楊曦艷,蔡軍,楊新春
在自然界存在的數(shù)千種病毒中,已知至少數(shù)十種病毒與人類疾病相關(guān),其中人屬巨細(xì)胞病毒(Human cytomegalovirus,HCMV)結(jié)構(gòu)極其復(fù)雜,并可表現(xiàn)多種感染形式,引起多種病理生理效應(yīng)。近些年發(fā)現(xiàn)HCMV與心血管病、動(dòng)脈粥樣硬化、高血壓等疾病具有相關(guān)性,現(xiàn)將此類文獻(xiàn)做一綜述。
HCMV是由核酸和蛋白質(zhì)以特定的組合方式形成以雙鏈DNA作為基因組的病毒顆粒,屬皰疹病毒屬,在皰疹病毒屬中具有最大基因組,長度超過230kb,由US和UL兩部分構(gòu)成,編碼200多個(gè)病毒蛋白[1]。HCMV所具有的基因組,與最小的DNA病毒HBV的基因組(3.4kb)相比較,大約是其的60余倍。而與小RNA病毒,如脊髓灰質(zhì)炎病毒(7.4kb)相比,也大約是其30倍。這種差異,不僅提示HCMV所編碼的病毒蛋白在結(jié)構(gòu)上具有多樣性,也意味著在調(diào)控機(jī)制上具有復(fù)雜性。
皰疹病毒感染到達(dá)靶細(xì)胞后,通過其膜糖蛋白與多種細(xì)胞受體、輔助受體的結(jié)合,完成病毒囊膜與細(xì)胞膜融合使病毒進(jìn)入細(xì)胞。這一過程遵從結(jié)構(gòu)動(dòng)力學(xué)規(guī)律,病毒體通過變構(gòu)向細(xì)胞內(nèi)導(dǎo)入相應(yīng)信號(hào)。
對HCMV的研究表明,許多細(xì)胞表面的受體成分都可被該病毒利用作為結(jié)合受體,包括趨化因子受體、血小板生長因子受體(PDGFR)、成纖維細(xì)胞生長因子受體(FGFR)、腫瘤壞死因子受體家族(TNFR)、表皮生長因子受體(EGFR)等,其中又以EGFR的作用最為關(guān)鍵[2]。HCMV在結(jié)合上述細(xì)胞受體的同時(shí)也能夠激活受體信號(hào)通路,通過向細(xì)胞內(nèi)導(dǎo)入特定的信號(hào)引起相應(yīng)的生物學(xué)反應(yīng)。HCMV進(jìn)入細(xì)胞后,依賴其核衣殼體的特定蛋白分子與細(xì)胞內(nèi)某些分子,如微管蛋白的相互作用,移至細(xì)胞核膜,將其基因組DNA經(jīng)核膜孔注入細(xì)胞核,經(jīng)由宿主細(xì)胞RNA聚合酶Ⅱ復(fù)合體介導(dǎo),通過病毒即刻早期蛋白、啟動(dòng)子啟動(dòng)DNA線性轉(zhuǎn)錄程序。
HCMV在轉(zhuǎn)錄和翻譯等過程中,都與真核細(xì)胞有著極其相似的機(jī)理。具有pre-mRNA→成熟RNA、pri-miRNA→miRNA(小RNA,microRNA)的過程。miRNA是一種內(nèi)源性非編碼的小RNA,約21~23個(gè)核酸長度[3],是動(dòng)物種系中的保守序列,部分具有組織特異性[4]。miRNA結(jié)合于靶mRNA的3’非轉(zhuǎn)錄區(qū)(3’UTRs),如果miRNA與靶mRNA完全匹配,則降解靶mRNA;如兩者序列部分匹配,則通過抑制靶mRNA翻譯來沉默該基因[5]。它作為一種基因表達(dá)的負(fù)性調(diào)節(jié)因子,參與了許多疾病的進(jìn)程,具有重要作用[6]。其中一些已證實(shí)參與了心力衰竭[7]、心肌細(xì)胞分化及凋亡[8,9]、心室重塑[10,11]、血管生成[12]、心律失常[13]、冠心病[14]。在HCMV中共發(fā)現(xiàn)400余個(gè)可能的miRNA結(jié)構(gòu),多數(shù)能夠調(diào)控病毒基因或是細(xì)胞基因表達(dá)。
