張衛(wèi)奇,許海燕
中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所,北京協(xié)和醫(yī)學(xué)院基礎(chǔ)學(xué)院生物醫(yī)學(xué)工程系,北京 100730
碳納米管作為核酸類物質(zhì)轉(zhuǎn)運(yùn)載體的研究進(jìn)展
張衛(wèi)奇,許海燕
中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所,北京協(xié)和醫(yī)學(xué)院基礎(chǔ)學(xué)院生物醫(yī)學(xué)工程系,北京 100730
基因治療與RNA干擾治療在遺傳性疾病、惡性腫瘤、病毒感染等疾病治療中具有巨大的潛力和應(yīng)用前景。目前商業(yè)化的病毒載體和其它一些轉(zhuǎn)染方法在轉(zhuǎn)染效率和安全性方面仍需進(jìn)一步的改進(jìn)。近年來(lái)納米生物醫(yī)學(xué)研究的結(jié)果顯示,碳納米管有可能成為一種新型的基因轉(zhuǎn)染與RNA干擾載體,具有轉(zhuǎn)染效率高、毒性相對(duì)較小等優(yōu)點(diǎn)。本文對(duì)碳納米管作為核酸載體在基因治療和RNA干擾治療中的研究進(jìn)展做了綜合評(píng)述,對(duì)碳納米管-核酸復(fù)合物的制備、表征及其在細(xì)胞環(huán)境中的去向等方面的研究進(jìn)展也做了簡(jiǎn)要介紹。
碳納米管;核酸;非病毒載體;基因轉(zhuǎn)染;RNA干擾
基因治療和RNA干擾(RNAi)在遺傳性疾病、惡性腫瘤、病毒感染等疾病治療中具有巨大的潛力和應(yīng)用前景,但是,外源基因與siRNA序列的自身特性限制了其在疾病治療中的應(yīng)用,比如,在生理環(huán)境下易被核酸酶降解而半衰期短,進(jìn)入細(xì)胞能力弱而導(dǎo)致轉(zhuǎn)染效率低。病毒載體和其它一些轉(zhuǎn)染方法可以克服上述部分困難,但是在基因治療和RNAi應(yīng)用中仍然存在一定的不足,例如病毒載體具有轉(zhuǎn)染效率高的優(yōu)點(diǎn),但可能引起細(xì)胞發(fā)生突變和引發(fā)免疫反應(yīng);商業(yè)化脂質(zhì)體對(duì)原代細(xì)胞轉(zhuǎn)染效率低且可能引起炎癥反應(yīng)[1~3]。隨著納米技術(shù)的發(fā)展,納米載體在核酸物質(zhì)轉(zhuǎn)運(yùn)中的應(yīng)用研究迅速增多,其中碳納米管的獨(dú)特性質(zhì)吸引了越來(lái)越多的關(guān)注,作為一種新型的核酸物質(zhì)轉(zhuǎn)運(yùn)載體已經(jīng)顯示出了其誘人的優(yōu)勢(shì)。
碳納米管可以看成由單層或多層石墨烯繞中心軸卷曲而成的無(wú)縫的納米級(jí)管,根據(jù)石墨烯的層數(shù)而分為兩種:?jiǎn)伪谔技{米管(single wall carbon nanotubes,SWNTs)和多壁碳納米管(multi-wall carbon nanotubes,MWNTs)。碳納米管與核酸的相互作用是成功組裝碳納米管-核酸復(fù)合物的關(guān)鍵。目前大多數(shù)研究集中在碳納米管與單鏈DNA(ssDNA)的相互作用方面[4~7]。盡管ssDNA沒(méi)有具有生物功能的序列,但是它與碳納米管的相互作用可以幫助理解碳納米管與雙鏈DNA(dsDNA)和siRNA序列之間的相互作用,而這兩個(gè)序列正是基因轉(zhuǎn)染和RNA干擾(RNAi)中所應(yīng)用的。研究結(jié)果顯示,ssDNA與dsDNA均能通過(guò)疏水相互作用和核酸堿基與碳納米管管壁芳香烴環(huán)之間的π-疊加作用而纏繞在碳納米管上[6,8]。除疏水作用外,表面帶有正電荷的碳納米管能夠通過(guò)靜電作用將質(zhì)粒吸附在碳納米管表面,且吸附量與其表面修飾的基團(tuán)類型和正電荷的密度相關(guān)[9,10]。碳納米管與ssDNA的相互作用是具有核酸序列依賴性的,有趣的是,大部分研究中使用的序列都是GT重復(fù)序列[4,8,11,12]。然而來(lái)源于λDNA片段的隨機(jī)順序序列亦被證明可以纏繞到碳納米管表面[13]。此外,核酸分子的長(zhǎng)度會(huì)影響碳納米管-核酸復(fù)合物的形態(tài),長(zhǎng)DNA序列會(huì)以更疏松的方式纏繞在碳納米管周圍,而且選擇性更低[12]。
圖1給出了碳納米管與核酸分子形成復(fù)合物的幾種途徑。非共價(jià)吸附是制備碳納米管-核酸復(fù)合物的一種常用方法。疏水相互作用、π-疊加作用和靜電相互作用都可以驅(qū)使核酸纏繞或是吸附在正電修飾和未修飾的碳納米管表面[14,15]。共價(jià)結(jié)合則是另外一種途徑:核酸分子通過(guò)共價(jià)鍵連接于碳納米管兩端或是碳納米管表面的修飾基團(tuán)上,這種結(jié)合方式被認(rèn)為比非共價(jià)吸附更穩(wěn)定[16,17],但是在生理?xiàng)l件下,核酸分子從碳納米管上釋放出來(lái)可能會(huì)有困難[18]。在文獻(xiàn)報(bào)道中,上述兩種方法制備的碳納米管-核酸復(fù)合物均表現(xiàn)出高轉(zhuǎn)染效率,在某些情況下甚至可以高于商業(yè)化脂質(zhì)體[19,20]。部分原因可能是碳納米管對(duì)核酸酶形成了一定的空間位阻,對(duì)其所載核酸起到了保護(hù)作用[21]。在碳納米管表面進(jìn)一步修飾靶向基團(tuán)和標(biāo)記分子后,可以形成一個(gè)多功能的碳納米管-核酸復(fù)合物,在進(jìn)行靶向基因轉(zhuǎn)染和RNAi的同時(shí)實(shí)現(xiàn)示蹤[22]。由于各實(shí)驗(yàn)報(bào)道中應(yīng)用的細(xì)胞種類、核酸序列以及碳納米管的類型各有不同,目前仍難以判斷哪種方式制備的碳納米管-核酸復(fù)合物在基因轉(zhuǎn)染和RNAi中具有更好的功能。除了將核酸分子結(jié)合到碳納米管表面外,分子動(dòng)力學(xué)模擬的結(jié)果顯示,核酸分子還可以嵌入碳納米管的內(nèi)腔[23],此策略已在實(shí)驗(yàn)上應(yīng)用于基因轉(zhuǎn)染[24]。
