鄭偉 許厚澤 鐘敏 員美娟
1)中國科學(xué)院測量與地球物理研究所動(dòng)力大地測量學(xué)重點(diǎn)實(shí)驗(yàn)室,武漢4300772)日本京都大學(xué)防災(zāi)研究所,京都611-0011日本3)武漢科技大學(xué)應(yīng)用物理系,武漢430081
國際火星探測計(jì)劃進(jìn)展和中國火星衛(wèi)星重力測量計(jì)劃研究*
鄭偉1,2)許厚澤1)鐘敏1)員美娟3)
1)中國科學(xué)院測量與地球物理研究所動(dòng)力大地測量學(xué)重點(diǎn)實(shí)驗(yàn)室,武漢430077
2)日本京都大學(xué)防災(zāi)研究所,京都611-0011日本
3)武漢科技大學(xué)應(yīng)用物理系,武漢430081
介紹國際火星探測計(jì)劃和基于國際火星探測數(shù)據(jù)建立的火星重力場模型,闡述SGG-Doppler-VLBI跟蹤觀測模式的測量原理和優(yōu)點(diǎn),并建議中國將來首期火星衛(wèi)星重力測量計(jì)劃采用SGG-Doppler-VLBI觀測模式和靜電懸浮重力梯度儀。
火星探測計(jì)劃;衛(wèi)星重力梯度;火星重力場模型;衛(wèi)星跟蹤模式;重力梯度儀
AbstractThe implemented international Martian exploration programs including“Mars,Zond and Phobos-1/ 2”in USSR,“Mariner,Viking,Mars Observer,Mars Global Surveyor,Mars Pathfinder,Mars Climate Orbiter,Mars Polar Lander,Mars Odyssey,Spirit,Opportunity,Mars Reconnaissance Orbiter and Phoenix”in USA,“Mars-96”in Russia,“Hope”in Japan and“Mars Express”in Europe,and the future domestic and overseas Martian measurement missions are presented.The Martian gravitational field models produced by Martian observations are introduced amply,which including.1)the U.S.:6×4,6×6,10×10,Mars50c,MGS75B,MGS75D/ E,MGS85F/F2/H2,MGS95I/J,GMM-1,GMM-2B,GGM1025 and GGM1041C.2)the U.K.:6×6.3)France:18×18 and MGGM08A.The measuring principle and advantages in the SGG-Doppler-VLBI tracking mode are described,which will be applied in the future first-stage China’s Martian satellite gravity measurement.It is concluded that the electrostatic suspension gravity gradiometer is preferable in the future first-stage Martian satellite gravity gradiometry mission in China by a comparison of strongpoints and shortcomings from electrostatic suspension,superconducting and quantum gravity gradiometers.
Key words:Martian exploration mission;satellite gravity gradiometry;Martian gravitational field model;satellite tracking mode;gravity gradiometer
火星重力場的精密測量是國際火星探測計(jì)劃的重要組成部分,決定著火星探測器軌道的優(yōu)化設(shè)計(jì)和載人登火飛船在火星表面理想著陸點(diǎn)的最優(yōu)選取。重力探測衛(wèi)星在重力場作用下繞火星作近圓極軌運(yùn)動(dòng),若精密定軌必須知道精確的火星重力場參數(shù);反之,精確測定衛(wèi)星軌道攝動(dòng),利用攝動(dòng)跟蹤觀測數(shù)據(jù)又可以提高火星重力場參數(shù)的精度。因此,確定火星重力場的精細(xì)結(jié)構(gòu)不僅是測繪科學(xué)、宇航科學(xué)、行星科學(xué)、天文科學(xué)、空間科學(xué)、生命科學(xué)等的需求,同時(shí)也將為全人類開展火星地形地貌和內(nèi)部結(jié)構(gòu)研究、火星新能源和資源探測、火星表面宇宙環(huán)境分析、火星系統(tǒng)起源和演化歷史論證等提供重要和豐富的信息資源。