2.1 HCMV與血管內(nèi)皮細(xì)胞增殖及粥樣硬化 HCMV在自然界普遍存在,全球超過50%人群有潛伏性感染,在HIV攜帶者或免疫缺陷者或器官移植患者中可有90%機(jī)會(huì)感染[15,16]。研究發(fā)現(xiàn),單純皰疹病毒-1(HSV-1)、單純皰疹病毒-2(HSV-2)、HCMV[17]、皰疹病毒8型(HHV-8)均能感染人的血管內(nèi)皮細(xì)胞和血管平滑肌細(xì)胞,但在患心臟、血管疾病患者的組織中,檢出最多、比例最高的是HCMV[18,19]。
從20世紀(jì)80年代開始,人們開始對HCMV與心血管疾病進(jìn)行探索。一項(xiàng)納入157例患者的研究將所納入病例依據(jù)病情輕重程度分為需手術(shù)組和非需手術(shù)組后發(fā)現(xiàn),在血脂水平和其他危險(xiǎn)因素相當(dāng)?shù)那闆r下,需手術(shù)組患者HCMV抗體陽性占90%,高滴度抗體比例57%,而非需手術(shù)組患者HCMV抗體陽性占74%,高滴度抗體比例僅26%[20]。隨后利用超聲發(fā)現(xiàn)340對配對患者中HCMV抗體陽性率與無癥狀頸動(dòng)脈壁增厚、早期動(dòng)脈粥樣硬化相關(guān)[21]。
80年代后期,一項(xiàng)由Stanford大學(xué)醫(yī)學(xué)院對301位心臟移植并使用大量免疫抑制劑患者進(jìn)行的較大規(guī)模研究發(fā)現(xiàn),共有91位患者發(fā)生HCMV感染,該研究解釋為HCMV在普通人群中感染率較高,而應(yīng)用免疫抑制劑可使?jié)摲腍CMV再激活;5年后,HCMV感染陽性組的患者有69%由于移植心臟加速出現(xiàn)了嚴(yán)重的冠狀動(dòng)脈粥樣硬化而導(dǎo)致移植失敗,而無發(fā)生HCMV感染組中這一比例為27%[22]。其后,美國Minnesota進(jìn)行的一項(xiàng)稍小規(guī)模的實(shí)驗(yàn)亦證實(shí)了這一結(jié)果,該研究納入了102位接受心臟移植并接受大量免疫抑制劑的患者,移植術(shù)后2年有HCMV感染的患者有32%出現(xiàn)了冠狀動(dòng)脈粥樣硬化,而無HCMV感染者的冠狀動(dòng)脈粥樣硬化發(fā)生率僅為10%[23]。類似的發(fā)現(xiàn)還包括,感染HCMV的冠狀動(dòng)脈疾病患者行血管擴(kuò)張成型術(shù)后血管再狹窄的發(fā)生率較無HCMV感染者更高[24]。此外,動(dòng)物實(shí)驗(yàn)也證實(shí),CMV感染后大鼠的血管組織出現(xiàn)了明顯的炎癥反應(yīng),其中轉(zhuǎn)化生長因子-β(TGF-β)和血小板生長因子(PDGF)表達(dá)亦明顯上調(diào)[25]。
目前已知HCMV的US28可編碼TGF-β,其與受體的激活及PDGF與受體激活均能促進(jìn)血管平滑肌的增殖和遷移,導(dǎo)致血管內(nèi)膜層增生和血管壁損傷[26],也可增加血管平滑肌氧化型低密度脂蛋白(oxLDL)攝取以及清道夫受體表達(dá),促進(jìn)動(dòng)脈粥樣硬化斑塊形成[27];PDGF還可通過上調(diào)組織金屬蛋白酶抑制劑而抑制膠原酶作用,以減少細(xì)胞外基質(zhì)的降解;HCMV編碼的IE84蛋白可與細(xì)胞內(nèi)P53蛋白結(jié)合并抑制其功能,使P53蛋白不能發(fā)揮正常的凋亡調(diào)控作用,導(dǎo)致凋亡過程出現(xiàn)異常,從而引起細(xì)胞增生過度,引發(fā)血管再狹窄[28,29];此外HCMV還可通過抑制細(xì)胞凋亡因子caspase-8的表達(dá)阻止受感染細(xì)胞凋亡[30]。