圖1 碳納米管與核酸分子的相互作用示意圖 (A)核酸分子通過(guò)π-疊加和疏水作用纏繞于原位合成碳納米管上;(B)核酸分子通過(guò)靜電相互作用吸附于帶有正電荷的碳納米管表面;(C)核酸分子嵌入碳納米管內(nèi)腔;(D)核酸分子通過(guò)共價(jià)鍵與碳納米管連接Fig.1 The interaction between carbon nanotubes and nucleic acids (A)Nucleic acids wrap the pristine CNTs through π-stacking and hydrophobic interactions; (B) Nucleic acids are absorbed to the cationic-functionalized CNTs through electrostatic interaction;(C)Nucleic acids are inserted into the inner space of CNTs;(D)Nucleic acids are linked with CNTs through covalent bonding
證明基因或siRNA序列是否與碳納米管復(fù)合形成了碳納米管-核酸復(fù)合物是非常關(guān)鍵的步驟。由于核酸分子自身的負(fù)電荷和紫外吸收特性,電泳和紫外吸收光譜可作為鑒定復(fù)合物形成的基本方法[9,25]。核酸與碳納米管的導(dǎo)電性有明顯差異,因此可以應(yīng)用電子透射顯微鏡(TEM)來(lái)分辨碳納米管-核酸復(fù)合物的形成[15,20]。原位合成的碳納米管在電子顯微鏡視野下呈聚集狀態(tài);由于核酸修飾提高了碳納米管的水分散性,碳納米管-核酸復(fù)合物通常散落于電子顯微鏡視野下[26]。應(yīng)用分辨率更高的超顯微鏡,如原子力顯微鏡(AFM)、掃描探針顯微鏡(SPM)和掃描隧道顯微鏡(STM),可以得到碳納米管-核酸復(fù)合物的直徑和高度數(shù)據(jù)[6,7]。碳納米管表面存在的氮和磷元素可以間接提示碳納米管-核酸復(fù)合物的形成[25]。除上述方法外,熱失重分析(thermal gravity analysis,TGA)、茚三酮試驗(yàn)(Kaiser Test)等方法也被用來(lái)定性或定量分析碳納米管-核酸復(fù)合物[20]。由于碳納米管與核酸均具有獨(dú)特的光學(xué)特性,所以光譜分析也可以用來(lái)表征碳納米管與核酸分子之間是否形成了復(fù)合物。碳納米管與核酸分子復(fù)合后,其拉曼光譜中的G帶(約1580 cm-1)發(fā)生減弱[17,27]。碳納米管表面包覆有DNA寡聚體時(shí),其圓二色譜(circular dichroism,CD)會(huì)出現(xiàn)特征性的改變[5,28]。此外,當(dāng)碳納米管或核酸分子上標(biāo)記有熒光分子或是量子點(diǎn)時(shí),也可以利用標(biāo)記基團(tuán)的熒光特性對(duì)碳納米管-核酸復(fù)合物進(jìn)行表征[29,30]。
在轉(zhuǎn)染過(guò)程中,外源基因或siRNA序列進(jìn)入細(xì)胞核或細(xì)胞質(zhì)發(fā)揮其生物功能。當(dāng)碳納米管作為載體時(shí),核酸也應(yīng)經(jīng)過(guò)類似的過(guò)程表達(dá)蛋白或是沉默基因表達(dá),但整個(gè)過(guò)程可能復(fù)雜許多。大量的實(shí)驗(yàn)已經(jīng)表明,碳納米管-核酸復(fù)合物可以高效率地進(jìn)入細(xì)胞。目前認(rèn)為碳納米管-核酸復(fù)合物進(jìn)入細(xì)胞的機(jī)制主要有兩種,一是能量依賴的內(nèi)吞途徑,另一種是不需要能量的機(jī)械刺穿方式。前者主要通過(guò)被膜小泡(clathrin-coated pits)介導(dǎo),后者因不需要能量而被認(rèn)為沒(méi)有細(xì)胞選擇性[15,31]。究竟碳納米管-核酸復(fù)合物進(jìn)入細(xì)胞是否只與上述某個(gè)單一途徑有關(guān),還是存在其它入胞機(jī)制,或是幾種途徑同時(shí)存在,目前仍然不清楚[32],困難之一是實(shí)驗(yàn)手段還十分有限,某些方法的有效性還需要進(jìn)一步的驗(yàn)證。Moon等人[33]發(fā)現(xiàn),用Cy3標(biāo)記的ssDNA-SWNTs復(fù)合物在含血清培養(yǎng)基中與HeLa細(xì)胞共孵育后,培養(yǎng)基中的核酸酶會(huì)導(dǎo)致Cy3染料脫落并大量進(jìn)入細(xì)胞。因此當(dāng)利用熒光分子標(biāo)記核酸,對(duì)碳納米管-核酸復(fù)合物進(jìn)行示蹤時(shí),應(yīng)謹(jǐn)慎處理實(shí)驗(yàn)條件和實(shí)驗(yàn)結(jié)果。
碳納米管-核酸復(fù)合物進(jìn)入細(xì)胞后可定位于內(nèi)涵體[16]、溶酶體[11]、細(xì)胞質(zhì)[17]及細(xì)胞核[34]。外源基因必須定位于細(xì)胞核才能完成外源蛋白表達(dá),而siRNA序列定位于細(xì)胞質(zhì)是完成RNAi的前提[1,35]。目前普遍認(rèn)為,細(xì)胞內(nèi)環(huán)境 (如酸度、離子濃度等)的變化會(huì)使以非共價(jià)方式構(gòu)建的碳納米管-核酸復(fù)合物中的核酸更容易釋放。此外,利用二硫鍵將siRNA序列與碳納米管連接,復(fù)合物被內(nèi)吞后,其二硫鍵會(huì)在溶酶體內(nèi)被酶解,siRNA序列得到釋放而進(jìn)入胞質(zhì),完成基因沉默[16]。值得注意的是,在體外環(huán)境中,復(fù)合于碳納米管上的DNA仍然能指導(dǎo)其編碼蛋白的合成[36],這提示連接于碳納米管上的DNA在細(xì)胞中仍有可能具有功能,從而可以完成外源基因的表達(dá)。
迄今還很少有研究關(guān)注碳納米管-核酸復(fù)合物在完成其生物功能后的歸屬。Strano等人[37]發(fā)現(xiàn),由DNA寡聚體修飾的SWNTs在細(xì)胞重復(fù)分裂后仍然聚集于細(xì)胞當(dāng)中。在隨后的研究中,他們利用碳納米管的自身熒光和實(shí)時(shí)監(jiān)控技術(shù),發(fā)現(xiàn)修飾有d(GT)15的SWNTs可以被外排出細(xì)胞[11,38]。這種現(xiàn)象可以部分地解釋碳納米管-核酸復(fù)合物相對(duì)較小的細(xì)胞毒性,因?yàn)檫@種外排可以使碳納米管較少殘留于細(xì)胞內(nèi)。
