国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

甜菜褐斑病菌抗藥性分子機(jī)理研究進(jìn)展

2012-01-22 13:20吳學(xué)宏韓成貴
中國(guó)糖料 2012年4期
關(guān)鍵詞:丙烯酸酯褐斑病甾醇

林 杰,劉 梅,吳學(xué)宏,韓成貴

(中國(guó)農(nóng)業(yè)大學(xué)植物病理學(xué)系,北京100193)

甜菜是世界兩大糖料作物之一,在農(nóng)業(yè)生產(chǎn)中占有重要地位[1]。目前我國(guó)甜菜種植主要集中在東北、華北和西北三大產(chǎn)區(qū)[2]。由甜菜尾孢菌(Cercospora beticola)引起的甜菜褐斑病是甜菜生產(chǎn)上最重要的葉部真菌病害[3-4],致使葉片大量壞死及新葉的再生而消耗了甜菜塊根中的營(yíng)養(yǎng)物質(zhì),造成產(chǎn)量和含糖的下降[5],病害嚴(yán)重時(shí)甚至亦可危害塊根[6]。一般年份可使甜菜塊根減產(chǎn)10%~20%,含糖率降低1~2度,嚴(yán)重時(shí)甚至造成整個(gè)田塊絕收[7]。

目前生產(chǎn)主要采用抗病品種、輪作和化學(xué)防治控制甜菜褐斑病[8-9],但由于生產(chǎn)中不合理地使用農(nóng)藥,導(dǎo)致甜菜尾孢菌對(duì)多種殺菌劑的敏感性下降,對(duì)部分殺菌劑產(chǎn)生了較高的抗藥性,成為生產(chǎn)上亟待解決的難題[9]。

1 甜菜褐斑病化學(xué)防治的主要藥劑及作用機(jī)制

防治甜菜褐斑病的殺菌劑有保護(hù)類殺菌劑和內(nèi)吸性殺菌劑,其中保護(hù)性殺菌劑主要有二硫代氨基甲酸鹽類、有機(jī)錫類;內(nèi)吸性殺菌劑主要有苯并咪唑類、甾醇脫甲基化酶抑制劑和甲氧基丙烯酸類等[9]。

1.1 二硫代氨基甲酸鹽類殺菌劑

二硫代氨基甲酸鹽類殺菌劑為多作用位點(diǎn)的保護(hù)性殺菌劑,包括代森錳鋅(Mancozeb)和代森鋅(Zineb)等。藥劑在水中降解釋放出活性物質(zhì)Ethylene bisisothiocyanate sulfide(EBIS),該活性物質(zhì)在紫外線作用下可轉(zhuǎn)化為Ethylene bisisothiocyanate(EBI),EBIS和EBI均能破壞部分含巰基的酶的活性,干擾或抑制病原菌細(xì)胞質(zhì)和線粒體中6種不同生物化學(xué)途徑,從而有效地防治病害[10-11]。

1.2 有機(jī)錫類殺菌劑

有機(jī)錫類殺菌劑包括毒菌錫(Fentin-hydroxide)和薯瘟錫(Fentin-caetate)等,為線粒體呼吸抑制劑,干擾線粒體膜上電子氫氧根離子交換,抑制ATP酶活性,破壞病原菌的呼吸作用,影響孢子萌發(fā)或菌絲生長(zhǎng)[12]。

1.3 苯并咪唑類殺菌劑

苯并咪唑類殺菌劑為第一大類內(nèi)吸性殺菌劑,包括苯菌靈(Benomyl)、多菌靈(Carbendazim)和甲基托布津(Thiophanate-methyl)等。與植物次生代謝產(chǎn)物秋水仙堿極為相似,活性基團(tuán)苯并咪唑能特異地與病原菌細(xì)胞中紡錘絲的β-微管蛋白結(jié)合,阻礙微管蛋白形成,破壞紡錘絲形成,從而干擾細(xì)胞的有絲分裂,抑制芽管分隔、延長(zhǎng)、分生孢子的萌發(fā)和菌絲生長(zhǎng),達(dá)到抑菌效果[13-14]。在我國(guó),此類藥劑用于防治甜菜褐斑病已有較長(zhǎng)的歷史,并且有些地區(qū)目前仍然在使用。

1.4 甾醇脫甲基化酶抑制類殺菌劑

甾醇脫甲基化酶抑制類殺菌劑(C14-demethylation inhibitors of sterol biosynthesis,DMI)為甾醇-14α去甲基化酶抑制劑,即,包括氟硅唑(Flutriafol)、苯醚甲環(huán)唑(Difenconazole)、氟醚唑(Tetraconazole)和丙環(huán)唑(Propiconazole)等。甾醇類化合物如麥角甾醇、菜子甾醇等是真菌細(xì)胞膜的主要組成成分,藥劑靶標(biāo)基因?yàn)殓薮?14α去甲基化酶基因(C-14α-demethylase gene,CYP51)通過(guò)抑制麥角甾醇合成過(guò)程中2,4-二氫羊毛甾醇的脫甲基化反應(yīng),破壞病原菌的甾醇生物合成途徑,引起真菌生長(zhǎng)紊亂[15-18]。我國(guó)近幾年來(lái)開(kāi)始大面積推廣使用氟硅唑和苯醚甲環(huán)唑等殺菌劑防治甜菜褐斑病。