一項(xiàng)截至2006年、總結(jié)了14153例觀察對象的研究發(fā)現(xiàn),HCMV抗體陽性和高水平的需心肺復(fù)蘇(CRP)的患者較HCMV抗體陰性和低水平CRP的患者,其全因死亡率增高30.1%,同時(shí)心血管相關(guān)死亡率也增高29.5%[31]。
眾多研究已顯示HCMV是動(dòng)脈粥樣硬化的獨(dú)立危險(xiǎn)因素,在冠心病、移植物血管硬化的發(fā)生發(fā)展中均具有一定的作用[32]。
2.2 CMV與高血壓 近年一項(xiàng)針對(24~39)歲,共計(jì)1931例(其中男性857例,女性1074例)的研究發(fā)現(xiàn),年輕女性中高滴度的HCMV抗體多于男性,但與血壓無明顯相關(guān)性;而男性高滴度HCMV抗體則與其年齡、收縮壓、舒張壓均相關(guān),是血壓升高的獨(dú)立因素,并推測感染造成的免疫反應(yīng)對年輕人的血管功能造成了損傷[33]。美國一項(xiàng)為期4年,共納入6610例高血壓合并HCMV IgG抗體陽性患者的研究表明,HCMV抗體陽性在女性患者中隨年齡增大而增多,HCMV抗體陽性和年齡的增加均與高血壓的發(fā)生有關(guān),而在男性則HCMV直接與舒張壓升高相關(guān)[34]。另有一項(xiàng)研究發(fā)現(xiàn),HCMV感染可造成血管內(nèi)皮功能不良及對一氧化氮(NO)反應(yīng)下降,并可造成冠脈粥樣硬化負(fù)擔(dān)增加(P=0.09)[35]。內(nèi)皮一氧化氮合成酶(eNOS)的表達(dá)或功能下降是動(dòng)脈粥樣硬化早期事件。在主動(dòng)脈內(nèi)皮細(xì)胞中,HCMV可抑制eNOS及其上游信使Akt 和PDK1的功能[36]。
綜上所述,HCMV能夠?qū)е卵獕荷叩脑虬ǎ簱p傷血管內(nèi)皮功能、減少內(nèi)皮細(xì)胞NO合成、削弱血管擴(kuò)張功能、激活免疫防御功能和炎癥反應(yīng)以及腎素-血管緊張素系統(tǒng)等[37]。
用鼠CMV感染小鼠6周后,主動(dòng)脈粥樣斑塊的發(fā)生率升高,血壓亦出現(xiàn)顯著上升;同時(shí),血清炎癥因子白細(xì)胞介素6(IL-6)、腫瘤壞死因子α(TNF-α)、腎素以及血管緊張素Ⅱ(AngⅡ)表達(dá)均增加,上述因素共同促進(jìn)了血壓升高[38]。因此,CMV感染是高血壓的危險(xiǎn)因素,同時(shí)也是動(dòng)脈粥樣硬化的協(xié)同因素[39]。
最新研究發(fā)現(xiàn),在原發(fā)性高血壓患者中,其血清HCMV表達(dá)滴度是健康對照的30余倍,基因芯片結(jié)果也發(fā)現(xiàn)高血壓患者HCMV編碼的miRNA-UL112較健康對照組上調(diào)3倍。已知干擾素調(diào)節(jié)因子(IRF-1)和組織相容性復(fù)合體(MICB)均為HCMV-miRNA-UL112 的下游靶基因[40],其中IRF-1是一氧化氮合酶(NOS)的關(guān)鍵轉(zhuǎn)錄因子,該因子可通過調(diào)節(jié)NO的合成發(fā)揮其調(diào)節(jié)血管張力及血管平滑肌細(xì)胞增殖的作用,同時(shí)IRF-1還能增加AngⅡ受體(ATGR2)的表達(dá),拮抗血管緊張素Ⅰ受體(ATGR1)激活導(dǎo)致的血壓升高[41];而MICB是重要的免疫炎癥信號(hào)分子,與自然殺傷(NK)細(xì)胞的成熟、免疫識(shí)別、病毒感染細(xì)胞的吞噬功能密切相關(guān)[42]。因此,HCMV-miRNA-UL112能夠通過抑制IRF-1表達(dá)減少NO合成和AGTR2表達(dá)導(dǎo)致血壓升高,并通過抑制MICB表達(dá)導(dǎo)致NK細(xì)胞免疫識(shí)別障礙。上述結(jié)果提示,HCMV-miRNAUL112可能是介導(dǎo)HCMV感染導(dǎo)致血管損傷和血壓異常的關(guān)鍵因子。