近年來(lái)許多實(shí)驗(yàn)室致力于利用碳納米管作為載體進(jìn)行基因和RNAi治療,在抗腫瘤治療方面的研究尤其突出。已有的研究結(jié)果顯示,碳納米管可以通過(guò)物理吸附或者化學(xué)連接的方式復(fù)合大量的核酸序列,同時(shí)能夠有效保護(hù)核酸免受核酸酶降解;碳納米管-核酸復(fù)合物可高效轉(zhuǎn)染各種類型細(xì)胞,與商業(yè)化脂質(zhì)體載體相比,表現(xiàn)出較低的細(xì)胞毒性;此外,碳納米管可廉價(jià)合成且技術(shù)成熟,而且與各種生物大分子的連接比較簡(jiǎn)單易行,具有多功能化的潛能。這些特性使碳納米管成為新型核酸載體的重要候選者之一。
碳納米管作為基因載體已經(jīng)成功轉(zhuǎn)染了多種動(dòng)物細(xì)胞和具有細(xì)胞壁的植物細(xì)胞,以及大腸桿菌[24,39,40],表1總結(jié)了主要的一些實(shí)驗(yàn)結(jié)果。Kostarelos等率先報(bào)道了碳納米管可以將β-gal基因轉(zhuǎn)入動(dòng)物細(xì)胞[15]。隨后,他們發(fā)現(xiàn)以不同正電基團(tuán)修飾的碳納米管作為基因載體時(shí),報(bào)告基因的表達(dá)水平取決于DNA與碳納米管的復(fù)合強(qiáng)度,而復(fù)合強(qiáng)度與DNA和碳納米管的正、負(fù)電荷比相關(guān)[9]。與此相似,MWNTs表面的電荷狀態(tài)影響其所載基因的轉(zhuǎn)染效率,只有帶正電荷的氨基化MWNTs才能有效地轉(zhuǎn)染動(dòng)物細(xì)胞[10]。Leong等人[18]利用PEI修飾碳納米管,得到的轉(zhuǎn)染效率比單獨(dú)使用PEI高3倍。Scherman等人[41]以非共價(jià)結(jié)合方式在SWNTs和MWNTs上修飾兩種不同兩性陽(yáng)離子分子,用以轉(zhuǎn)運(yùn)lucirerase基因進(jìn)入細(xì)胞。他們發(fā)現(xiàn)碳納米管的直徑和表面修飾的兩性分子均與轉(zhuǎn)染效率密切相關(guān)。Narain等人[42]發(fā)現(xiàn)以表面帶有陽(yáng)離子多糖的SWNTs作為載體,基因的轉(zhuǎn)染效率可與商業(yè)化lipofectamin相當(dāng)。為檢測(cè)碳納米管-核酸復(fù)合物的細(xì)胞毒性,Prakash等人[43]以sw480細(xì)胞作為模型,發(fā)現(xiàn)碳納米管-核酸復(fù)合物的轉(zhuǎn)染效率雖然較脂質(zhì)體低,但其細(xì)胞毒性卻比脂質(zhì)體小很多。
碳納米管作為基因載體時(shí),還可以通過(guò)物理作用來(lái)提高基因轉(zhuǎn)染效率。Cai等人[39,44]以內(nèi)腔包含有鎳顆粒的碳納米管作為載體,將細(xì)胞置于外加磁場(chǎng)時(shí),這種磁性碳納米管可高效地將外源基因轉(zhuǎn)入細(xì)胞,達(dá)到很高的轉(zhuǎn)染效率。這種方法可以高效轉(zhuǎn)染常規(guī)方法難以轉(zhuǎn)染的原代神經(jīng)元等細(xì)胞,并且不會(huì)引起B(yǎng)細(xì)胞的非特異性激活。Iwata等人[45]在金電極表面包被一層自組裝膜,將碳納米管吸附其上,再吸附質(zhì)粒DNA。通過(guò)外界電脈沖的作用在細(xì)胞膜上形成微孔,電極上吸附的質(zhì)粒被轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞,實(shí)現(xiàn)了高效轉(zhuǎn)染的目的。還有一種方案是將碳納米纖維構(gòu)建成垂直轉(zhuǎn)染陣列,通過(guò)針狀碳納米纖維的機(jī)械刺穿作用,將復(fù)合在其表面的外源基因直接導(dǎo)入目的細(xì)胞,有趣的是這種轉(zhuǎn)染方法細(xì)胞毒性卻比較小[46~48]。
表1 碳納米管作為基因表達(dá)載體在多種細(xì)胞模型中的應(yīng)用Table 1 Carbon nanotubes as gene expression vector in various cell models
碳納米管作為RNAi載體已經(jīng)成功將siRNA序列或反義寡核苷酸序列(asODN)轉(zhuǎn)運(yùn)進(jìn)入多種細(xì)胞,并在細(xì)胞水平和動(dòng)物水平上實(shí)現(xiàn)對(duì)特定基因表達(dá)的沉默(表2)。Zhang等人[17]將myc asODN通過(guò)酰胺鍵連接到碳納米管,這種復(fù)合物有效地沉默了HL-60細(xì)胞內(nèi)的myc蛋白表達(dá),導(dǎo)致細(xì)胞發(fā)生凋亡。Dai等[16,19]將siRNA通過(guò)二硫鍵與PEG化的磷脂分子連接,磷脂分子的尾部通過(guò)非特異性吸附結(jié)合于碳納米管表面。這種方法構(gòu)建的復(fù)合物中的siRNA通過(guò)二硫鍵在溶酶體內(nèi)發(fā)生酶解而得以釋放,從而有效地沉默了目的基因的表達(dá),所達(dá)到的沉默效率比lipofectamine高。利用上述相同的碳納米管-siRNA復(fù)合物設(shè)計(jì),
Bottini等[49]有效地沉默了PTPN22在T淋巴細(xì)胞中的表達(dá);Westerblad等人[29]通過(guò)下調(diào)TRPC3基因表達(dá),證明TRPC3可以作為胰島素抗性和Ⅱ型糖尿病治療的靶標(biāo)。
表2 碳納米管作為基因沉默載體在細(xì)胞模型和動(dòng)物體內(nèi)的應(yīng)用Table 2 Carbon nanotube as gene silencing vector