1.5 甲氧基丙烯酸酯類殺菌劑

甲氧基丙烯酸酯類殺菌劑為線粒體呼吸抑制劑,包括肟菌酯 (Trifloxystrobin)和吡唑醚菌酯(Pyraclostrobin)等,其研發(fā)源于擔(dān)子菌如 Oudemansiella mucida (Schrad ex Fr)Hoehn和 Strobilurus tenacellus (Pers ex Fr)Singer及細(xì)菌Myxococcus fulvus等中一類天然活性產(chǎn)物β-丙烯酸酯類化合物的發(fā)現(xiàn)。1996年,先正達(dá)(Syngenta)推出了第一個(gè)商品化的丙烯酸酯類殺菌劑阿米西達(dá)(Azoxystrobin)?;钚曰鶊F(tuán)甲氧基丙烯酸(酯/酰胺)主要作用于真菌線粒體呼吸過(guò)程,與線粒體內(nèi)膜上的細(xì)胞色素復(fù)合體bc1中的細(xì)胞色素b上的Qo位點(diǎn)結(jié)合,阻斷了細(xì)胞色素b和細(xì)胞色素c1間的電子傳遞,破壞能量循環(huán),抑制真菌孢子萌發(fā)或菌絲生長(zhǎng)[19-21]。但此類藥劑在我國(guó)尚未登記用于甜菜褐斑病的防治。

2 甜菜尾孢菌抗藥性發(fā)生現(xiàn)狀

2.1 二硫代氨基甲酸鹽類殺菌劑

二硫代氨基甲酸鹽類殺菌劑作用位點(diǎn)多,病原菌對(duì)其不易產(chǎn)生抗藥性,是最早用于防治甜菜褐斑病的殺菌劑之一,其與有機(jī)錫殺菌劑混用防治甜菜褐斑病,能顯著地提高產(chǎn)量和含糖率[22]。1995年,Bugbee建立了用于監(jiān)測(cè)甜菜尾孢菌對(duì)代森錳鋅抗藥性的藥劑濃度5和10 μg/mL[23]。1997年美國(guó)明尼蘇達(dá)州和北達(dá)科他州田間調(diào)查沒(méi)發(fā)現(xiàn)甜菜尾孢菌對(duì)代森錳鋅的耐藥性[24],而2000年發(fā)現(xiàn)明尼蘇達(dá)州和北達(dá)科他州大部分地區(qū)甜菜尾孢菌對(duì)5 μg/mL代森錳鋅產(chǎn)生了耐藥性[25]。隨后,土耳其亦發(fā)現(xiàn)了甜菜尾孢菌對(duì)代森錳鋅的耐藥性[26]。而我國(guó)目前沒(méi)有甜菜尾孢菌對(duì)代森錳鋅耐藥性情況的相關(guān)報(bào)道,但仍需加強(qiáng)抗性監(jiān)測(cè)。

2.2 對(duì)苯并咪唑類殺菌劑的抗藥性

苯菌靈是第一個(gè)用于甜菜褐斑病防治的內(nèi)吸性殺菌劑[9],至今已有40多年的歷史。20世紀(jì)70年代,歐洲、北美洲等地就開(kāi)始施用苯菌靈防治甜菜褐斑病并取得很好的防效,如希臘、美國(guó)北達(dá)科他和明尼蘇達(dá)分別始于1969年、1979年[27,9,3]。但由于苯并咪唑類殺菌劑作用位點(diǎn)單一和大面積的施用,C.beticola很快就對(duì)其產(chǎn)生了抗藥性,導(dǎo)致防治效果降低甚至完全喪失[27,9]。1973年,希臘首先報(bào)道了C.beticola對(duì)苯并咪唑類的抗藥性[27]。隨后美國(guó)、意大利、日本、印度和中國(guó)等甜菜主要種植地區(qū)均有報(bào)道[14,28-37]。C.beticola對(duì)苯并咪唑類殺菌劑抗藥性可穩(wěn)定遺傳[38,9],如希臘自抗藥性發(fā)現(xiàn)后就沒(méi)有持續(xù)施用苯并咪唑類殺菌劑,但20多年后對(duì)多菌靈抗性頻率沒(méi)有降低反而極大地增加[9]。當(dāng)然也不能排除在其他C.beticola侵染作物或雜草上應(yīng)用所致??剐院兔舾芯暝跓o(wú)苯菌靈情況下,離體菌絲生長(zhǎng)、孢子萌發(fā)和活體毒力及孢子萌發(fā)等生物學(xué)特性上均沒(méi)有差異[28],雖然苯菌靈濃度增加,如1000 μg/mL,能降低田間病害嚴(yán)重度、孢子形成及孢子活力,但大劑量施用形成極大的選擇壓力,增大田間抗性菌株的抗藥水平和抗性頻率,不利于病害的管理[39]。

