韓永生, 褚 俊, 葛志明
(1山東大學(xué)齊魯醫(yī)院心血管內(nèi)科,山東濟(jì)南250012;安徽醫(yī)科大學(xué)附屬省立醫(yī)院2急診內(nèi)科,3心血管內(nèi)科,安徽合肥230011)
中國(guó)在公元前3 000年以前就有飲用綠茶的記載。現(xiàn)代技術(shù)發(fā)現(xiàn)綠茶含有大量的茶多酚,兒茶素是茶多酚的主要成分,包括4種單體物質(zhì),即表沒(méi)食子兒茶素沒(méi)食子酸酯[(-)-epigallocatechin gallate,EGCG]、表兒茶素沒(méi)食子酸酯(epicatechin gallate,ECG)、表沒(méi)食子兒茶素(epigallocatechin,EGC)和表兒茶素(epicatechin,EC),其中最主要的活性成分EGCG被認(rèn)為具有抗癌、減肥、抗糖尿病、抗菌、抗病毒、預(yù)防齲齒等作用[1]。大量研究發(fā)現(xiàn)飲茶也會(huì)減少心血管疾病的發(fā)生風(fēng)險(xiǎn),對(duì)心臟具有明確的保護(hù)作用,本文就EGCG對(duì)心血管疾病的預(yù)防作用研究進(jìn)展進(jìn)行綜述。
1.1 EGCG通過(guò)調(diào)節(jié)血脂水平和脂蛋白受體功能,延緩動(dòng)脈粥樣硬化的形成和發(fā)展 Meta分析顯示經(jīng)常飲茶(每天3杯以上)可以降低心臟病發(fā)作風(fēng)險(xiǎn)。流行病學(xué)研究發(fā)現(xiàn)1 d飲數(shù)杯綠茶可以降低人血清低密度脂蛋白(low-density lipoprotein,LDL)水平[2]。Yang等[3]發(fā)現(xiàn),體內(nèi)給予大鼠綠茶可降低血清總膽固醇而升高高密度脂蛋白(high-density lipoprotein,HDL)水平。EGCG延緩胸導(dǎo)管中[14C]-甘油三油酸酯的淋巴回流,體外實(shí)驗(yàn)中EGCG濃度依賴性地抑制胰脂酶活力,減緩甘油三酯吸收,降低餐后高濃度的血甘油三酯含量,減少冠心病的發(fā)病風(fēng)險(xiǎn)[4]。
吸煙是動(dòng)脈粥樣硬化的主要危險(xiǎn)因素,煙霧暴露顯著提高血清中心臟損傷標(biāo)志物如肌酸激酶MB (creatine kinase MB,CKMB)和乳酸脫氫酶(lactate dehydrogenase,LDH)的活性,而降低心肌中這些酶的活性。煙霧暴露大鼠血清總膽固醇、脂肪酸、磷脂、甘油三酯、LDL、極低密度脂蛋白(very low-density lipoprotein,VLDL)顯著升高,卵磷脂膽固醇?;D(zhuǎn)移酶(cholesterol acyl transferase,LCAT)和HDL減少,心肌中總膽固醇、脂肪酸和甘油三酯含量升高,磷脂、LCAT和脂蛋白脂肪酶(lipoprotein lipase,LPL)含量減少,EGCG給藥可以逆轉(zhuǎn)血清和心肌中心臟損傷標(biāo)志物水平和脂代謝酶活力,恢復(fù)異常的脂質(zhì)構(gòu)成。相似的是,腹腔注射EGCG明顯降低動(dòng)脈粥樣硬化模型大鼠血清總膽固醇、甘油三酯、LDL、VLDL和丙二醛(malondialdehyde,MDA)水平,升高HDL水平[5]。EGCG可以通過(guò)67 kD的層黏連蛋白受體介導(dǎo)脂筏聚簇[6]。
EGCG通過(guò)募集泛素化蛋白和3個(gè)天然的蛋白酶體靶分子[p27、核抑制因子κBα(inhibitor κBα,IκBα)和Bax],有效地抑制HepG2細(xì)胞和HeLa細(xì)胞中蛋白酶體的活性,其選擇性抑制蛋白酶體的糜蛋白酶樣活性,而對(duì)胰蛋白酶樣活性沒(méi)有影響。同時(shí)時(shí)間和濃度依賴性的升高活化膽固醇調(diào)節(jié)元件結(jié)合蛋白2(sterol regulatory element-binding protein 2,SREBP2)水平。SREBP2是調(diào)節(jié)低密度脂蛋白受體(LDL receptor,LDLR)轉(zhuǎn)錄的重要因子,因此,EGCG明顯提高HepG2和HeLa細(xì)胞中LDLR水平,可能是其降低膽固醇、保護(hù)心臟的分子機(jī)制之一[7]。