正電基團(tuán)修飾的碳納米管常被用來(lái)轉(zhuǎn)運(yùn)siRNA序列進(jìn)入目的細(xì)胞,而且具有毒性相對(duì)較小的特點(diǎn)。氨基化的碳納米管在室溫下與Cyclin A2 siRNA序列孵育后,通過(guò)靜電吸附作用形成了碳納米管-siRNA復(fù)合物。這種復(fù)合物可以有效地下調(diào)癌基因Cyclin A2的表達(dá),且未觀察到明顯的毒性[50,51]。Jia等人[30]將量子點(diǎn)標(biāo)記的端粒酶asODN與修飾有PEI的碳納米管復(fù)合后,在有效地沉默端粒酶表達(dá)并誘使細(xì)胞發(fā)生凋亡的同時(shí),對(duì)asODN進(jìn)行了示蹤。這種帶有量子點(diǎn)的碳納米管-asODN復(fù)合物對(duì)目的細(xì)胞表現(xiàn)出很低的毒性。Hu[52]和Prato[53]研究組分別構(gòu)建了樹(shù)枝狀大分子修飾的碳納米管作為siRNA轉(zhuǎn)運(yùn)載體,在細(xì)胞水平沉默了目的基因的表達(dá)。此外,碳納米纖維陣列亦可用來(lái)在細(xì)胞水平進(jìn)行RNAi。Sayler等人[54]利用這種陣列,將含CFP干擾序列的shRNA結(jié)構(gòu)成功轉(zhuǎn)入目的細(xì)胞并有效地沉默了CFP基因的表達(dá)。
碳納米管作為RNAi載體的體內(nèi)研究也取得了進(jìn)展。Yang等[25]將SWNTs與TERT siRNA偶聯(lián),通過(guò)給荷瘤小鼠直接瘤內(nèi)靜脈注射SWCNTs與siRNA的復(fù)合物,有效地抑制了腫瘤的生長(zhǎng)。Kostarelos等人[20]以Calu 6腫瘤小鼠為模型,實(shí)驗(yàn)組瘤內(nèi)注射MWNTs-PLK1 siRNA復(fù)合物,對(duì)照組瘤內(nèi)注射脂質(zhì)體-siRNA復(fù)合物,發(fā)現(xiàn)實(shí)驗(yàn)組小鼠的腫瘤生長(zhǎng)得到有效抑制,且小鼠存活期得到明顯延長(zhǎng)。將未經(jīng)修飾的碳納米管與HIF-1α siRNA進(jìn)行簡(jiǎn)單的超聲混合即可形成碳納米管-siRNA復(fù)合物。在瘤內(nèi)注射這種復(fù)合物后,可以有效地干擾HIF-1α的表達(dá)并抑制小鼠腫瘤的生長(zhǎng)[55]。McCarroll[56]用SWNTs-ApoB siRNA復(fù)合物有效地下調(diào)了小鼠肝臟ApoB表達(dá)和血漿中的膽固醇水平,且靜脈注射siRNA用量少于1 mg/kg,這個(gè)劑量是臨床應(yīng)用中的一個(gè)可行劑量。
碳納米管能夠運(yùn)載核酸的性質(zhì)還有一些特殊的應(yīng)用研究(表3)。例如,由于帶負(fù)電荷,具有佐劑性質(zhì)的CpG序列很難進(jìn)入細(xì)胞。Bianco等[57]用正電修飾的碳納米管與CpG序列復(fù)合,有效地將CpG帶入目的細(xì)胞而增強(qiáng)了其免疫激活功能。另一個(gè)特殊應(yīng)用是通過(guò)互補(bǔ)寡核苷酸片段的相互結(jié)合作用,使碳納米管在腫瘤組織中發(fā)生自組裝。例如在碳納米管上分別修飾RGD配體(靶向分子)、放射金屬元素(示蹤分子)及寡核苷酸序列,這種攜帶多種功能分子的碳納米管進(jìn)入腫瘤微血管后,由于寡核苷酸片段間的相互作用而發(fā)生自組裝,形成復(fù)合物阻塞微血管,達(dá)到抑制腫瘤生長(zhǎng)的目的[58]。盡管上述修飾過(guò)程比較繁瑣復(fù)雜,但為進(jìn)行抗腫瘤治療提供了一種新的策略。此外,Gmeiner等人[26]在對(duì)荷瘤小鼠進(jìn)行熱療時(shí),發(fā)現(xiàn)DNA修飾的碳納米管的熱療效果比未修飾的碳納米管更好,這是由于DNA的修飾增加了碳納米管的水分散性,使其獲得了更高的熱效應(yīng)。
表3 碳納米管在運(yùn)載其它核酸藥物方面的應(yīng)用Table 3 CNTs as delivery vehicles for other nucleic acids drugs
除了載體之外,基因傳遞的靶向性也是基因治療與RNAi干擾中急需解決的重要問(wèn)題。迄今,在體外條件下尚少見(jiàn)在碳納米管-核酸復(fù)合物上連接靶向分子進(jìn)行轉(zhuǎn)染的文獻(xiàn)報(bào)道,在動(dòng)物水平的轉(zhuǎn)染實(shí)驗(yàn)中,絕大多數(shù)研究采用了瘤內(nèi)注射的方式。碳納米管作為一類新的核酸載體,在實(shí)現(xiàn)納米載體的靶向遞送方面具有很大的發(fā)展空間。碳納米管表面在連接核酸分子的同時(shí),還可以與具有靶向性的分子相結(jié)合,成為具有定向傳遞功能的復(fù)合物。腫瘤細(xì)胞會(huì)高表達(dá)某些分子,在碳納米管連接上這些分子的抗體或者配體后,如單克隆抗體Fab片段、核酸適配子(aptamer),有望使碳納米管-核酸復(fù)合物對(duì)腫瘤細(xì)胞產(chǎn)生特異性的攻擊作用。Scheinberg等[58]利用RGD多肽作為靶向分子,引導(dǎo)更多的碳納米管-核酸復(fù)合物作用于腫瘤細(xì)胞,顯示了碳納米管-核酸復(fù)合物獲得靶向的可行性。此外,利用內(nèi)腔中包含有鎳顆粒的碳納米管作為核酸載體,在外界磁場(chǎng)的驅(qū)動(dòng)下于體外可以高效轉(zhuǎn)染原代神經(jīng)元細(xì)胞,通過(guò)物理作用實(shí)現(xiàn)了靶向的功能[39]。
與傳統(tǒng)的核酸轉(zhuǎn)運(yùn)載體相比,碳納米管已經(jīng)表現(xiàn)出其獨(dú)特的優(yōu)勢(shì)。目前碳納米管作為基因和RNAi載體仍處于研究階段,離臨床疾病治療和商業(yè)化應(yīng)用還有很大的距離。碳納米管作為核酸轉(zhuǎn)運(yùn)載體的研究應(yīng)該首要解決以下問(wèn)題:1)進(jìn)一步了解碳納米管-核酸復(fù)合物在細(xì)胞中的定位、代謝以及核酸發(fā)揮功能的作用機(jī)制;2)在體內(nèi)水平對(duì)碳納米管-核酸復(fù)合物進(jìn)行綜合研究,建立優(yōu)化的給藥方式,將復(fù)合物靶向到特定的器官或組織;3)綜合評(píng)價(jià)碳納米管-核酸的生物學(xué)效應(yīng),對(duì)制作工藝進(jìn)行標(biāo)準(zhǔn)化,從而使來(lái)自不同實(shí)驗(yàn)室的結(jié)果具有更好的比較性。
參考文獻(xiàn):
1.Patil SD,Rhodes DG,Burgess DJ.DNA-based therapeutics and DNA delivery systems:a comprehensive review.AAPS J,2005,7:61~77
2.Verma IM,Somia NV.Gene therapy—promises,problems and prospects.Nature,1997,389:239~242