總結(jié)HCMV與高血壓的關(guān)系如下:①HCMV感染可導(dǎo)致氧化應(yīng)激及內(nèi)皮功能障礙[35,36,43-45],而內(nèi)皮功能障礙和炎癥反應(yīng)是高血壓發(fā)生發(fā)展的關(guān)鍵機(jī)制[46,47];②HCMV感染可激活免疫反應(yīng)[48,49],參與AngⅡ介導(dǎo)的高血壓形成過程[50];③HCMV可激活A(yù)ngⅡ過表達(dá)[39],參與高血壓形成。
隨著20世紀(jì)免疫學(xué)、微生物學(xué)、分子生物學(xué)等理論及技術(shù)的發(fā)展,人們已經(jīng)發(fā)現(xiàn)抗HCMV藥物更昔洛韋能夠降低心臟移植后動(dòng)脈粥樣硬化的發(fā)生率[51],而且還可用于預(yù)防和治療器官移植相關(guān)的HCMV感染。
希望未來能夠繼續(xù)研發(fā)針對HCMV的基因工程藥物,如miRNA類似物或拮抗劑,以預(yù)防和治療心血管疾病、動(dòng)脈粥樣硬化、高血壓等疾病,為維護(hù)人類健康做出貢獻(xiàn)。
[1] 金奇主編. 醫(yī)學(xué)分子病毒學(xué)[M]. 北京:科學(xué)出版社,2001:711.
[2] Spear PG,Longnecker R. Herpesvirus Entry:an Update[J]. J Virol,2003,77(19):10179-85.
[3] Lee RC,Feins baum RL,Ambros V. The Celegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,759(5):843-54.
[4] Lagos-Quintana M,Rauhut R,Yalcin A,et al. Identification of tissuespecific microRNAs from mouse[J]. Curr Biol,2002,12(9):735-9.
[5] Stark A,Brennecke J,Bushati N,et al. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution[J]. Cell,2005,123(6),1133-46.
[6] Bartel DP. MicroRNAs:Genomics,biogenesis,mechanism and function[J]. Cell,2004,116(2):281-97.
[7] Sonkoly E,Pivarcsi A. Advances in microRNAs: impliciations for immunity and inflammatory diseases[J]. J Cell Mol Med,2009,13(1):24-38.
[8] Chen J F,Mandel EM,Thomson JM,et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet,2006,38 (2) :228-33.
[9] Liu N,Bezprozvannaya S,Williams AH,et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart [J]. Genes Dev,2008,22 (23) : 3242-54.
