任金城
(商丘師范學(xué)院 數(shù)學(xué)系,河南 商丘 476000)
*一類非線性Klein-Gordon方程非協(xié)調(diào)有限元超收斂分析
任金城
(商丘師范學(xué)院 數(shù)學(xué)系,河南 商丘 476000)
對(duì)一類非線性Klein-Gordon方程利用五節(jié)點(diǎn)非協(xié)調(diào)有限元進(jìn)行了高精度研究.首先,討論在半離散格式下解的收斂性;其次,利用單元自身的特殊性質(zhì)和一些新的分析技巧得到了超逼近性質(zhì);最后,通過(guò)構(gòu)造一個(gè)插值后處理算子導(dǎo)出了整體超收斂結(jié)果.
Klein-Gordon方程;非協(xié)調(diào)有限元;高精度分析;超收斂
考慮下面一類非線性Klein-Gordon方程
其中X=(x,y),Ω?R2為有界區(qū)域,?Ω為其光滑邊界,γ為正常數(shù),α(u),g(u)對(duì)變量u滿足Lipschitz連續(xù)條件,以及存在正常數(shù)α0,α1,使得α0≤α(u)≤α1,并且具有二階光滑導(dǎo)數(shù).
Klein-Gordon方程是相對(duì)論量子力學(xué)和量子場(chǎng)論中用于描述自旋為零的粒子的最基本方程式,具有深刻的實(shí)際背景和物理意義,受到了一些物理學(xué)家和數(shù)學(xué)家的高度關(guān)注[1-6].
文[1]研究了無(wú)限齊次波管在小參數(shù)情況下非線性Klein-Gordon方程整體解的存在性.文[2]研究了二維的非線性Klein-Gordon方程在參數(shù)足夠小的情況下存在唯一的整體解.文[3]提出了一個(gè)交叉約束變分的方法來(lái)研究非線性Klein-Gordon方程,利用交叉約束變分問(wèn)題,建立所謂的交叉不變流形的演變流,最后給出了初始值與整體解的存在關(guān)系,這些研究均偏重于偏微分方程解的理論的分析.文[4]中對(duì)無(wú)界區(qū)域一維的非線性Klein-Gordon方程建立一個(gè)顯式差分格式,由能量分析法得到了該格式穩(wěn)定性和收斂性的結(jié)果;文[5]和[6]研究了一維的非線性Klein-Gordon方程的數(shù)值解.近來(lái)由于非協(xié)調(diào)元的一些獨(dú)特優(yōu)勢(shì)吸引了大批的科學(xué)家和工程人員,首先,它比協(xié)調(diào)元更加容易滿足離散的inf-sup條件;另一方面,從區(qū)域分解的觀點(diǎn)來(lái)看,由于非協(xié)調(diào)元的自由度大多都定義在單元的邊上,這樣每個(gè)自由度至多為兩個(gè)單元共用,在信息交換方面提供了非常便利的條件[7],而對(duì)于二維情形非協(xié)調(diào)有限元數(shù)值方法研究的文獻(xiàn)還不多見.
本文將文[8-9]中的單元應(yīng)用于二維的非線性Klein-Gordon方程,給出方程在半離散格式下解的收斂性;同時(shí),利用單元的正交性、相容誤差比插值誤差高一階的特點(diǎn)得到了相應(yīng)的超逼近性質(zhì);最后,通過(guò)構(gòu)造一個(gè)合適的插值后處理算子導(dǎo)出了整體超收斂結(jié)果.
本文正是利用單元的正交性即((▽(u-Ihu),▽v)=0,?v∈V h)以及相容誤差比插值誤差高一階的特點(diǎn)和對(duì)邊界項(xiàng)利用導(dǎo)數(shù)轉(zhuǎn)移技巧得到了超逼近的性質(zhì),從而得到本文超收斂的結(jié)果.最后,通過(guò)構(gòu)造一個(gè)合適的插值后處理算子導(dǎo)出了整體超收斂結(jié)果,并且得到了關(guān)于u離散能量模的最優(yōu)誤差估計(jì).