3.Zhang JS,Liu F,Huang L.Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity.Adv Drug Deliv Rev,2005,57:689~698
4.Zheng M,Jagota A,Strano MS,Santos AP,Barone PW,Chou SG,Diner BA,Dresselhaus MS,McLean RS,Onoa GB,Samsonidze GG,Semke ED,Usrey ML,Walls DJ.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.Science,2003,302:1545~1548
5.Dukovic G,Balaz M,Doak P,Berova ND,Zheng M,McLean RS,BrusLE. Racemicsingle-walled carbon nanotubesexhibitcirculardichroism whenwrappedwith DNA.J Am Chem Soc,2006,128:9004~9005
6.Lahiji RR,Dolash BD,Bergstrom DE,Reifenberger R.Oligodeoxyribonucleotide association with single-walled carbonnanotubesstudiedbySPM. Small,2007,3:1912~1920
7. Yarotski DA,Kilina SV,Talin AA,Tretiak S,Prezhdo OV,Balatsky AV,Taylor AJ.Scanning tunneling microscopy of DNA-wrapped carbon nanotubes.Nano Lett,2009,9:12~17
8. Heller DA,Jeng ES,Yeung TK,Martinez BM,Moll AE,Gastala JB,Strano MS. Opticaldetection ofDNA conformational polymorphism on single-walled carbon nanotubes.Science,2006,311:508~511
9. Singh R,Pantarotto D,McCarthy D,Chaloin O,Hoebeke J,Partidos CD,Briand JP,Prato M,Bianco A,Kostarelos K. Binding and condensation ofplasmid DNA onto functionalized carbon nanotubes:Toward the construction of nanotube-based gene delivery vectors.J Am Chem Soc,2005,127:4388~4396
10.Gao LH,Nie LH,Wang T,Qin YZ,Guo Z,Yang D,Yan X. Carbon nanotube deliveryofthe GFP gene into mammalian cells.Chembiochem,2006,7:239~242
11.Jin H,Heller DA,Strano MS.Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett,2008,8:1577~1585
12.Yang Q,Wang Q,Gale N,Oton CJ,Cui L,Nandhakumar IS,Zhu Z,Tang Z,Brown T,Loh WH.Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.Nanotechnology,2009,20:195603~195607
13.Gigliotti B,Sakizzie B,Bethune DS,Shelby RM,Cha JN.Sequence-independenthelicalwrapping ofsingle-walled carbon nanotubes by long genomic DNA.Nano Lett,2006,6:159~164
14.Zheng M,Jagota A,Semke ED,Diner BA,McLean RS,Lustig SR,Richardson RE,TassiNG. DNA-assisted dispersion and separation of carbon nanotubes.Nat Mater,2003,2:338~342
15.Pantarotto D,Singh R,McCarthy D,Erhardt M,Briand JP,Prato M,Kostarelos K,Bianco A.Functionalized carbon nanotubes for plasmid DNA gene delivery.Angew Chem Int Ed,2004,43:5242~5246
16.Kam NW,Liu Z,Dai H.Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing.J Am Chem Soc,2005,127:12492~12493
17.Cui DF,Tian FJ,Coyer SR,Wang J,Pan BR,Gao FG,He R,Zhang Y. Effectsofantisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells.J Nanosci Nanotechnol,2007,7:1639~1646
18.Liu Y,Wu DC,Zhang WD,Jiang X,He CJ,Chung TS,Goh SH,Leong KW.Polyethylenimine-grafted multiwalled carbon nanotubes forsecure noncovalentimmobilization and efficient delivery of DNA.Angew Chem Int Ed,2005,44:4782~4785
19.Liu Z,Winters MA,Holodniy M,Dai H.siRNA delivery into human T cellsand primarycellswith carbon-nanotube transporters.Angew Chem Int Ed,2007,46:2023~2027
