flowering plants" [J]. Advances in" Botanical Research, 85: 315-347.
WICKE S, SCHNEEWEISS GM, DEPAMPHILIS CW, et al., 2011. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function" [J]. Plant Molecular Biology, 76(3/4/5): 273-297.
WU CS, WANG YN, HSU CY, et al., 2011. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny" [J]. Genome Biology and Evolution, 3: 1284-1295.
WU L, WU ML, CUI N, et al., 2021. Plant super-barcode: A case study on genome-based identification for closely related species of Fritillaria" [J]. Chinese Medicine, 16(1): 52.
XI ZX, RUHFEL BR, SCHAEFER H, et al., 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales [J]. Proceedings of the" National Academy of" Science of the United States of America, 109(43): 17309-17310.
XIANG QP, TANG JY, YU JG, et al., 2022. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery" [J]. The Plant Journal, 111(3): 768-784.
YANG J, PARK S, GIL HY, et al., 2021. Characterization and dynamics of intracellular gene transfer in plastid genomes of Viola (Violaceae) and order Malpighiales" [J]. Frontiers in" Plant Science, 12: 678580.
YU WB, HUANG PH, LI DZ, et al., 2013.Incongruence between nuclear and chloroplast DNA phylogenies in Pedicularis section Cyathophora (Orobanchaceae)" [J]. PLoS ONE, 8(9): e74828.
ZENG CX, HOLLINGSWORTH PM, YANG J, et al., 2018. Genome skimming herbarium specimens for DNA barcoding and phylogenomics" [J]. Plant Methods, 14: 43.
ZHANG J, RUHLMAN TA, SABIR JSM, et al., 2016.Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity" [J]. Genome Biology and Evolution, 8(3): 622-634.
ZHANG L, HUANG YW, HUANG JL, et al., 2023.DNA barcoding of Cymbidium by genome skimming: Call for next-generation nuclear barcodes" [J]. Molecular Ecology Resources, 23(2): 424-439.
ZHANG Q, SODMERGEN, 2010. Why does biparental plastid inheritance revive in angiosperms" [J]. Journal of Plant Research, 123(2): 201-206.
ZHANG YJ, LI DZ, 2011.Advances in phylogenomics based on complete chloroplast genomes" [J]. Plant Diversity and Resources, 33(4): 365-375." [張韻潔,李德銖, 2011. 葉綠體系統(tǒng)發(fā)育基因組學(xué)的研究進(jìn)展" [J]. 植物分類與資源學(xué)報(bào), 33(4): 365-375.]
ZHOU XM, ZHAO J, YANG JJ, et al., 2022.Plastome structure, evolution, and phylogeny of Selaginella" [J]. Molecucal Phylogenetics and Evolution, 169: 107410.
ZHU AD, GUO WH, GUPTA S, et al., 2016. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates" [J]. The New Phytologist, 209(4): 1747-1756.
ZHU S, LIU QZ, QIU SM, et al., 2022. DNA barcoding: An efficient technology to authenticate plant species of traditional Chinese medicine and recent advances" [J]. Chinese Medicine, 17(1): 112.
ZHOU W, ARMIJOS CE, LEE C, et al., 2023. Plastid genome assembly using long-read data [J]. Molecular Ecology Resources, 23: 1442-1457.
ZOU XH, GE S, 2008. Conflicting gene trees and phylogenomics" [J]. Journal of Systematics and Evolution, 46(6): 795-807." [鄒新慧, 葛頌, 2008. 基因樹沖突與系統(tǒng)發(fā)育基因組學(xué)研究" [J]. 植物分類學(xué)報(bào), 46(6): 795-807.]
(責(zé)任編輯 蔣巧媛 王登惠)
基金項(xiàng)目:" 國家自然科學(xué)基金(31870196, 32371700); 云南省興滇人才專項(xiàng)(202405AS350019); 中國科學(xué)院西部青年人才項(xiàng)目; 云南省基礎(chǔ)研究專項(xiàng)重大項(xiàng)目(202101BC070003); 海南省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(ZDYF2023RDY201)。
第一作者: 陳麗瓊(1996—),碩士,研究方向?yàn)榧?xì)胞器基因組演化,(E-mail)chenliqiong@xtbg.ac.cn。
*通信作者:" 郁文彬,博士,研究員,研究方向?yàn)橹参锵到y(tǒng)與演化,(E-mail)yuwenbin@xtbg.ac.cn。