1.2 EGCG通過(guò)對(duì)抗氧化應(yīng)激,阻止動(dòng)脈粥樣斑塊的形成 雖然上述結(jié)果證實(shí)EGCG通過(guò)調(diào)節(jié)血脂發(fā)揮抗動(dòng)脈粥樣硬化作用,但也有報(bào)道稱,同時(shí)給予正常小鼠和雄性載脂蛋白E缺陷小鼠綠茶提取物后,正常小鼠主動(dòng)脈膽固醇和甘油三酯水平分別比載脂蛋白E缺陷小鼠降低27%和50%,提示長(zhǎng)期攝取綠茶提取物不是通過(guò)改變載脂蛋白E缺陷小鼠血脂水平阻止動(dòng)脈粥樣硬化發(fā)展的,而可能是通過(guò)茶葉潛在的抗氧化作用[8]。EGCG可以抑制內(nèi)皮細(xì)胞誘導(dǎo)的LDL氧化,降低自由基對(duì)細(xì)胞的損傷,阻止動(dòng)脈粥樣斑塊的形成,發(fā)揮心臟保護(hù)作用[9]。
另一項(xiàng)研究表明,預(yù)口服EGCG治療可以顯著降低煙霧暴露大鼠心臟和血清中脂質(zhì)過(guò)氧化物和蛋白碳基水平,升高蛋白巰基、還原型谷胱甘肽、維生素C和維生素E含量,抑制超氧化物歧化酶(superoxide dismutase,SOD)、過(guò)氧化氫酶(catalase,CAT)、谷胱甘肽過(guò)氧化物酶、谷胱甘肽S-轉(zhuǎn)移酶和谷胱甘肽還原酶活性,提高抗氧化能力[10]。此外,EGCG降低煙霧暴露大鼠模型心臟核因子κB(nuclear factor kappa B,NF-κB)、環(huán)氧合酶2(cyclooxygenase 2,COX-2)、腫瘤壞死因子α(tumor necrosis factor α,TNF-α)和誘生型一氧化氮合酶(inducible nitric oxide synthase,iNOS)等炎性分子表達(dá),提示其通過(guò)抑制氧化應(yīng)激發(fā)揮心臟保護(hù)作用[5]。EGCG顯著恢復(fù)動(dòng)脈粥樣硬化模型大鼠降低的平均抗氧化酶活力和平均非酶性抗氧化物水平[10]。
Geleijnse等[11]在荷蘭人群中分析發(fā)現(xiàn),增加茶葉攝取對(duì)缺血性心臟病具有一級(jí)預(yù)防作用。目前已經(jīng)利用異丙腎上腺素(isoprenaline,ISO)誘導(dǎo)的心肌梗塞(myocardial infarction,MI)大鼠模型,對(duì)EGCG治療MI的分子機(jī)制進(jìn)行了深入探討。
2.1 EGCG抑制MI大鼠血清中心臟標(biāo)志性酶活力,恢復(fù)脂質(zhì)結(jié)構(gòu)和電解質(zhì)水平 大鼠每間隔24 h皮下給予ISO 100 mg/kg,給藥2 d即導(dǎo)致心臟重量顯著增大,血清心臟標(biāo)志性酶如肌酸激酶、CKMB、LDH、天冬氨酸轉(zhuǎn)氨酶和丙氨酸轉(zhuǎn)氨酶等活力升高,而心肌中這些酶卻降低。ISO注射同樣可以升高LDH同工酶(LDH1和LDH2)活力。在MI大鼠中,Na+/K+ATP酶活力降低但Ca2+和Mg2+ATP酶活力顯著升高,K+濃度降低而Na+和Ca2+濃度升高。EGCG預(yù)防給藥減輕心臟重量、降低血清中上述心臟酶類、膜結(jié)合ATP酶、LDH1和LDH2活力,恢復(fù)電解質(zhì)水平[12]。EGCG顯著降低MI模型大鼠升高的血清膽固醇、甘油三酯、磷脂、心臟游離脂肪酸、LDL和VLDL水平,升高降低的血清HDL濃度和心臟磷脂水平,同時(shí)降低升高的膽固醇/磷脂比率和動(dòng)脈粥樣硬化指數(shù),顯著升高降低的HDL/總膽固醇比率。此外,EGCG明顯升高M(jìn)I大鼠降低的LCAT活力,從而阻止脂質(zhì)積累,調(diào)節(jié)脂蛋白水平[13]。