20.Podesta JE,Al-Jamal KT,Herrero MA,Tian B,Ali-Boucetta H,Hegde V,Bianco A,Prato M,Kostarelos K.Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeuticsiRNA silencing in a human lung xenograft model.Small,2009,5:1176~1185
21.Wu Y,Phillips JA,Liu H,Yang R,Tan W.Carbon nanotubesprotectDNA strandsduring cellulardelivery.ACS Nano,2008,2:2023~2028
22.Prato M,Kostarelos K,Bianco A.Functionalized carbon nanotubes in drug design and discovery.Acc Chem Res,2008,41:60~68
23.Gao H,Kong Y,Cui D.Spontaneous insertion of DNA oligonucleotides into carbon nanotubes.Nano Lett,2003,3:471~473
24.Rojas-Chapana JA,Troszczynska J,Firkowska I,Morsczeck C,Giersig M.Multi-walled carbon nanotubes for plasmid delivery intoEscherichia colicells.Lab Chip,2005,5:536~539
25.Zhang Z,Yang XY,Zhang YH,Zeng BF,Wang S,Zhu TL,Roden RB,Chen YJ,Yang R.Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth.Clin Cancer Res,2006,12:4933~4939
26.Ghosh S,Dutta S,Gomes E,Carroll D,D'Agostino R,Olson J,Guthold M,Gmeiner WH.Increased heating efficiency and selective thermal ablation of malignant tissue withDNA-encasedmultiwalledcarbonnanotubes. ACS Nano,2009,3:2667~2673
27.Li Z,Wu Z,Li K.The high dispersion of DNA-multiwalledcarbon nanotubesand theirproperties. AnalBiochem,2009,387:267~270
28.Li X,Peng YW,Ren JW,Qu XM.Carboxyl-modified single-walled carbon nanotubes selectively induce human telomerici-motifformation. Proc NatlAcad SciUSA,2006,103:19658~19663
29.Lanner JT,Bruton JD,Assefaw-Redda Y,Andronache Z,Zhang SL,Severa D,Zhang ZB,Melzer W,Zhang SL,Katz A,Westerblad H.Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells.FASEB J,2009,23:1728~1738
30.Jia N,Lian Q,Shen H,Wang C,Li X,Yang Z.Intracellulardelivery ofquantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes.Nano Lett,2007,7:2976~2980
31.Kam NW,Liu Z,Dai H.Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway.Angew Chem Int Ed,2006,45:577~581
32.Ali-Boucetta H,Kostarelos K.Carbon nanotube cell biology:Not just a simple interaction.Eur J Nanomed,2008,1:29~32
33.Moon HK,Chang CI,Lee D-K,Choi HC.Effect of nucleases on the cellular internalization offluorescent labeled DNA-functionalized single-walled carbon nanotubes.Nano Res,2008,1:351~360
34.Kam NW,O'Connell M,Wisdom JA,Dai H.Carbon nanotubes as multifunctionalbiologicaltransporters and near-infrared agents for selective cancer cell destruction.Proc Natl Acad Sci USA,2005,102:11600~11605
35.Krajcik R,Jung A,Hirsch A,Neuhuber W,Zolk O.Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.Biochem Biophys Res Commun,2008,369:595~602
36.Rege K,Viswanathan G,Zhu G,Vijayaraghavan AS,Ajayan PM,Dordick JS.In vitrotranscription and protein translation from carbon nanotube-DNA assemblies.Small,2006,2:718~722
37.Heller DA,Baik S,Eurell TE,Strano MS.Single-walled carbon nanotube spectroscopy in live cells:Towards long-term labels and optical sensors.Adv Mater,2005,17:2793~2799