β-微管蛋白基因突變是對(duì)苯并咪唑類殺菌劑抗藥性產(chǎn)生的主要原因。Davidson通過(guò)苯菌靈系列梯度抑菌試驗(yàn)得到了能有效地區(qū)分抗、感菌株的苯菌靈濃度,該濃度為5 μg/mL。并通過(guò)分析C.beticola抗、感菌株的β-微管蛋白基因,發(fā)現(xiàn)β-微管蛋白基因198位密碼子GAG突變?yōu)镚CG,編碼的氨基酸由谷氨酸突變?yōu)楸彼?,?dǎo)致了C.beticola對(duì)并本咪唑類殺菌劑的高抗藥性或耐藥性的產(chǎn)生,同時(shí)發(fā)現(xiàn)C.beticola對(duì)多菌靈和乙霉威存在負(fù)交互抗藥性[40],我們的初步結(jié)果與此一致[35]?;诳垢芯晷蛄胁町?,Obuya等設(shè)計(jì)了PCRRFLP分子檢測(cè)方法,利用限制性內(nèi)切酶Bsa I可區(qū)分C.beticola抗感菌株[41],而我們則建立了Allele specific primers-PCR快速檢測(cè)區(qū)分C.beticola抗感菌株的方法(未發(fā)表),為檢測(cè)田間抗性菌株提供了可靠的工具。

2.3 對(duì)有機(jī)錫類殺菌劑的抗藥性

繼C.beticola對(duì)苯并咪唑類殺菌劑抗藥性產(chǎn)生后,生產(chǎn)上采用有機(jī)錫類殺菌劑如毒菌錫防治甜菜褐斑病并取得了較好的防治效果[42-43,3],但隨后不久,希臘田間生產(chǎn)中發(fā)現(xiàn)C.beticola對(duì)毒菌錫產(chǎn)生了耐藥性,導(dǎo)致防效下降[44],同時(shí)世界主要甜菜產(chǎn)區(qū)美國(guó)、意大利、土耳其等都相繼發(fā)現(xiàn)C.beticola對(duì)有機(jī)錫殺菌劑的抗藥性[23,26,42,45-46]。研究發(fā)現(xiàn),對(duì)毒菌錫抗性的C.beticola菌株在離體情況下與野生型菌絲生長(zhǎng)速率和菌落特征均沒(méi)有差異,但毒力存在差異,抗性菌株生存競(jìng)爭(zhēng)力較弱,因此合理施用有機(jī)錫殺菌劑可降低抗性菌株的頻率[47]。

2.4 對(duì)甾醇脫甲基化酶抑制類殺菌劑的抗藥性

鑒于C.beticola對(duì)苯并咪唑類殺菌劑和有機(jī)錫殺菌劑的抗藥性,DMI因其對(duì)甜菜褐斑病具有良好的保護(hù)性和治療性而應(yīng)用到甜菜褐斑病的防治中[48],如希臘于1979年開(kāi)始利用DMI類殺菌劑防治甜菜褐斑病[9,49],而美國(guó)環(huán)保局(Environmental Protection Agency,EPA)于1999年至2004年間實(shí)施了利用非登記的DMI類殺菌劑氟醚唑防治甜菜褐斑病的緊急方案,2005年氟醚唑登記防治甜菜褐斑病。隨后,腈苯唑和丙環(huán)唑于2006年登記,苯醚甲環(huán)唑和丙硫菌唑于2008年登記[3],但由于DMI殺菌劑作用位點(diǎn)特異性極強(qiáng),致使病原菌較易對(duì)其產(chǎn)生抗藥性[50],希臘首先發(fā)現(xiàn)田間C.beticola種群對(duì)DMI類殺菌劑敏感性下降[48,51],敏感性水平呈持續(xù)分布狀[52],隨后在希臘發(fā)現(xiàn)C.beticola對(duì)DMI殺菌劑抗藥性菌株[43,51],Karaoglanidis等根據(jù)菌絲生長(zhǎng)抑制率的結(jié)果,建立1 μg/mL氟硅唑和0.05 μg/mL苯醚甲環(huán)唑的單濃度藥劑監(jiān)測(cè)田間抗感菌株頻率的方法[53]。

