王錦升,沈有建,趙春茹
(海南師范大學 數(shù)學與統(tǒng)計學院,海南 ???571158)
王錦升,沈有建,趙春茹
(海南師范大學 數(shù)學與統(tǒng)計學院,海南 ???571158)
本文構造了Soblov空間()I(其中I為有界區(qū)間)上的一個五次B-樣條插值小波基,這是一個半正交Riesz小波基.最后給出了小波基的公式.
()
I;B-樣條插值小波;基
小波基構造始于Haar在1910年提出的小波規(guī)范正交基.1986年,Mallat在尺度逼近的基礎上提出了多分辨分析,為小波基的構造提供了一般的途徑,之后,人們據(jù)此構造出了大量的各種類型的小波基,例如正交小波基,雙正交小波基等[1-6].這些小波基被廣泛用于信號處理、科學計算等領域.
賈榮慶等在文[7]介紹了三次插值樣條小波在廣義四階橢圓偏微分方程中的應用,米榮波在文[8]構造了五次正交樣條小波.本文,我們將構造具有緊支集的五次插值樣條小波,這實際上是半正交小波.
定義1 設Ω?Rs是Lebesgue非空可測集,f是Ω上實值Lebesgue可測函數(shù),記
[1]米榮波.自適應小波配置法解雙曲型偏微分方程[D].海南:海南師范大學,2009:21-26.
[2]Jia R Q.Approximation with scaled shift-invariant spaces by means of quasi-projection operators[J].Journal of Ap?proximation Theory,2004,131:30-46.
[3]Jia R Q.Bessel sequences in Sobolev spaces[J].Applied and Computational Harmonic Analysis,2006,20:298-311.
[4]Jia R Q.Spline wavelets on the interval with homoge?neous boundary conditions[J].Advances in Computation?al Mathematics,2009,30:177-200.
[5]Jia R Q.Approximation by quasi-projection operators in Besov spaces[J].Journal of Approximation Theory,2010,162:186-200.
[6]Cai W,Wang J Z.Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDFs[J].SIAM J Numer Anal,1996,33:937-970.
[7]Jia R Q,Liu S T.C1 spline wavelets on triangulations[J].Mathematics of Computation,2008,77:287-312.
[8]Jia R Q.Spline wavelets on the interval with homoge?neous boundary conditions[J].Advances in Computation?al Mathematics,2009,30:177-200.
The B-spline Interpolation Wavelet Bases in()I
WANG Jinsheng,SHEN Youjian,ZHAO Chunru
(College of Mathematics,Hainan Normal University,Haikou571158,China)
In this paper,we construct a quintic B-spline interpolation wavelet bases in(I) whereIis bounded in?terval,and this wavelets bases is semi-orthogonal.At the end of the paper,we gave the formula of wavelets bases.
(I) ;B-spline interpolation wavelet;bases
O 175.1
A
1674-4942(2011)01-0023-05
2010-12-02
海南省515人才工程科研啟動項目;海南師范大學重點學科基金項目
畢和平