2.2 EGCG對(duì)MI的保護(hù)可能與其抗氧化、膜穩(wěn)定以及抗線粒體損傷密切相關(guān) 進(jìn)一步研究發(fā)現(xiàn),ISO誘導(dǎo)大鼠的線粒體脂質(zhì)過(guò)氧化反應(yīng)產(chǎn)物(硫代巴比妥酸反應(yīng)物和過(guò)氧化氫脂質(zhì))明顯增多,但線粒體抗氧化物(SOD、CAT、谷胱甘肽過(guò)氧化物酶、谷胱甘肽-S-轉(zhuǎn)移酶、谷胱甘肽還原酶和還原型谷胱甘肽)顯著減少,同時(shí)三羧酸循環(huán)相關(guān)酶類,如異檸檬酸鹽、琥珀酸、蘋(píng)果酸和α-酮戊二酸脫氫酶活力降低,MI大鼠心臟線粒體中呼吸鏈標(biāo)志性酶類如還原型輔酶Ⅰ(nicotinamide-adenine dinucleotide,NADH)脫氫酶和細(xì)胞色素C氧化酶活性均顯著降低。EGCG預(yù)防給藥明顯改善這些酶活性的變化,恢復(fù)線粒體正常功能。體外實(shí)驗(yàn)觀察到EGCG對(duì)1,1-二苯基-2-三硝基苯肼(DPPH·)、2,2'-連氮基-雙(3-乙基苯并二氫噻唑啉-6-磺酸)(ABTS+)、超氧負(fù)離子(O-·2)和羥自由基(OH·)等具有清除能力[13]。Dudka等[15]也發(fā)現(xiàn)EGCG預(yù)防給藥顯著降低MI大鼠血漿尿酸含量,升高抗氧化酶活性和非酶性抗氧化物水平,增強(qiáng)還原型輔酶Ⅱ(nicotinamide-adenine dinucleotide phosphate,NADPH)細(xì)胞色素P450還原酶活性,提高機(jī)體的抗氧化能力。MI大鼠血清和心臟中溶酶體酶(β-葡萄糖醛酸酶、β-N-乙酰葡糖胺糖苷酶、β-半乳糖苷酶、組織蛋白酶B和組織蛋白酶D)活力顯著增加,線粒體、核、溶酶體和微粒體中β-葡萄糖醛酸酶和組織蛋白酶D活力降低,導(dǎo)致膜穩(wěn)定性降低。EGCG預(yù)防給藥阻止了這些酶活力的改變,提示EGCG保護(hù)溶酶體膜不受ISO的損傷與其清除自由基和膜穩(wěn)定作用有關(guān)[16]。有研究發(fā)現(xiàn),EGCG可以改善短暫性大腦中動(dòng)脈閉塞大鼠的前肢功能[17]。老齡高血壓大鼠體內(nèi)的氧化壓力增強(qiáng),是對(duì)EGCG治療反應(yīng)差甚至產(chǎn)生不良反應(yīng)的原因[18-19]。
初期,EGCG被認(rèn)為介導(dǎo)NO引起的血管舒張,保護(hù)缺血再灌注(ischemia/reperfusion,I/R)心臟[20]。后繼研究發(fā)現(xiàn),EGCG通過(guò)結(jié)合到心肌肌鈣蛋白C(cardiac troponin C,cTnC)的C末端,抑制Ca2+與cTnC結(jié)合,對(duì)抗心臟收縮反應(yīng)時(shí)其它質(zhì)子對(duì)Ca2+敏感性的抑制作用[21]。EGCG抑制信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子-1(signal transducer and activator of transcription 1,STAT-1)磷酸化,降低STAT-1促凋亡靶基因-Fas受體的表達(dá),抑制caspase-3活化,下調(diào)Bax和上調(diào)Bcl-2蛋白表達(dá),提高Bcl-2/ Bax值,保護(hù)心肌細(xì)胞不受I/R誘發(fā)程序性死亡[22]。EGCG阻止I/R模型大鼠心肌細(xì)胞NF-κB和AP1的DNA結(jié)合,降低髓過(guò)氧化物酶、肌酸磷酸激酶和IL-6水平,對(duì)再灌注引起的心肌損傷具有保護(hù)作用[23]。EGCG可以緩解I/R引起的炎癥反應(yīng),減少促炎細(xì)胞因子的產(chǎn)生[24]。
