江衛(wèi)華,陳志紅
(河北科技大學理學院,河北石家莊 050018)
奇異(k,n-k)共軛多點邊值問題方程組的正解
江衛(wèi)華,陳志紅
(河北科技大學理學院,河北石家莊 050018)
對固定的1≤k≤n-1,運用錐拉伸與錐壓縮不動點定理,研究了具有奇性的(k,n-k)共軛多點邊值問題方程組正解的存在性。
奇異;(k,n-k)共軛多點邊值問題;正解;不動點定理
在文獻[1]中,蔣達清等對奇異(k,n-k)共軛2點邊值問題
進行了討論,并在超線性和次線性的條件下,運用錐拉伸與錐壓縮不動點定理,得出了該方程的正解存在性。在文獻[2]中,蔣達清又對此問題進行了更進一步的研究,給出了格林函數(shù)的精確表達式。
在文獻[3]中,張國偉等應(yīng)用不動點指數(shù)理論,得到了奇異(k,n-k)共軛邊值問題(-1)n-kφ(n)(x)=h(x)f(φ(x)),0<x<1,n≥2,1≤k≤n-1分別在邊界條件:
下正解的存在性結(jié)果。對方程組的研究也已有很多結(jié)果,讀者可參見文獻[4]—文獻[9],但對(k,n-k)共軛多點邊值問題方程組的研究,據(jù)筆者所知還未有結(jié)論。
受到以上文獻的啟發(fā),筆者討論多點奇異(k,n-k)共軛邊值問題方程組
下面的錐拉伸與錐壓縮不動點定理,是本文的關(guān)鍵定理,其證明可見文獻[7]。
引理1[2]方程(1)的格林函數(shù)為
引理4[3]假設(shè)Ⅰ)、Ⅱ)成立,則算子T為全連續(xù)算子。
證明 要證T為全連續(xù)算子,只需證明T1,T2全連續(xù)。下面給出T1全連續(xù)的證明,記作
于是T1=A1+A2,由文獻[2]知A1為全連續(xù)算子,易見A2為全連續(xù)算子,所以T1全連續(xù)。用類似的方法,可以得出T2全連續(xù)。所以算子T為全連續(xù)算子。
所以,由式(6)、式(7)和定理1知,算子T在P∩(ˉΩ2\Ω1)中有1個不動點。證畢。
注:考慮函數(shù)f1(x,y)=|sin(x+y)|+|cos(x+y)|,f2(x,y)=e-(x+y),顯然,當(x,y)∈[0,+∞]×[0,+∞]時,函數(shù)連續(xù)、非負,且滿足假設(shè)條件Ⅳ)。
[1] JIANG Da-qing,LIU Hui-zhao.Existence of positive solutions to(k,n-k)conjugate boundary value problems[J].Kyushu J Math,1999,53(1):115-125.
[2] 蔣達清.奇異(k,n-k)共軛邊值問題的正解[J].數(shù)學學報(Acta Mathematica),2001,44(3):541-548.
[3] 張國偉,孫經(jīng)先.奇異(k,n-k)多點邊值問題的正解[J].數(shù)學學報(Acta Mathematica Sinica),2006,49(2):391-398.
[4] XI Shou-liang,JIA Mei,JI Hui-Peng.Positive solutions of boundary value problems for systems of second-order differential equations with integral boundary condition on the half-line[J].Electronic Journal of Qualitative Theory of Differential Equations,2009,31:1-13.
[5] HU Ling,WANG Liang-long.Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations[J].J Math Anal Appl,2007,335:1 052-1 060.
[6] JIANG Wei-h(huán)ua,CHEN Zhi-h(huán)ong.Positive solutions for systems of two-point(k,n-k)conjugate boundary value problems[A].2010 First International Conference on Cellular,Molecular Biology,Biophysics and Bioengineering[C].[s.L.]:[s.n.]2010.420-422.
[7] KRASNOSELSKII M.Positive Solutions of Operator Equations[M].Groningen:Noordhoof,1964.
[8] 王 斌,江衛(wèi)華,黃曉芹,等.帶有p-Laplacian算子的二階微分方程組多個正解的存在性[J].河北科技大學學報(Journal of Hebei University of Science and Technology),2011,32(1):15-19.
[9] 董士杰,周長杰.帶p-Laplacian算子時滯微分方程多點邊值問題的正解[J].河北科技大學學報(Journal of Hebei University of Science and Technology),2010,31(5):385-389.
Positive solutions to system of singular(k,n-k)conjugate multi-point boundary value problems
JIANG Wei-h(huán)ua,CHEN Zhi-h(huán)ong
(College of Sciences,Hebei University of Science and Technology,Shijiazhuang Hebei 050018,China)
As 1≤k≤n-1,by using the fixed-point theorem of cone expansion and compress,the existence of positive solutions to a system of singular(k,n-k)conjugate multi-point boundary value problems is studied.
singular;(k,n-k)conjugate multi-point boundary value problem;positive solutions;fixed-point theorems
O121
A
1008-1542(2011)04-0303-05
2011-03-06;責任編輯:張 軍
江衛(wèi)華(1964-),女,河北邯鄲人,教授,博士,主要從事應(yīng)用泛函分析、常微分方程邊值問題方面的研究。