[10] Tatsuguchi M,Seok HY,Callis TE,et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol,2007,42(6):1137-41.
[11] Wang J,Xu R,Lin F,et al. MicroRNA:novel regulators involved in the remodeling and reverse remodeling of the heart [J]. Cardiology,2009,113(2):81-8.
[12] Bonauer A,Carmona G,Iwasaki M,et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J].Science,2009,324(5935):1710-3.
[13] Xiao J,Yang B,Lin H,et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4[J]. J Cell Physiol,2007,212(2):285-92.
[14] Jiahang Xu,Jingmin Zhao,Graham Evan,et al. Circulating microRNAs:novel biomarkers for cardiovascular diseases.Journal of molecular medicine[J]. 2012,90(8):865-75.
[15] Bate SL,Dollard SC,Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys,1988-2004[J]. Clin Infect Dis,2010,50(11):1439-47.
[16] Martin JM,Danziger-Isakov LA. Cytomegalovirus risk, prevention and management in pediatric solid organ transplantation[J]. Pediatr Transplant,2011,15(3):229-36.
[17] 田玉蘭. 巨細(xì)胞病毒所致嬰兒肝損害分析及更昔洛韋臨床療效[J]. 中國醫(yī)藥, 2006,1(7): 442-3.
[18] Andrew C,Nicholson,David P. Hajjar. Herpesviruses in atherosclerosis and thrombosis etiologic agents or ubiquitous bystanders[J]? Arterioscler Thromb Vas Biol,1998,18(3):339-48.
[19] Kyto V,Vuorinen T,Saukko P,et al. Cytomegalovirus infection of the heart is common in patients with fatal myocarditis[J]. Clin Infect Dis,2005,40(5):683-8.
[20] Adam E,Melnick J,Probetfield J,et al. High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis[J].Lancet,1987,2(8554):291-3.
[21] Sorlie PD,Adam E,Melnick SL,et al. Cytomegalovirus herpesvirus and carotid atherosclerosis:the ARIC study[J]. J Med Virol,1994,42(1):33-7.
[22] Grattan M,Moreno-Cabral C,Starnes V,et al. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis[J]. JAMA,1989,261(24):3562-6.
[23] McDonald K,Rector T,Braunlan E,et al. Association of coronary artery disease in cardiar transplant recipients with cytomegalovirus infection[J]. Am J Pathol,1989,64(5):359-62.
[24] Zhou Y,Leon M,Maclawiw M,et al. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy[J]. N EnglJ Med,1996,335(9):624-30.
[25] Lemstrom K,Aho P,Bruggeman C,et al. Cytomegalovirus infection enhances mRNA expression of platelet derived growth factor-BB and transforming growth factor-β1 in rat aoric allografts[J].Arteriosder Thromb,1994,14(12):2043-52.
[26] Streblow DN,Soderberg-Naucler C,Vieira J,et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration[J]. Cell,1999,99(5):511-20.
[27] Zhou YF,Guetta E,Yu ZX,et al. Human cytomegalovirus increases modified low density liprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cell[J].JCI,1996,98(9):2129-38.
[28] Wang J,Marker PH,Belcher JD, et al. Human cytomegalovirus immediate early proteins upregulate endothelial p53 function[J].FEBS Lett,2000 ,474(2-3):213-6.
[29] Wang J,Belcher JD, et al. Cytomegalovirus inhibits p53 nuclear localization signal function[J]. J Mol Med,2001,78(11):642-7.
[30] Skalestskaya A,Bartle LM,Chittenden T,et al. A cytomegalovirusencoded inhibitor of apoptosis that suppresses caspase-8 activation[J]. PNAS,2001,98(14):7829-34.
[31] Simanek AM,Dowd JB,Pawelec G,et al. Seropositivity to cytomegalovirus, inflammation,all-cause and cardiovascular disease-related mortality in the United States[J]. PLoS One,2011,6(2):e16103.
