林 群(綜述),朱 玲(審校)
(1.福建三明職業(yè)技術(shù)學(xué)院護(hù)理系,福建三明365000;2.福建醫(yī)科大學(xué)免疫學(xué)系,福州350004)
哮喘是由多種細(xì)胞(如嗜酸粒細(xì)胞、肥大細(xì)胞、T淋巴細(xì)胞、中性粒細(xì)胞、呼吸道上皮細(xì)胞等)和細(xì)胞組分參與的呼吸道慢性炎癥性疾患[1]。Th1/Th2細(xì)胞免疫功能失衡在哮喘發(fā)病機(jī)制中扮演重要角色,近年來(lái),隨著免疫學(xué)的發(fā)展,人們對(duì)CD4+T細(xì)胞在哮喘中的作用有了進(jìn)一步的認(rèn)識(shí)。
哮喘的發(fā)病機(jī)制十分復(fù)雜,至今尚未完全闡明,其中T淋巴細(xì)胞中CD4+輔助性 T細(xì)胞(helper T lymphocyte,Th)亞群的免疫調(diào)節(jié)失衡及其炎性細(xì)胞因子在哮喘的發(fā)生、發(fā)展中起重要作用。Mosman等[2]最早認(rèn)識(shí)到Th1和Th2的存在,Th1參與細(xì)胞免疫應(yīng)答,Th2參與體液免疫應(yīng)答。目前認(rèn)為,當(dāng)初始的CD4+T細(xì)胞受到抗原和細(xì)胞因子刺激后至少能選擇性地分化為四個(gè)不同的亞型,即Th1、Th2、Th17和誘導(dǎo)型調(diào)節(jié)性T細(xì)胞[3]。初始CD4+T細(xì)胞在白細(xì)胞介 素 12(interleukin-12,IL-12)和 干擾 素 γ(interferon-γ,IFN-γ)的誘導(dǎo)下分化為 Th1 細(xì)胞,產(chǎn)生IFN-γ,參與細(xì)胞免疫應(yīng)答;在IL-4的誘導(dǎo)下分化為T(mén)h2,分泌 IL-4、IL-5和IL-13,參與體液免疫應(yīng)答;在轉(zhuǎn)化生長(zhǎng)因子 β(transforming growth factor-β,TGF-β)單獨(dú)誘導(dǎo)下分化為調(diào)節(jié)性T細(xì)胞,分泌TGF-β并表達(dá)Foxp3(叉狀頭/翅膀狀螺旋轉(zhuǎn)錄因子),參與免疫調(diào)節(jié);在TGF-β和IL-6的共同誘導(dǎo)下分化為T(mén)h17,分泌IL-17和IL-6,參與炎性反應(yīng)和自身免疫性疾病。
過(guò)去的幾十年,認(rèn)為T(mén)h1和Th2在哮喘中具有重要作用。這兩種輔助T細(xì)胞由初始CD4+T細(xì)胞分化產(chǎn)生,Th1細(xì)胞主要產(chǎn)生IL-12,而Th2細(xì)胞主要產(chǎn)生IL-4。樹(shù)突狀細(xì)胞產(chǎn)生IL-12導(dǎo)致轉(zhuǎn)錄因子T-bet上調(diào)和 IFN-γ 的表達(dá),IFN-γ 可阻斷 IL-4的生成,由此,產(chǎn)生Th1極化反應(yīng)。相反,信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子6(signal transducers and activators of transcription-6,STAT-6)與胞質(zhì)中的IL-4受體結(jié)合,通過(guò)Tyk2、Jak1和Jak3的磷酸化作用導(dǎo)致STAT-6二聚化并易位到胞核,激發(fā)GATA-3的表達(dá),產(chǎn)生Th2極化反應(yīng),并釋放 IL-4、IL-5、IL-9、IL-13等細(xì)胞因子[4,5]。