38.Jin H,Heller DA,Sharma R,Strano MS.Size-dependent cellular uptake and expulsion ofsingle-walled carbon nanotubes:Single particle tracking and a generic uptake model for nanoparticles.ACS Nano,2009,3:149~158
39.Cai D,Mataraza JM,Qin ZH,Huang Z,Huang J,Chiles TC,Carnahan D,KempaK,RenZ. Highly efficient moleculardelivery into mammalian cells using carbon nanotube spearing.Nat Methods,2005,2:449~454
40.Liu Q,Chen B,Wang Q,Shi X,Xiao Z,Lin J,Fang X.Carbon nanotubes as moleculartransportersforwalled plant cells.Nano Lett,2009,9:1007~1010
41.Richard C,Mignet N,Largeau C,Escriou V,Bessodes M,Scherman D.Functionalization of single-and multi-walled carbon nanotubeswith cationicamphiphilesforplasmid DNA complexation and transfection.Nano Res,2009,2:638~647
42. AhmedM,JiangX,DengZ,NarainR. Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles.Bioconjug Chem,2009,20:2017~2022
43.Kulamarva A,Bhathena J,Malhotra M,Sebak S,Nalamasu O,Ajayan P,Prakash S. In vitro cytotoxicity of functionalized single walled carbon nanotubes for targeted gene delivery applications. Nanotoxicology,2008,2:184~188
44.Cai D,Doughty CA,Potocky TB,Dufort FJ,Huang Z,Blair D,Kempa K,Ren ZF,Chiles TC.Carbon nanotubemediated delivery ofnucleic acids does notresultin non-specific activation of B lymphocytes.Nanotechnology,2007,18:365101~365110
45.Inoue Y,Fujimoto H,Ogino T,Iwata HI.Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode.J R Soc Interface,2008,5:909~918
46.McKnight TE,Melechko AV,Griffin GD,Guillorn MA,Merkulov VI,Serna F,Hensley DK,Doktycz MJ,Lowndes DH,Simpson ML. Intracellularintegration ofsynthetic nanostructures with viable cells for controlled biochemical manipulation.Nanotechnology,2003,14:551~556
47.McKnight TE,Melechko AV,Hensley DK,Mann DGJ,Griffin GD,Simpson ML.Tracking gene expression after DNA delivery using spatially indexed nanofiberarrays.Nano Lett,2004,4:1213~1219
48.Fletcher BL,McKnight TE,Melechko AV,Simpson ML,Doktycz MJ. Biochemicalfunctionalization ofvertically aligned carbon nanofibres. Nanotechnology,2006,17:2032~2039
49.Delogu LG,Magrini A,Bergamaschi A,Rosato N,Dawson MI,BottiniN,BottiniM. Conjugation ofantisense oligonucleotides to PEGylated carbon nanotubes enables efficient knockdown of PTPN22 in T lymphocytes.Bioconjug Chem,2009,20:427~431
50.Wang X,Song Y,Ren J,Qu X.Knocking-down cyclin A(2)by siRNA suppresses apoptosis and switches differentiation pathways in K562 cells upon administration with doxorubicin.PLoS One,2009,4:e6665
51.Wang X,Ren J,Qu X.Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrestand apoptosis in chronicmyelogenousleukemiaK562cells. Chem Med Chem,2008,3:940~945
52.Pan B,Cui D,Xu P,Ozkan C,Feng G,Ozkan M,Huang T,Chu B,LiQ,He R,Hu G. Synthesisand characterization of polyamidoamine dendrimer-coated multiwalled carbon nanotubesand theirapplication in gene delivery systems. Nanotechnology,2009,20: 125101~125109