目前國內(nèi)外測繪和航天等領(lǐng)域的眾多科學(xué)研究者已圍繞火星探測開展了廣泛而深入的研究[1-24]。為積極推動(dòng)我國自主火星衛(wèi)星重力測量計(jì)劃的早日實(shí)施,加快我國研制火星重力衛(wèi)星的步伐,提出了我國將來火星衛(wèi)星重力梯度(SGG)計(jì)劃的實(shí)施建議。
國際火星探測計(jì)劃按發(fā)展歷程可分為二期,各自的科學(xué)目標(biāo)和任務(wù)見表1和表2。
火星重力場模型是指火星引力位按球諧函數(shù)展開中引力位系數(shù)的集合。自20世紀(jì)60年代蘇聯(lián)和美國開始發(fā)射火星探測器以來,國際眾多研究機(jī)構(gòu)已采用多種技術(shù)和方法進(jìn)行了廣泛的火星重力場測量(表3)。
3.1 SGG-Doppler-VLBI觀測模式的原理
SGG-Doppler-VLBI觀測系統(tǒng)由地面Doppler-VLBI系統(tǒng)和低軌火星重力梯度衛(wèi)星組成(圖1)。其測量原理如下:利用地面Doppler-VLBI觀測系統(tǒng)對低軌火星重力梯度衛(wèi)星精密跟蹤定位,通過星載重力梯度儀直接測定火星衛(wèi)星軌道高度處引力位的二階微分,基于非保守力補(bǔ)償系統(tǒng)屏蔽火星重力梯度衛(wèi)星受到的非保守力,利用姿態(tài)和軌道控制系統(tǒng)測量衛(wèi)星和載荷的空間三維姿態(tài),最后聯(lián)合上述火星衛(wèi)星重力梯度觀測值高精度和高空間分辨率反演火星重力場。
圖1 SGG-Doppler-VLBI的測量原理Fig.1Measuring principle of SGG-Doppler-VLBI
3.2 衛(wèi)星重力梯度儀的選取
20世紀(jì)初以來,重力梯度儀的研究經(jīng)歷了從單軸旋轉(zhuǎn)到三軸定向,從室溫到超低溫(<4.2 K),從扭力、靜電懸浮到超導(dǎo)的發(fā)展過程,儀器靈敏度日益提高(表4)。扭力測量通過測定作用于檢測質(zhì)量的力矩來間接獲取重力梯度值;差分加速度測量通過測量兩加速度計(jì)之間的加速度差來獲得重力梯度觀測值,可消除加速度計(jì)之間大部分公共誤差的影響,因此較前者更有發(fā)展前景。
目前衛(wèi)星重力梯度儀主要包括旋轉(zhuǎn)式重力梯度儀、靜電懸浮重力梯度儀、超導(dǎo)重力梯度儀、量子重力梯度儀等。靜電懸浮重力梯度儀我國已具有一定的研究基礎(chǔ),而且可借鑒地球重力梯度衛(wèi)星GOCE星載靜電懸浮重力梯度儀的成功經(jīng)驗(yàn),因此建議我國首期火星衛(wèi)星重力梯度計(jì)劃采用靜電懸浮重力梯度儀高精度和高空間分辨率感測中高頻火星重力場?;诔瑢?dǎo)重力梯度儀和量子重力梯度儀可超高精度感測火星重力重力場但研制困難較大的原因,建議我國研究機(jī)構(gòu)盡快開展預(yù)先研制,以期盡早應(yīng)用于后期火星衛(wèi)星重力梯度計(jì)劃。
綜上所述,SGG-Doppler-VLBI是一項(xiàng)探測火星重力場特性特征、精細(xì)結(jié)構(gòu)和演變過程的新技術(shù)和新領(lǐng)域。目前已逐漸發(fā)展成為專門研究火星重力梯度測量的理論、方法、載荷和應(yīng)用的新興科學(xué),而且
星載重力梯度儀可直接測定引力位的二階導(dǎo)數(shù)進(jìn)而有效抑制火星重力場中高頻信號的衰減效應(yīng),因此SGG-Doppler-VLBI觀測模式有望成為我國將來優(yōu)選的和具有發(fā)展?jié)摿Φ幕鹦切l(wèi)星重力測量模式之一。
表1 國際第一期火星探測計(jì)劃發(fā)展歷程[25,26]Tab.1Progress of the international first-stage Martian exploration programs
二、美國“水手號”和“海盜號”探測計(jì)劃(1964—1975年) (研制機(jī)構(gòu):美國航空航天局(NASA))
表2 國際第二期火星探測計(jì)劃[25-32]Tab.2Progress of the international second-stage Martian exploration programs
致謝感謝羅俊院士的幫助,以及中國國家航天局、美國航空航天局、俄羅斯聯(lián)邦航天局、日本宇宙航空研究開發(fā)機(jī)構(gòu)、歐洲空間局、印度空間研究組織、英國國家太空中心等研究機(jī)構(gòu)提供了火星探測的相關(guān)資料。
(續(xù)表2)
表3 火星重力場模型研究Tab.3Research progress of the Martian gravitational field models
表4 重力梯度儀研究[46]Tab.4Research progress of the gravity gradiometers
1Anderson J D,Efron L and Wong S K.Martian mass and Earth-moon mass ratio from coherent S-band tracking of Mariner 6 and 7[J].Science,1970,167(3916):227-279.