生物學(xué)研究發(fā)現(xiàn),DMI抗性菌株的毒力和產(chǎn)孢量弱于敏感菌株,但菌絲生長(zhǎng)速度、孢子萌發(fā)和芽管長(zhǎng)度等沒(méi)有差異[54-55]。Karaoglanidis等發(fā)現(xiàn)當(dāng)無(wú)氟硅唑處理時(shí),DMI抗性和敏感菌株細(xì)胞膜中甾醇組成相同;氟硅唑處理后,C.beticola 脫甲基甾醇(desmethyl sterols)含量降低而齒孔醇(eburicol)、鈍葉醇(obtusifoliol)等含量增加,表明C.beticola抗感菌株的14α-脫甲基化酶活性均受到抑制。而抗性菌株在高濃度的氟硅唑處理時(shí),雖然C-14甲基化甾醇含量增加,但仍能合成C14-甲基化甾醇從而否定了甾醇C-14脫甲基酶缺乏導(dǎo)致抗藥性產(chǎn)生的原因。同時(shí)氟硅唑處理C.beticola菌株時(shí),沒(méi)有發(fā)現(xiàn)14α-methylfecosterol而排除了14αmethylfecosterol積累導(dǎo)致抗藥性產(chǎn)生的機(jī)制。根據(jù)以上發(fā)現(xiàn),其推測(cè)C.beticola對(duì)甾醇脫甲基化酶抑制劑抗性機(jī)制可能是14α-脫甲基化酶過(guò)量或細(xì)胞色素P450與藥劑親和性降低[56]。Nikou等首次報(bào)道了C.beticola CYP51基因序列,實(shí)時(shí)熒光定量分析發(fā)現(xiàn)CYP51基因過(guò)量表達(dá)導(dǎo)致了C.beticola對(duì)DMI類殺菌劑抗藥性的產(chǎn)生,同時(shí)發(fā)現(xiàn)高抗菌株的第169位密碼子均發(fā)生了沉默突變,由GAA突變?yōu)镚AC,根據(jù)該沉默突變?cè)O(shè)計(jì)了PCR-RFLP分子檢測(cè)方法,利用限制性內(nèi)切酶BsmAI可區(qū)分C.beticola高抗菌株[57]。

2.5 對(duì)甲氧基丙烯酸酯類殺菌劑的抗藥性

甲氧基丙烯酸酯類殺菌劑如吡唑醚菌酯和肟菌酯具有極佳的保護(hù)和治療活性,能有效地抑制C.beticola孢子萌發(fā)、菌絲生長(zhǎng)和孢子產(chǎn)生,離體情況下0.01 μg/mL吡唑醚菌酯和0.1 μg/mL肟菌酯能完全抑制孢子萌發(fā)[58]。研究發(fā)現(xiàn),甲氧基丙烯酸酯類殺菌劑防治甜菜褐斑病的效果,肟菌酯>吡唑嘧菌酯>阿米西達(dá),尤其阿米西達(dá)防治效果僅為中等或較差,但阿米西達(dá)與代森錳鋅、苯醚甲環(huán)唑或氟硅唑等混用效果明顯好于阿米西達(dá)單獨(dú)使用,而肟菌酯與代森錳鋅、苯醚甲環(huán)唑或氟硅唑等混用效果與肟菌酯單獨(dú)使用沒(méi)有明顯差異,但肟菌酯最佳施用期為病害發(fā)生早期[59]。

目前,甲氧基丙烯酸酯類殺菌劑作為甜菜褐斑病主要防治藥劑之一,在世界各甜菜產(chǎn)國(guó)相繼獲得登記,如美國(guó)于2002、2003年分別登記批準(zhǔn)肟菌酯和吡唑醚菌酯用于甜菜褐斑病的防治[3]。據(jù)報(bào)道,黃瓜白粉菌和霜霉菌[Blumeria(Erysiphe)graminis and Plasmopara viticola]等對(duì)甲氧基丙烯酸酯類殺菌劑產(chǎn)生了抗藥性[60-62]。同時(shí)由于C.beticola基因變異大,極易對(duì)殺菌劑產(chǎn)生抗藥性,因此必須加強(qiáng)對(duì)C.beticola對(duì)甲氧基丙烯酸酯類殺菌劑抗藥性的研究和檢測(cè)[63],通過(guò)室內(nèi)紫外線誘導(dǎo)獲得了對(duì)吡唑醚菌酯具有抗藥性的甜菜尾孢菌突變菌株,抗性菌株較野生菌株產(chǎn)孢量和致病性下降,但抗藥性可穩(wěn)定遺傳,分析細(xì)胞色素b的cDNA序列發(fā)現(xiàn),第129位密碼子由TTC突變?yōu)镚TC,編碼的氨基酸由苯丙氨酸突變?yōu)槔i氨酸,導(dǎo)致C.beticola菌株對(duì)吡唑醚菌酯產(chǎn)生中等抗藥性,而第143密碼子由GGT突變?yōu)锳GT,編碼的氨基酸由甘氨酸突變?yōu)榻z氨酸,導(dǎo)致了高抗藥性的產(chǎn)生[63]。基于第143位密碼子的突變而設(shè)計(jì)了allele specific primers-PCR分子檢測(cè)抗藥性菌株的方法,為了進(jìn)一步提高檢測(cè)靈敏度,建立了實(shí)時(shí)熒光定量PCR(Real-time PCR)檢測(cè)低頻率高抗菌株的方法,但通過(guò)對(duì)田間樣品的檢測(cè),沒(méi)有檢測(cè)到高抗性菌株,表明7年前希臘引入甲氧基丙烯酸酯類殺菌劑防治甜菜褐斑病后,田間至今還沒(méi)發(fā)現(xiàn)抗性菌株,說(shuō)明甲氧基丙烯酸酯類殺菌劑可持續(xù)用于甜菜褐斑病的防治[64]。但仍需在世界范圍內(nèi)對(duì)C.beticola對(duì)甲氧基丙烯酸酯類殺菌劑抗藥性進(jìn)行深入研究和監(jiān)測(cè),避免和有效地延緩抗藥性的產(chǎn)生,同時(shí)為治理可能出現(xiàn)的抗藥性建立基礎(chǔ)的理論支持。