Th2細(xì)胞分泌的 IL-4能幫助 B淋巴細(xì)胞產(chǎn)生IgE[6];分泌IL-4/IL-13誘導(dǎo)巨噬細(xì)胞的活化[7];分泌 IL-5 募集嗜酸粒細(xì)胞[8],分泌 IL-9 激活肥大細(xì)胞[9-11],嗜酸粒細(xì)胞、肥大細(xì)胞、T淋巴細(xì)胞都與呼吸道慢性炎癥有關(guān)。因此,一直以來(lái)Th1/Th2平衡理論作為哮喘發(fā)病機(jī)制的核心。然而,進(jìn)一步的研究發(fā)現(xiàn),Th1細(xì)胞是前炎性細(xì)胞,其促炎癥作用超過(guò)了抗炎作用,與Th1相關(guān)的炎性反應(yīng)并不下調(diào)哮喘。而在Th2細(xì)胞介導(dǎo)的免疫反應(yīng)性疾病中,哮喘的發(fā)病率也并未增高。說(shuō)明單純的Th1/Th2平衡理論不足以解釋哮喘的發(fā)病機(jī)制。
CD4+CD25+調(diào)節(jié)性T細(xì)胞來(lái)自于胸腺,定位于外周免疫器官,占外周血CD4+T細(xì)胞的5%~10%。它可控制自身免疫性疾病和移植物排斥反應(yīng),并可能在控制支氣管哮喘和過(guò)敏性疾病的發(fā)病中起作用。CD4+CD25+調(diào)節(jié)性T細(xì)胞持續(xù)表達(dá)IL-2受體α鏈,細(xì)胞毒性T細(xì)胞相關(guān)抗原-4,糖皮質(zhì)激素誘導(dǎo)的腫瘤壞死因子受體家族關(guān)聯(lián)性基因和轉(zhuǎn)錄調(diào)節(jié)基因——Foxp3。Foxp3特異地高表達(dá)于CD4+CD25+調(diào)節(jié)性T細(xì)胞上,介導(dǎo)CD4+CD25+調(diào)節(jié)性T細(xì)胞在胸腺的發(fā)育、外周的表達(dá)及功能的維持,可反映CD4+CD25+調(diào)節(jié)性T細(xì)胞活性水平。
CD4+CD25+調(diào)節(jié)性T細(xì)胞在哮喘發(fā)病中非?;钴S,已引起眾多學(xué)者關(guān)注。研究發(fā)現(xiàn),TGF-β能誘導(dǎo)Foxp3表達(dá),促進(jìn)CD4+CD25+調(diào)節(jié)性T細(xì)胞增殖,從而抑制呼吸道嗜酸粒細(xì)胞浸潤(rùn)為主的炎癥,降低呼吸道變態(tài)反應(yīng)[12]。Picca等[13]發(fā)現(xiàn),F(xiàn)oxp3 功能缺陷引起CD4+CD25+調(diào)節(jié)性T細(xì)胞丟失,發(fā)生廣泛的自身免疫反應(yīng)。研究表明,體內(nèi)CD4+CD25+調(diào)節(jié)性T細(xì)胞通過(guò)細(xì)胞接觸和分泌IL-10、TGF-β發(fā)揮功能,IL-10和TGF-β抑制巨噬細(xì)胞和炎性細(xì)胞因子的產(chǎn)生,介導(dǎo)機(jī)體對(duì)過(guò)敏原耐受的形成,抑制Th2反應(yīng),下調(diào)哮喘呼吸道炎癥,最終起到抑制哮喘發(fā)展的作用。同時(shí),TGF-β是啟動(dòng)CD4+CD25+調(diào)節(jié)性T細(xì)胞在體內(nèi)擴(kuò)增的重要分子,它調(diào)節(jié)CD4+T細(xì)胞Foxp3的表達(dá),促進(jìn)CD4+CD25-調(diào)節(jié)性T細(xì)胞表達(dá)Foxp3轉(zhuǎn)化成CD4+CD25+調(diào)節(jié)性 T 細(xì)胞[14]。