2Pettengill G H,Rogers A E E and Shapiro I I.Martian craters and a scarp as seen by radar[J].Science,1971,174 (4016):1 321-1 324.
3Sjogren W L,Lorell J and Wong L.Mars gravity field based on a short-arc technique[J].Journal of Geophysical Research,1975,80(20):2 899-2 908.
4Reasenberg R D and King R W.The rotation of Mars[J].Journal of Geophysical Research,1979,84:6 231-6 240.
5Chao B F and Rubincam D P.Variations of Mars gravitational field and rotation due to seasonal CO2 exchange[J].Journal of Geophysical Research,1990,95(B9):14 755-14 760.
6Kolyuka Y F,Efimov A E and Kudryavtsev S M.Refinement of the gravitational constant of Phobos from Phobos 2 tracking data[J].Soviet Astronomy Letters,1990,16:168–170.
7Folkner W M,Kahn R D and Preston R A.Mars dynamics from Earth-based tracking of the Mars Pathfinder lander[J].Journal of Geophysical Research,1997,102:4 057-4 064.
8Folkner W M,Yoder C F and Yuan D N.Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder[J].Science,1997,278:1 749-1 752.
9Yoder C F and Standish E M.Martian precession and rotation from Viking lander range data[J].Journal of Geophysical Research,1997,102:4 065-4 080.
10Smith D E,Sjogren W L and Tyler G L.The gravity field of Mars:results from Mars global surveyor[J].Science,1999,286:94-97.
11Carranza E,Yuan D N and Konopliv A S.Mars global surveyor orbit determination uncertainties using high resolution Mars gravity models[A].In:Spencer D B,Seybold C C,Misra A K,Lisowski R J(Eds.),Advances in the Astronautical Sciences,vol.109[C].Univelt,San Diego,CA,2001,1 633-1 650.
12Smith D E,Zuber M T and Neumann G A.Seasonal variations of snow depth on Mars[J].Science,2001,294: 2 141-2 146.
13Neumann G A,Zuber M T and Wieczorek M A.Crustal structure of Mars from gravity and topography[J].Journal of Geophysical Research,2004,109,doi:10.1029/ 2004JE002262.E08002.
14Karatekin O,Duron J and Rosenblatt P.Mars’time-variable gravity and its determination:simulated geodesy experiments[J].Journal of Geophysical Research,2005,110 (E6),E06001.
15Konopliv A S,Yoder C F and Standish E M.A global solution for the Mars static and seasonal gravity,Mars orientation,phobos and deimos masses,and Mars ephemeris[J].Icarus,2006,182:23-50.
16Sanchez B V,Rowlands D D and Haberle R M.Variations of Mars gravitational field based on the NASA/Ames general circulation model[J].Journal of Geophysical Research,2006,111,E06010,doi:10.1029/2005JE002442.