3 抗藥性治理

延緩和避免植物病原菌對(duì)殺菌劑產(chǎn)生抗藥性是生產(chǎn)中亟待解決的問(wèn)題,合理有效地施藥及結(jié)合其他病害防治方法,建立科學(xué)的病害管理方案,有利于延緩和避免抗藥性產(chǎn)生,提高病害防治效率,從而保障甜菜生產(chǎn)的經(jīng)濟(jì)效益。作用機(jī)制不同的殺菌劑混用或交替使用,限制作用機(jī)制類似或相同的殺菌劑在同一個(gè)生長(zhǎng)季節(jié)的施藥次數(shù),按藥劑推薦使用濃度,適時(shí)施藥和減少用藥次數(shù)可有效地治理病原菌的抗藥性。甜菜褐斑病是一種多循環(huán)病害,C.beticola在一個(gè)生長(zhǎng)季可發(fā)生多次侵染,田間條件下,孢子形成周期為12d[4],因此甜菜褐斑病的防治最佳時(shí)期為病害發(fā)生初期,當(dāng)田間初現(xiàn)癥狀,病害日侵染率≥7%和相對(duì)濕度≥87%或90%時(shí)為最佳施藥防治時(shí)期[65],利用甲氧基丙烯酸酯類殺菌劑如肟菌酯和吡唑醚菌酯能有效地治理C.beticola對(duì)苯并咪唑類殺菌劑的抗藥性,降低抗性菌株的頻率[9],同時(shí)結(jié)合抗病品種、輪作和農(nóng)業(yè)措施等措施能減少初侵染源和初侵染,降低殺菌劑使用次數(shù),可有效地延緩和避免抗藥性的產(chǎn)生。研究發(fā)現(xiàn),Bacillus subtilis菌株BacB[66]和甜菜褐斑病菌內(nèi)生細(xì)菌多粘芽孢桿菌(Paenibacillus polymyxa)、彎曲芽孢桿菌(Bacillus flexus)、寡養(yǎng)單孢菌(Stenotrophomonas sp.)[67]對(duì)甜菜尾孢菌具有一定的防治效果,因此加大生物防治的研究,獲得較好的生防菌株對(duì)治理甜菜尾孢菌對(duì)殺菌劑的抗藥性具有重要的作用。

4 問(wèn)題與展望

國(guó)內(nèi)關(guān)于C.beticola對(duì)殺菌劑抗藥性的研究極少,僅有早期關(guān)于甜菜褐斑病菌對(duì)苯并咪唑類殺菌劑的抗藥性頻率、抗性水平、交互抗性和抗性遺傳等報(bào)道[32],對(duì)當(dāng)前生產(chǎn)上主要使用新型殺菌劑如DMI類和甲氧基丙烯酸酯類殺菌劑的抗藥性情況的研究處于起步階段。而國(guó)外早在2000年就發(fā)現(xiàn)了甜菜褐斑病菌對(duì)DMI類殺菌劑的抗藥性[51],及室內(nèi)得到了對(duì)甲氧基丙烯酸酯類殺菌劑具有抗藥性的菌株[63-64],因此盡快評(píng)估我國(guó)不同地區(qū)甜菜褐斑病菌對(duì)新型殺菌劑的抗性風(fēng)險(xiǎn),建立其對(duì)新型殺菌劑的敏感基線,監(jiān)測(cè)抗藥性,探索甜菜褐斑病菌對(duì)新型殺菌劑的抗性機(jī)理,并制定合理延緩和避免抗藥性產(chǎn)生的病害管理方案,延長(zhǎng)殺菌劑使用壽命,為甜菜生產(chǎn)提供技術(shù)保障。

[1]Cooke D A,Scott R.The sugar beet crop:science into practice[M].London:Chapman and Hall,1993:14-19.