Akbari等[15]發(fā)現(xiàn),暴露于吸入性抗原后的小鼠支氣管淋巴結(jié)中出現(xiàn)可分泌IL-10的樹(shù)突狀細(xì)胞,這種樹(shù)突狀細(xì)胞可誘導(dǎo)CD4+CD25+調(diào)節(jié)性T細(xì)胞的發(fā)展,這一過(guò)程需要可誘導(dǎo)性的T細(xì)胞協(xié)同刺激因子ICOS/ICOS-配體旁路參與。這種CD4+CD25+調(diào)節(jié)性T細(xì)胞可產(chǎn)生IL-10并對(duì)小鼠哮喘模型具有很強(qiáng)的抑制能力,將這種抗原特異性CD4+CD25+調(diào)節(jié)性T細(xì)胞轉(zhuǎn)入致敏小鼠可有效減輕呼吸道炎癥,阻止呼吸道高反應(yīng)的形成。同樣用高分泌 TGF-β的T細(xì)胞也可非常有效地減輕呼吸道炎癥和呼吸道高反應(yīng)性,而阻斷成熟T細(xì)胞的TGF-β分泌可加重呼吸道炎癥和呼吸道高反應(yīng)性,提示CD4+CD25+調(diào)節(jié)性T細(xì)胞可以通過(guò)IL-10、TGF-β 減輕哮喘的呼吸道炎性反應(yīng)[16]。
對(duì)于由Th2細(xì)胞所介導(dǎo)的呼吸道變應(yīng)性炎癥,CD4+CD25+調(diào)節(jié)性T細(xì)胞也發(fā)揮強(qiáng)大的抑制作用,CD4+CD25+調(diào)節(jié)性T細(xì)胞通過(guò)抑制Th2類(lèi)細(xì)胞因子,如IL-4、IL-5、IL-13的產(chǎn)生進(jìn)而緩解呼吸道變應(yīng)性炎癥。故CD4+CD25+調(diào)節(jié)性T細(xì)胞通過(guò)調(diào)節(jié)Th1/Th2平衡,抑制抗原引起Th2細(xì)胞的分化而強(qiáng)化Th1細(xì)胞的活性,從而達(dá)到預(yù)防和治療過(guò)敏性疾病。CD4+CD25+調(diào)節(jié)性T細(xì)胞不但可以抑制Th1細(xì)胞,還可抑制Th2細(xì)胞應(yīng)答,并且對(duì)后者的作用更強(qiáng)[17]。如果移除CD4+CD25+調(diào)節(jié)性T細(xì)胞,則可以增強(qiáng)效應(yīng)性CD4+T細(xì)胞的Th1向Th2極化,從而強(qiáng)化效應(yīng)細(xì)胞的免疫應(yīng)答[18,19]。
近來(lái),有研究報(bào)告從萊姆病患者的炎癥關(guān)節(jié)中分離出的CD4+T細(xì)胞包含一個(gè)產(chǎn)生IL-17的 CD4+效應(yīng)T細(xì)胞亞群。該亞群區(qū)別于那些產(chǎn)生IL-4或IFN-γ 的 CD4+T細(xì)胞[20]。這些產(chǎn)生 IL-17的CD4+T細(xì)胞被稱(chēng)為T(mén)h17細(xì)胞或Th IL-17細(xì)胞[21-23]。
現(xiàn)在已發(fā)現(xiàn)TGF-β和IL-6是Th17細(xì)胞分化的啟動(dòng)所必需的[24-26]。Voldhoen等發(fā)現(xiàn)在CD4+CD25+調(diào)節(jié)性T細(xì)胞存在的條件下被活化的初始T細(xì)胞IFN-γ和 IL-4的表達(dá)被抑制,但是卻表達(dá)大量的IL-17。而TGF-β是 CD4+CD25+調(diào)節(jié)性T細(xì)胞在胸腺外適應(yīng)存活并發(fā)揮功能所必需的,這提示TGF-β可能在Th17分化的啟動(dòng)中有重要作用。在脂多糖活化的樹(shù)突狀細(xì)胞、CD4+CD25+調(diào)節(jié)性T細(xì)胞和初始CD4+T細(xì)胞的培養(yǎng)過(guò)程中用抗體阻斷TGF-β的作用確定了TGF-β是啟動(dòng)Th17分化發(fā)育的關(guān)鍵作用因子。