17陳昌亞,等.YH-1火星探測器設(shè)計(jì)及研制進(jìn)展[J].上海航天,2009,26(3):21-25.(Chen Changya,et al.The design features and research processing of YH-1 Mars probe[J].Aerospace Shanghai,2009,26(3):21-25)
18吳季,等.螢火一號火星探測計(jì)劃的科學(xué)目標(biāo)[J].空間科學(xué)學(xué)報(bào),2009,29(5):449–455.(Wu Ji,et al.Overview of scientific objectives of China-Russia Joint Mars exploration program YH-1[J].Chinese Journal of Space Science,2009,29(5):449-455)
19鄢建國,平勁松.火星重力場研究現(xiàn)狀及發(fā)展趨勢[J].物理,2009,38(10):707–711.(Yan Jianguo and Ping Jingsong.A gravity field model for Mars[J].Physics,2009,38(10):707-711)
20鄭偉,許厚澤,鐘敏.Mars-SST火星衛(wèi)星重力測量計(jì)劃研究[J].測繪科學(xué),2012,待發(fā)表.(Zheng Wei,Xu Houze and Zhong Min.Research on Mars-SST satellite gravity measurement mission[J].Science of Surveying and Mapping,2012,to be published)
21鄭偉,許厚澤,鐘敏.衛(wèi)-衛(wèi)跟蹤測量模式中軌道高度的優(yōu)化選取[J].大地測量與地球動(dòng)力學(xué),2009,(2): 100-105.(Zheng Wei,Xu Houze and Zhong Min.Optimal design of orbital altitude in satellite-to-satellite tracking model[J].Journal of Geodesy and Geodynamics,2009,(2):100-105)
22鄭偉,許厚澤,鐘敏.地球重力場模型研究進(jìn)展和現(xiàn)狀[J].大地測量與地球動(dòng)力學(xué),2010,(4):83-91.(Zheng Wei,Xu Houze and Zhong Min.Progress and present status of the research on Earth’s gravitational field models[J].Journal of Geodesy and Geodynamics,2010,(4):83-91)
23鄭偉,許厚澤,鐘敏.Improved-GRACE衛(wèi)星重力軌道參數(shù)優(yōu)化研究[J].大地測量與地球動(dòng)力學(xué),2010,(2):43-48.(Zheng Wei,Xu Houze and Zhong Min.Research on optimal selection of orbital parameters in the Improved-GRACE satellite gravity measurement mission[J].Journal of Geodesy and Geodynamics,2010,30(2): 43-48)
24鄭偉,許厚澤,鐘敏.基于激光干涉星間測距原理的下一代月球衛(wèi)星重力測量計(jì)劃需求論證[J].宇航學(xué)報(bào),2011,34(4):922-932.(Zheng Wei,Xu Houze and Zhong Min.Demonstration of requirement on future lunar satellite gravity exploration mission based on interferometric laser intersatellite ranging principle[J].Journal of Astronautics,2011,34(4):922-932)
25http://www.federalspace.ru,the Official Website of Russian Federal Space Agency,2011.
26http://www.nasa.gov,the Official Website of National Aeronautics and Space Administration,2011.
27http://www.jaxa.jp,the Official Website of Japan Aerospace Exploration Agency,2011.
28http://www.esa.int,the Official Website of European Space Agency,2011.
29http://www.bis.gov.uk,the Official Website of UK Space Agency,2011.
30http://www.cnsa.gov.cn,the Official Website of China National Space Administration,2011.
31http://www.fmi.fi/en,the Official Website of Finnish Meteorological Institute,2011.
32http://www.isro.org,the Official Website of Indian Space Research Organization,2011.
33Lorell J,Born G H and Christensen E J.Gravity field of Mars from Mariner 9 tracking data[J].Icarus,1973,18: 304-316.
34Born G H.Mars physical parameters as determined from Mariner 9 observations of the natural satellites and Doppler tracking[J].Journal of Geophysical Research,1974,79: 4 837-4 844.
35Konopliv A S and Sjogren W L.The JPL Mars Gravity Field,Mars50c,based upon Viking and Mariner 9 Doppler Tracking Data[A].JPL Publication 95-5[C].Jet Propulsion Laboratory,Pasadana,Ca.,1995.