[2]張木清,王華忠,白晨.糖料作物改良與高效育種[M].北京:中國(guó)農(nóng)業(yè)出版社,2006:30.

[3]Secor G A,Rivera V V,Khan M.Monitoring fungicide sensitivity of Cercospora beticola of sugar beet for disease management decisions[J].Plant Disease,2010,94(11):1272-1282.

[4]Weiland J,Koch G.Sugarbeet leaf spot disease(Cercospora beticola Sacc.)[J].Molecular Plant Pathology,2004,5:157-166.

[5]Shane W,Teng P.Impact of Cercospora leaf spot on root weight,sugar yield,and purity of Beta vulgaris[J].Plant Disease,1992,76:812-820.

[6]Giannopolitis C.Lesions on sugarbeet roots caused by Cercospora beticola[J].Plant Disease Reporter,1978,62:424-427.

[7]Rossi V,Asher M,Holtschulte B,et al.Cercospora leaf spot infection and resistance in sugarbeet[A].Cercospora beticola Sacc biology,agronomic influence and control measures in sugar beet[C],2000:17-48.

[8]Smith G.Differential response of sugarbeet cultivars to Cercospora leaf spot disease[J].Crop Science,1978,18:39-42.

[9]Karaoglanidis G,Bardas G.Control of benzimidazole-and DMI-resistant strains of Cercospora beticola with strobilurin fungicides[J].Plant Disease,2006,90:419-424.

[10]Ludwig R,Thorn G.Chemistry and mode of action of dithiocarbamate fungicides[J].Adv Pest Control Res,1960,3:219.

[11]Gullino M L,Tinivella F,Garibaldi A,et al.Mancozeb: Past,Present,and Future[J].Plant Disease,2010,94:1076-1087.

[12]Stockdale M,Dawson A P,Selwyn M J.Effects of Trialkyltin and Triphenyltin Copounds on Mitochondrial Respiration[J].European Journal of Biochemistry,1970,15(2):342-351.

[13]Davidse L.Benzimidazole fungicides:mechanism of action and biological impact[J].Annual review of phytopathology,1986,24:43-65.

[14]Davidse L.Benzimidazole fungicides:Mechanism of action and resistance[A].In C.J.Delp(ed.),Fungicide resistance in North America[C].APS Press,St.Paul,Minn,1988:25-27.

[15]BUCHENHAUER H.Mode of action and selectivity of fungicides which interfere with ergosterol biosynthesis[A].Proceedings of the 1977 British Crop Protection Conference-Pests and Diseases[C].British Crop Protection Council,London,1977:699-711

[16]Siegel M.Sterol-inhibiting fungicides:Effects on sterol biosynthesis and sites of action[J].Plant Disease,1981,65:986-989.

[17]Schwinn F J.Ergosterol biosynthesis inhibitors.An overview of their history and contribution to medicine and agriculture[J].Pesticide science,1984,15(1):40-47.

[18]Koller,W.Antifungal agents with target sites in sterol functions and biosynthesis.In Target Sites of Fungicide Action(Koller,W.,Ed.),CRC Press,Boca Raton,FL,1992:119–206.

[19]Anke T.The antifungal strobilurins and their possible ecological role[J].Canadian journal of botany,1995,73:940-945.

[20]Bartlett D W,Clough J M,Godwin J R,et al.The strobilurin fungicides[J].Pest Management Science,2002,58:649-662.

[21]思彬彬,楊卓.甲氧基丙烯酸酯類殺菌劑作用機(jī)理研究進(jìn)展[J].世界農(nóng)藥,2007,29(6):5-9.

[22]Percich J,Nickelson L,Huot C.Field evaluation of various fungicides to control cercospora leaf spot of sugarbeet,caused by benomyl-resistant strains of Cercospora beticola[J].Journal of the American Society of Sugar Beet Technologists,1987,24(1):32-40.

[23]Bugbee W.Cercospora beticola tolerant to triphenyltin hydroxide[J].Journal of sugar beet research,1995,32:167-174.

[24]Weiland J J,Smith G.A Survey for the prevalence and distribution of Cercospora beticola tolerant to triphenyltin hydroxide and mancozeb and resistant to thiophanate methyl in 1997[R].Sugarbeet Research and Extension Reports,1997.

[25]Weiland J J.A survey for the prevalence and distribution of Cercospora beticola tolerant to triphenyltin hydroxide and mancozeb and resistant to thiophanate methyl in 2000[J].Sugarbeet Research and Extension Reports,2000,31:266-271.

[26]Tumbek A,Ozeren P,Kaya R,et al.Sensitivity of Cercospora beticola populations in Turkey to utriafol,mancozeb,and fentin acetate[J].Turk J Agric For,2011,35:65-71.