[32] Crough T,Khanna R. Immunobiology of human cytomegalovirus:from bench to bedside[J]. Clin Microbiol Rev,2009,22(1):76-98.
[33] Haarala A,Kahonen M,Lehtimaki T,et al. Relation of high cytomegalovirus antibody titres to blood pressure and brachial artery flow-mediated dilation in young men:the Cardiovascular Risk in Young Finns Study[J]. Clin Exp Immunol ,2012,167(2):309-16.
[34] Chao Li,Nithushi R,Samaranayake,et al. Is Human Cytomegalovirus Infection Associated with Hypertension? The United States National Health and Nutrition Examination Survey 1999-2002[J]. PLoS ONE,2012,7(7):e39760.
[35] Grahame-Clarke C,Chan NN,Andrew D,et al. Human cytomegalovirus seropositivity is associated with impaired vascular function[J]. Circul ation,2003,108(6):678-83.
[36] Shen YH,Zhang L,Utama B,et al. Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN(phosphatase and tensin homolog deleted on chromosome 10)[J].Cardiovascular Research ,2006,69(2):502-11.
[37] M Zhang,X Yang,J Cai. Human cytomegalovirus infection is a novel etiology for essential hypertension[J]. Medical Hypotheses,2011,(5):682-4.
[38] Coles B,Fielding CA,Rose-John S,et al. Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension,cardiac signal transducer and activator of transcription-3 activation,and vascular hypertrophy in vivo[J]. Am J Path,2007,171(1):315-25.
[39] Jilin Cheng,Qingen Ke,Zhuang Jin,et al. Cytomegalovirus infection cause an increase of arterial blood pressure[J]. PLOS pathogens,2009,5(5):1-14.
[40] Xinchun Yang,Jun Cai,et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection[J]. Circulation,2011,124(2): 175-84.
[41] Goto M,Mukoyama M,Sugawara A,et al. Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats[J]. Hypertens Res,2002,25(1):125-33.
[42] Sonkoly E,Pivarcsi A. Advances in microRNAs:implications for immunity and inflammatory diseases[J]. J Cell Mol Med,2009,13(1):24-38.
[43] Grahame-Clarke C. Human cytomegalovirus, endothelial function and atherosclerosis[J]. Herpers,2005,12(2):42-5.
[44] Weis M,Kledal TN,Lin KY,et al. Cytomegalovirus infection impairs the nitric oxide synthase pathway:role of asymmetric dimethylarginine in transplant arteriosclerosis[J]. Circulation,2004,109 (4):500-5.
[45] Petrakopoulou P,Kubrich M,Pehlivanli S,et al. Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function[J]. Circulation,2004,110(11): II207-12.
[46] Wong WT,Wong SL,Tian XY,Huang Y. Endothelial Dysfunction: The Common Consequence in Diabetes and Hypertension[J]. Journal of Cardiovascular Pharmacology,2010, 55 (4):300-7.
[47] Savoia C,Schiffrin EL. Vascular inflammation in hypertension and diabetes:molecular mechanisms and therapeutic interventions[J].Clinical Science,2007,112(7): 375-84.
[48] Wills MR,Carmichael AJ,Mynard K,et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65:frequency, specificity and T-cell receptor usage of pp65-specific CTL[J]. J Virol,1996,70(11):7569-79.
[49] Fuhrmann S,Streitz M,Reinke P,et al. T cell response to the cytomegalovirus major capsid protein (UL86) is dominated by helper cells with a large polyfunctional component and diverse epitope recognition[J]. J Infect Dis,2008,197(10): 1455-8.
[50] Guzik TJ,Hoch NE,Brown KA,et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction[J]. J Exp Med ,2007,204 (10):2449-60.
[51] Valantine HA,Gao SZ,Menon SG,et al. Impact of prophy-lactic immediate posttransplant ganciclovir on development of transplant atherosclerosis:a post hoc analysis of a randomized,placebocontrolled study[J]. Circulation,1999,100(1):61-6.