36Yuan D N,Sjogren W L and Konopliv A S.Gravity field of Mars:A 75th degree and order model[J].Journal of Geophysical Research,2001,106:23 377-23 401.
37Planetary Data System Geosciences Node(http://wwwpds.wustl.edu).
38Konopliv A S,Yoder C F and Standish E M.A global solution for the Mars static and seasonal gravity,Mars orientation,Phobos and Deimos masses,and Mars ephemeris[J].Icarus,2006,182(1):23-50.
39Reasenberg R D,Shapiro I I and White R D.The gravity field of Mars[J].Geophysical Research Letters,1975,2 (3):89-92.
40Gapcynski J P,Tolson R H and Michael W H.Mars gravity field:Combined Viking and Mariner 9 results[J].Journal of Geophysical Research,1977,82:4 325-4 327.
41Balmino G,Moynot B and Valès N.Gravity field model of Mars in spherical harmonics up to degree and order eighteen[J].Journal of Geophysical Research,1982,87 (B12):9 735-9 746.
42Smith D E,Lerch F J and Nerem R S.An improved gravity model for Mars:Goddard Mars Model-1(GMM-1)[J].Journal of Geophysical Research,1993,98:20 781-20 889.
43Smith D E,Zuber M T and Haberle R M.The Mars seasonal CO2 cycle and the time variation of the gravity field: a general circulation model simulation[J].Journal of Geophysical Research,1999,104:1 885-1 896.
44Lemoine F G,Smith D E and Rowlands D D.An improved solution of the gravity field of Mars(GMM-2B)from Mars Global Surveyor[J].Journal of Geophysical Research,2001,106(E10):23 359-23 376.
45Marty J C,Balmino G and Duron J.Martian gravity field model and its time variations from MGS and Odyssey data[J].Planetary Space Science,2009,57:350-363.
46鄭偉,許厚澤,鐘敏.國際衛(wèi)星重力梯度測量計(jì)劃研究進(jìn)展[J].測繪科學(xué),2010,35(2):57-61.(Zheng Wei,Xu Houze and Zhong Min.Study progress in international satellite gravity gradiometry programs[J].Science of Surveying and Mapping,2010,35(2):57-61)
PROGRESS IN INTERNATIONAL MARTIAN EXPLORATION PROGRAMS AND RESEARCH ON FUTURE MARTIAN SATELLITE GRAVITY MEASUREMENT MISSION IN CHINA
Zheng Wei1,2),Xu Houze1),Zhong Min1)and Yun Meijuan3)
1)Key Laboratory of Dynamic Geodesy,Institute of Geodesy and Geophysics,CAS,Wuhan430077
2)Disaster Prevention Research Institute,Kyoto University,Uji,Kyoto 611-0011,Japan
3)Department of Applied Physics,Wuhan University of Science and Technology,Wuhan430081
P223
A
1671-5942(2011)03-0051-07
2011-02-23
中國科學(xué)院知識創(chuàng)新工程重要方向青年人才項(xiàng)目(KZCX2-EW-QN114);國家自然科學(xué)青年基金(41004006);湖北省自然科學(xué)基金(2010CDB05301);中國測繪科學(xué)研究院地理空間信息工程國家測繪局重點(diǎn)實(shí)驗(yàn)室開放基金(201031);中國科學(xué)院動(dòng)力大地測量學(xué)重點(diǎn)實(shí)驗(yàn)室開放基金(L09-14);中國科學(xué)院測量與地球物理研究所知識創(chuàng)新工程領(lǐng)域前沿項(xiàng)目;湖北省耐火材料與高溫陶瓷重點(diǎn)實(shí)驗(yàn)室——省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地開放基金(G201009);冶金工業(yè)系統(tǒng)科學(xué)湖北重點(diǎn)實(shí)驗(yàn)室開放基金(C201019)
鄭偉,男,1977年生,理學(xué)博士,副研究員,碩士生導(dǎo)師,日本京都大學(xué)博士后,日本外籍特別研究員,主要從事基于衛(wèi)星重力測量反演地球、月球和火星重力場的理論和方法等方面的研究.E-mail:wzheng@asch.whigg.ac.cn