[27]Georgopoulos S,Dovas C.Occurrence of Cercospora beticola strains resistant to benzimidazole fungicides in northern Greece[J].Plant Dis Rep,1973,57:321-324.

[28]Ruppel E,Scott P.Strains of Cercospora beticola resistant to benomyl in the USA[J].Plant Dis Rep,1974,58:434-436.

[29]D'Ambra V,Mutto S,Carula G.Sensibilita e toleranza di isolati di Cercospora beticola sensibili e toleranti al benomyl[J].Ind Sacc Ital,1974,1:11-13.

[30]Ruppel E,Burtch L,Jenkins A.Benomyl-Tolerant Strains of Cercospora beticola from Arizona[J].The Journal of the American Society of Sugar Beet Technologists,1976,19(2):106-107.

[31]Yamaguchi T,Sugimoto T,Aota T,et al.Occurrence and spread of strains of Cercospora beticola Sacc.resistant to thiophanate methyl in Hokkaido,Japan,1975,17:71-79.

[32]黃大昉,王俠,周淑芝.甜菜褐斑病菌對(duì)苯并咪唑類殺菌劑抗藥性的研究[J].植物保護(hù)學(xué)報(bào),1982,9(2):131-136.

[33]Pal V,Mukhopadhyay A.Occurrence of strains of Cercospora beticola resistance to carbendazim(MBC)in India[J].Indian Journal of Mycology and Plant Pathology,1983,13:333-334.

[34]Weiland J J,Halloin J M.Benzimidazole resistance in Cercospora beticola sampled from sugarbeet fields in Michigan,USA[J].Canadian Journal of Plant Pathology,2001,23(1):78-82.

[35]林杰,劉梅,吳學(xué)宏,等.我國(guó)抗感多菌靈甜菜褐斑病菌菌株β-微管蛋白基因的序列分析[A].2011年中國(guó)植物病理學(xué)會(huì)年會(huì)論文集[C].湖北:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2011:622-623.

[36]D'Ambra V,Mutto S,Carula G.Frequency of benomyl-tolerant isolates of Cercospora beticola as a result of field treatments and response of the isolates to triphenyltin acetate[J].Phytopathologische Zeitschrift,1980,97(3):234-241.

[37]劉勇,葉鐘音,劉經(jīng)芬,等.甜菜褐斑病菌對(duì)苯并咪唑類等殺菌劑抗藥性的研究[J].中國(guó)糖料,1992(1):27-33.

[38]Ruppel E,Jenkins A,Burtch L.Persistence of benomyl-tolerant strains of Cercospora beticola in the absence of benomyl[J].Phytopathology,1980,70(1):25-26.

[39]Ruppel E,Petersen S.Effect of benomyl on In vitro and In vivo biology of benomyl-tolerant strains of Cercospora beticola[J].AMERICAN SOCIETY OF SUGAR BEET,1977,19(3):233.

[40]Davidson R,Hanson L,Franc G,et al.Analysis of β-tubulin Gene Fragments from Benzimidazole-sensitive and-tolerant Cercospora beticola[J].Journal of Phytopathology,2006,154:321-328.

[41]Obuya J,Hanson L,Stump W,et al.A rapid diagnostic tool for detecting benzhnidazole resistance in Cercospora beticola,the causal agent of Cercospora leaf spot in sugarbeet[R].Phytopathology,2008,98:S115.

[42]Campbell L,Smith G,Lamey H,et al.Cercospora beticola tolerant to triphenyltin hydroxide and resistant to thiophanate methyl in North Dakota and Minnesota[J].Journal of sugar beet research,1998,35(1-2):29-41.

[43]Karaoglanidis G,Karadimos D,Ioannidis P,et al.Sensitivity of Cercospora beticola populations to fentin-acetate,benomyl and flutriafol in Greece[J].Crop protection,2003,22(5):735-740.

[44]Giannopolitis C.Occurrence of strains of Cercospora beticola resistant to triphenyltin fungicides in Greece[Sugarbeets][R].Plant Disease Reporter(USA),1978.

[45]CeratoC,Grassi.Toleranceoforgano-tincompoundsamongCercosporabeticolaisolates[J].InformatoreFitopatologico,1983,33:67-69.

[46]Bugbee W.Cercospora beticola strains from sugar beet tolerant to triphenyltin hydroxide and resistant to thiophanate methyl[J].Plant Disease,1996,80:103.

[47]Giannopolitis C,Chrysayi-Tokousbalides M.Biology of triphenyltin-resistant strains of Cercospora beticola from sugar beet[J].Plant Disease,1980,64(10):940-942.

[48]Karaoglanidis G,Ioannidis P,Thanassoulopoulos C.Changes in sensitivity of Cercospora beticola populations to steroldemethylation-inhibiting fungicides during a 4-year period in northern Greece[J].Plant pathology,2002,51(1):55-62.