53.Herrero MA,Toma FM,Al-Jamal KT,Kostarelos K,Bianco A,Da Ros T,Bano F,Casalis L,Scoles G,Prato M.Synthesis and characterization ofa carbon nanotubedendron series for efficient siRNA delivery.J Am Chem Soc,2009,131:9843~9848
54.MannDG,McKnightTE,McPhersonJT,HoytPR,Melechko AV,Simpson ML,Sayler GS.Inducible RNA interference-mediated gene silencing using nanostructured gene delivery arrays.ACS Nano,2008,2:69~76
55.Bartholomeusz G,Cherukuri P,Kingston J,Cognet L,Lemos R,Leeuw TK,Gumbiner-Russo L,Weisman RB,Powis G.In Vivotherapeutic silencing of hypoxia-inducible factor 1 alpha(HIF-1)using single-walled carbon nanotubes noncovalently coated with siRNA.Nano Res,2009,2:279~291
56.McCarroll J,Baigude H,Yang C,Rana TM.Nanotubes functionalized with lipids and natural amino acid dendrimers:a new strategy to create nanomaterials for delivering systemic RNAi.Bioconjugate Chem,2010,21:56~63
57.Bianco A,Hoebeke J,Godefroy S,Chaloin O,Pantarotto D,Briand JP,Müller S,Prato M,Partidos CD.Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties.J Am Chem Soc,2005,127:58~59
58.Villa CH,McDevitt MR,Escorcia FE,Rey DA,Bergkvist M,Batt CA,Scheinberg DA.Synthesis and biodistribution of oligonucleotide-functionalized,tumor-targetable carbon nanotubes.Nano Lett,2008,8:4221~4228
This work was supported by a grant from National Basic Research Program of China(973 Programe)(2010CB934002)
Current Progress of Carbon Nanotubes as Novel Class Carrier for Nuleic Acid Substance
ZHANG Weiqi,XU Haiyan
Department of Biomedical Engineering,Institute of Basic Medical Sciences,Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100730,China
Mar 10,2010 Accepted:May 14,2010
XU Haiyan,Tel:+86(10)65296437,E-mail:xuhy@pumc.edu.cn
GeneandRNAitherapieshaveshownagreattherapeuticpotentialagainstthehereditary diseases,cancers,virus infections,and many other diseases as well.However,the existing commercialized virus vectors and other transfection protocols still have their deficiency such as unexpected side effects and low transfection efficiency during the delivery process.With the rapid advance of nanobiomedcine in recent years,carbon nanotubes(CNTs)have demonstrated their advantages as one potential vector with enhanced transfection efficiency and less toxic effects.This review is attempting to summarize the research progress of CNTs as a class of novel vector to deliver nucleic acids in gene therapy and RNA interference,as well as to introduce the fabrication,physicochemicalcharacterization and fate ofcarbon nanotube-nucleicacid conjugates interior the cells.
Carbon nanotubes;Nucleic acid;Non-virus vector;Gene transfection;RNAi
2010-03-10;接受日期:2010-05-14
國(guó)家重大科學(xué)研究計(jì)劃項(xiàng)目(2010CB934002)
許海燕,電話:(010)65296437,E-mail:xuhy@pumc.edu.cn
R318.08,Q782