在無(wú)抗原遞呈細(xì)胞的培養(yǎng)體系中發(fā)現(xiàn)Th17的分化可以由TGF-β和IL-6兩者獨(dú)立地重新啟動(dòng),IL-1β和腫瘤壞死因子α可以增強(qiáng)由TGF-β和IL-6引發(fā)的Th17反應(yīng),但是卻無(wú)法取代它們中的任何一個(gè)。成熟的Th17細(xì)胞在抗原刺激下或在IL-23與IL-1、IL-18協(xié)同作用下表達(dá)大量IL-6,從而形成正反饋循環(huán)促進(jìn)自身的分化發(fā)育。除了分化,CD4+CD25+調(diào)節(jié)性T細(xì)胞和Th17在生物學(xué)作用方面也相互作用。一方面,在 TGF-β轉(zhuǎn)基因小鼠中能檢測(cè)到TGF-β的過(guò)表達(dá)和CD4+CD25+調(diào)節(jié)性T細(xì)胞分化增多;另一方面,如果用TGF-β和IL-6同時(shí)免疫接種在髓鞘少突膠質(zhì)糖蛋白轉(zhuǎn)基因小鼠,可加重實(shí)驗(yàn)性自身免疫性腦脊髓炎[25]。而如果用髓鞘少突膠質(zhì)糖蛋白免疫IL-6基因剔除小鼠,在其體內(nèi)能檢測(cè)到大量CD4+CD25+調(diào)節(jié)性T細(xì)胞和低水平Th17,同時(shí)實(shí)驗(yàn)性自身免疫性腦脊髓炎緩解;耗竭其體內(nèi)CD4+CD25+調(diào)節(jié)性T細(xì)胞后用髓鞘少突膠質(zhì)糖蛋白再次接種免疫,可檢測(cè)到Th17應(yīng)答反應(yīng)增強(qiáng)且實(shí)驗(yàn)性自身免疫性腦脊髓炎加重。因此,CD4+CD25+調(diào)節(jié)性T細(xì)胞和Th17的分化相互抑制并且功能負(fù)性調(diào)節(jié)。正常情況下,TGF-β誘導(dǎo)初始 CD4+T細(xì)胞分化為CD4+CD25+調(diào)節(jié)性T細(xì)胞;當(dāng)伴有感染或炎癥時(shí),IL-6和TGF-β共同啟動(dòng)初始CD4+T細(xì)胞向 Th17分化。研究已經(jīng)證實(shí)[27],當(dāng) STAT-1、STAT-6 和 T-bet缺失時(shí),機(jī)體內(nèi)的CD4+T細(xì)胞能夠高水平地向Th17細(xì)胞亞群分化,誘導(dǎo)產(chǎn)生大量的IL-17等細(xì)胞因子,從而誘導(dǎo)以Th17為主的慢性炎癥應(yīng)答。
哮喘的發(fā)病機(jī)制極為復(fù)雜,許多細(xì)胞參與了哮喘的呼吸道炎性反應(yīng),無(wú)數(shù)細(xì)胞因子在細(xì)胞與細(xì)胞之間架起了相互作用的立交橋,有眾多炎性介質(zhì)介導(dǎo)效應(yīng)細(xì)胞的生理和生化反應(yīng)。相信隨著研究的深入,能更好地理解CD4+T細(xì)胞各亞群在哮喘中的地位與作用方式,從而為哮喘的防治開(kāi)辟新的道路。
[1]中華醫(yī)學(xué)會(huì)呼吸病學(xué)分會(huì)哮喘學(xué)組.支氣管哮喘防治指南(支氣管哮喘的定義、診斷、治療及教育和管理方案)[J].中華結(jié)核和呼吸雜志,2003,26(3):132-139.
[2]Mosmann TR,Cherwinski H,Bond MW,et al.Two types of murine helper T cell clone.I.Definition according to profiles of lymphokine activities and secreted proteins[J].J Immunol,1986,136(7):2348-2357.