[49]Ioannidis P.Fungicides chemicals and techniques for controlling Cercospora beticola Sacc.In Greece.[C].Proceeding of Mediterranean Committee Meeting of I.I.R.B.Tbessaloniki,Greece,1994:139-151.

[50]Koller W.Fungicide resistance in plant pathogens[Z].CRC handbook of pest management in agriculture,1991,2:679-720.

[51]Karaoglanidis G,Ioannidis P,Thanassoulopoulos C.Reduced sensitivity of Cercospora beticola isolates to sterol-demethylationinhibiting fungicides[J].Plant pathology,2000,49:567-572.

[52]Wolfe M.Dynamics of the pathogen population in relation to fungicide resistance[A].Fungicide Resistance in Crop Protection[C].J Dekker and SG Georgopoulos,eds Centre for Agricultural Publishing and Documentation,Wageningen,the Netherlands,1982:139-148.

[53]Karaoglanidis G,Karadimos D,Ioannidis P.Detection of resistance to sterol demethylation-inhibiting(DMI)fungicides in Cercospora beticola and efficacy of control of resistant and sensitive strains with flutriafol[J].Phytoparasitica,2003,31(4):373-380.

[54]Henry M J,Trivellas A E.Laboratory-induced fungicide resistance to benzimidazole and azole fungicides in Cercospora beticola[J].Pesticide biochemistry and physiology,1989,35:89-96.

[55]Karaoglanidis G,Thanassoulopoulos C,Ioannidis P.Fitness of Cercospora beticola field isolates¨Cresistant and¨Csensitive to demethylation inhibitor fungicides[J].European journal of plant pathology,2001,107:337-347.

[56]Karaoglanidis G,Menkissoglu-Spiroudi U.Thanassoulopoulos C.Sterol Composition of DMI-Resistant and-Sensitive Field Isolates of Cercospora beticola[J].Journal of Phytopathology,2003,151:431-435.

[57]Nikou D,Malandrakis A,Konstantakaki M,et al.Molecular characterization and detection of overexpressed C-14 alpha demethylase-basedDMIresistanceinCercosporabeticolafieldisolates[J].Pesticidebiochemistryandphysiology,2009,95(1):18-27.

[58]Karadimos D.,Karaoglanidis G.,Tzavella-Klonari K.Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola[J].Crop protection,2005,24(1):23-29.

[59]Anesiadis T,Karaoglanidis G,Tzavella-Klonari K.Protective,curative and eradicant activity of the strobilurin fungicide azoxystrobin against Cercospora beticola and Erysiphe betae[J].Journal of Phytopathology,2003,151(11/12):647-651.

[60]Ishii H,Fraaije B,Sugiyama T,et al.Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J].Phytopathology,2001,91(12):1166-1171.

[61]Sierotzki H,Parisi S,Steinfeld U,et al.Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates[J].Pest Management Science,2000,56(10):833-841.

[62]Sierotzki H,Wullschleger J,Gisi U.Point mutation in cytochrome b gene conferringresistance to strobilurin fungicides in Erysiphe graminis f.sp.tritici field isolates[J].Pesticide biochemistry and physiology,2000,68(2):107-112.

[63]Malandrakis A A,Markoglou A N,Nikou D C,et al.Biological and molecular characterization of laboratory mutants of Cercospora beticola resistant to Qo inhibitors[J].European journal of plant pathology,2006,116(2):155-166.

[64]Malandrakis A A,Markoglou A N,Nikou D C,et al.Molecular diagnostic for detecting the cytochrome b G143S-QoI resistance mutation in Cercospora beticola[J].Pesticide biochemistry and physiology,2011,100(1):87-92.

[65]Khan J,Del Rio L E,Nelson R,et al.Improving the Cercospora leaf spot management model for sugar beet in Minnesota and North Dakota[J].Plant Disease,2007,91(9):1105-1108.

[66]Collins D P,Jacobsen B J.Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot[J].Biological control,2003,26(2):153-161.

[67]史應(yīng)武,婁愷,李春,等.甜菜褐斑病內(nèi)生拮抗菌的篩選、鑒定及其防效測(cè)定[J].植物病理學(xué)報(bào),2009,39(2):221-224.

猜你喜歡
丙烯酸酯褐斑病甾醇
蘋果園褐斑病防治正當(dāng)時(shí)
高溫多雨 注意防治蘋果褐斑病
植物甾醇提取分離方法研究進(jìn)展
水稻細(xì)菌性褐斑病及其防治措施
楚雄州桑樹(shù)褐斑病發(fā)生規(guī)律研究
植物甾醇制取及應(yīng)用研究進(jìn)展
高效液相色譜法同時(shí)檢測(cè)植物甾醇與植物甾醇酯
GC-MS/FID法分析玉米胚芽油中的甾醇和甾醇酯
光固化聚硅氧烷材料的研究進(jìn)展
我國(guó)將停止對(duì)新加坡等國(guó)丙烯酸酯征反傾銷稅