注2:從文中可以看出,證明過(guò)程并不需要網(wǎng)格剖分滿足傳統(tǒng)有限元的正則性和擬一致假設(shè),說(shuō)明這一假設(shè)對(duì)有限元分析來(lái)說(shuō)并不是必要的條件.
[1] Fang D Y,Tong C Q,Zhong S J.Global Existence for Nonlinear Klein-Gordon Equations in Infinite Homogeneous Waveguides in two Dimensions[J].JMathAnalAppl,2007,331(1):21-37.
[2] Nakao H,Pavel I N.Wave Operators to a Quadratic Nonlinear Klein-Gordon Equation in two Space Dimensions[J].NonlinearAnalTMA,2009,71(9):3826-3833.
[3] Gan Z H,Guo B L,Zhang J.Sharp Threshold of Global Existence for the Klein-Gordon Equations with Critical Nonlinearity[J].ActaMathApplSinica,2009,5(2):273-282.
[4] Han H D,Zhang Z W.An Analysis of the Finite-difference Method for One-dimensional Klein-Gordon Equation on Unbounded Domain[J].ApplNumerMath,2009,59(7):1568-1583.
[5] Khalifa M E,Elgamali M.A Numerical Solution to Klein-Gordon Equation with Dirichlet Boundary Condition [J].Appl MathComput,2005,160(2):451-475.
[6] Wang Q F,Cheng D Z.Numerical Solution of Damped Nonlinear Klein-Gordon Equations Using Variational Method and Finite Element Approach[J].ApplMathComput,2005,162(1):381-401.
[7] Dougla Jr J,Santos J E,Sheen D,etal.Nonconforming Galerkin Methods Based on Quadrilateral Elements for Second Order Elliptic Problems[J].RAIROModelMath.AnalNumer,1999,33(4):747-770.
[8] Shi D Y,Mao S P,Chen S C.An Anisotropic Nonconforming Finite Element with Some Superconvergence Results[J].J ComputMath,2005,23(3):261-274.
[9] Lin Q,Tobiska L,Zhou A H.Superconvergence and Extrapolation of Nonconforming Low Order Elements Applied to the Poisson Equation[J].IMAJNumerAnal,2005,25(1):160-181.
[10] Shi D Y,Wang H H,Du Y P.An Anisotropic Nonconforming Finite Element Method for Approximating a Class of Nonlinear Sobolev Equations[J].JCompMath,2009,27(2-3):299-314.
[11] Ciarlet P G.The Finite Element Method for Elliptic Problems[M].Amstedam,New York:North-Holland,1978.
[12] Shi D Y,Ren J C.Nonconforming Mixed Finite Element Approximation to the Stationary Navier-Stokes Equations on Anisotropic Meshes[J].NonlinearAnalTMA,2009,71(9):3842-3852.
[13] Shi D Y,Peng Y C,Chen S C.Superconvergence of a Nonconforming Finite Element Approximation to Viscoelasticity Type Equations on Anisotropic Meshes[J].NumerMathJChineseUniversity,2006,15(4):375-384.
Superconvergence Analysis on Nonconforming Finite Element for a Classe Nonlinear Klein-Gordon Equations
REN Jin-cheng
(DepartmentofMathematics,ShangqiuNormalUniversity,Shangqiu476000,China)
The higher accuracy analysis of a five-node nonconforming finite element to the nonlinear Klein-Gordon equations is discussed.Firstly,the convergence of solution to this equation is obtained under semidiscretization.Secondly,the result of superclose are derived through the element’s special property and some novel approaches.Finally,based on the interpolated postprocessing technique,the global superconvergence is derived.
nonlinear Klein-Gordon equations;nonconforming finite element;higher accuracy analysis;superconvergence
O242.21
A
0253-2395(2012)04-0608-05*
2011-03-18;
2011-12-21
江蘇省高校研究生科研創(chuàng)新項(xiàng)目(CXZZ11_0134);商丘師范學(xué)院青年基金(2010QN013)
任金城(1982-),男,河南南陽(yáng)人,博士,主要從事有限元方法及其應(yīng)用的研究.E-mail:renjincheng2001@126.com
book=612,ebook=320