[3]Zhu J,Paul WE.CD4T cells:fates,functions,and faults[J].Blood,2008,112(5):1557-1569.
[4]Glimcher LH,Murphy KM.Lineage commitment in the immune system:the T helper lymphocyte grows up[J].Genes Dev,2000,14(14):1693-1711.
[5]Komine O,Hayashi K,Natsume W,et al.The Runx1 transcription factor inhibits the differentiation of na?ve CD4+T cell into the Th2 lineage by repressing GATA3 expression[J].J Exp Med,2003,198(1):51-61.
[6]Kopf M,Le Gros G,Bachmann M,et al.Disruption of the murine IL-4 gene blocks Th2 cytokine responses[J].Nature,1993,362(6417):245-248.
[7]Gordon S.Alternative activation of macrophages[J].Nat Rev Immunol,2003,3(1):23-35.
[8]Coffman RL,Seymour BW,Hudak S,et al.Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice[J].Science(NY),1989,245(4915):308-310.
[9]Longphre M,Li D,Gallup M,et al.Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells[J].J Clin Invest,1999,104(10):1375-1382.
[10]Zhu J.Transcriptional regulation of Th2 cell differentiation[J].Immunol Cell Biol,2010,88(3):244-249.
[11]Halvor S,Devendra K,Agrawal G.TH2 Cells in the Pathogenesis of Airway Remodeling[J].Immunol Res,2006,35(3):219-231.
[12]Shi HJ,Qin XJ.CD4+CD25+regulatory T lymphocytes in allergy and asthma[J].Allergy,2005,60(8):986-995.
[13]Picca CC,Caton AJ.The role of self-peptides in the development of CD4+CD25+regulatory T cells[J].Curr Opin Immunol,2005,17(4):131-136.
[14]Fantini MC,Becker C,Monteleone G,et al.Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7[J].J Immunol,2004,172(9):5149-5153.
[15]Akbari O,F(xiàn)reeman GJ,Meyer EH,et al.Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pat hway and inhibit allergen-induced airway hyperreactivity[J].Nat Med,2002,8(9):1024-1032.
[16]Xu D,Liu H,Komai-Koma M,et al.CD4+CD25+regulatory T cells suppress differentiation and functions of Th1 and Th2 cells,Leishmania major infection,and colitis in mice[J].J Immunol,2003,170(1):394-399.
[17]Shi HZ,Deng JM,Xu H,et al.Effect of inhaled interleukin24 on airway hyperreactivity in ast hmatics[J].Am J Respir Crit Care Med,1998,157(16):1818-1821.
[18]Suto A,Nakajima H,Kagami SI,et al.Role of CD4+CD25+regulatory T cells in T helper 2 cell-mediated allergic inflammation in the airways[J].Am J Respir Crit Care Med,2001,164(4):680-687.
[19]Jaffar Z,Sivakuru T,Roberts K.CD4+CD25+T cells regulate airway eosinophilic inflammation by modulating the Th2 cell phenotype[J].J Immunol,2004,172(6):3842-3849.
[20]Infante-Duarte C,Horton HF,Byrne MC,et al.Microbial lipopeptides induce the production of IL-17 in Th cells[J].J Immunol,2000,165(11):6107-6115.
[21]Harrington LE,Hatton RD,Mangan PR,et al.Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J].Nat Immunol,2005,6(11):1123-1132.
[22]Langrish CL,Chen Y,Blumenschein WM,et al.IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J].J Exp Med,2005,201(2):233-240.
[23]Park H,Li Z,Yang XO,et al.A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141.
[24]Mangan PR,Harrington LE.Transforming growth factor-beta induces development of the Th17 lineage[J].Nature,2006,441(7090):231-234.
[25]Bettelli E,Carrier Y,Gao W,et al.Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(7090):235-238.
[26]Veldhoen M,Hocking RJ,Atkins CJ,et al.TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J].Immunity,2006,24(2):179-189.
[27]Mailliard RB,Son YI,Redlinger R,et al.IL-12 plays a key role in the differentiation of naive T cells to Th1 cells[J].J Immunol,2007,178(11):6730-6733.