離體大鼠心臟I/R模型中,EGCG顯著縮小缺血心臟面積,這一作用可以被線粒體KATP(mitochondrial KATP,mKATP)通道非選擇性阻滯劑格列本脲(glibenclamide,GLI)或選擇性阻滯劑5-羥基癸酸甘油酯所對(duì)抗,提示EGCG通過(guò)KATP通道尤其是mKATP通道發(fā)揮心臟保護(hù)作用[25]。EGCG能增加心肌細(xì)胞存活率,提高SOD和ATP酶活性,減少心肌細(xì)胞LDH和MDA含量,分別聯(lián)合給予蛋白激酶C (protein kinase C,PKC)阻斷劑或Gi/o蛋白拮抗劑后可對(duì)抗EGCG的作用,提示EGCG通過(guò)清除自由基、抑制心肌細(xì)胞PKC和G蛋白保護(hù)心肌細(xì)胞[26]。
壓力負(fù)荷導(dǎo)致心室結(jié)構(gòu)重建及心力衰竭[26]。EGCG可以有效地減輕心臟重構(gòu),阻止心肌細(xì)胞凋亡和氧化應(yīng)激反應(yīng),抑制心肌成纖維細(xì)胞(cardiac fibroblasts,CFs)的異常增殖而改善心肌重構(gòu)。組織病理學(xué)檢查發(fā)現(xiàn)EGCG可有效地減輕左心室心肌纖維化程度,超聲心動(dòng)圖顯示EGCG可以改善左心室收縮期內(nèi)徑和收縮功能[28]。
目前研究多認(rèn)為EGCG對(duì)于心肌保護(hù)主要通過(guò)抑制氧化應(yīng)激,抑制心肌肥厚中H2O2誘導(dǎo)端??s短而引起的心肌細(xì)胞凋亡、端粒重復(fù)序列結(jié)合因子2 (telomeric repeatbinding factor 2,TRF2)丟失、p53和p21表達(dá)的上調(diào)、Bcl-2表達(dá)的減少;減少血清和心肌中MDA濃度,升高SOD和谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)活力,清除活性氧自由基而調(diào)控Ca2+,保護(hù)大鼠心室肌細(xì)胞Na+通道[29];恢復(fù)新生大鼠心肌細(xì)胞在高糖培養(yǎng)中下調(diào)的縫隙連接[30]。在肥厚性心肌病小鼠模型中,EGCG作用于cTnC,降低心肌纖維對(duì)Ca2+的敏感性,改善心臟舒張功能而恢復(fù)離體心臟的心輸出量[31]; EGCG劑量依賴性地降低心臟指數(shù),減少血清心房利鈉肽(atrial natriuretic peptide,ANP)和內(nèi)皮素水平,升高血清和心肌中亞硝酸鹽濃度,降低肥厚心肌中羥脯氨酸含量、增殖細(xì)胞核抗原和c-Myc表達(dá),誘導(dǎo)NO產(chǎn)生,在體內(nèi)外抑制CFs的增殖[32];EGCG通過(guò)阻斷活性氧簇(reactive oxygen species,ROS)依賴的p38和JNK信號(hào)通路抑制NF-κB活力,通過(guò)阻斷表皮生長(zhǎng)因子受體的間接激活并抑制其下游分子細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERKs)/磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)/哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/核糖體40S小亞基S6蛋白激酶(phosphorylation of p70 S6 kinase,p70S6K),下調(diào)激活蛋白1(activator protein-1,AP-1)活力,阻止ANP和腦鈉素的再活化,最終阻止心臟肥大的進(jìn)展[33]。
瞬時(shí)受體電勢(shì)(transient receptor potential canonical,TRPC)通道阻斷劑SKF 96365和Cd2+幾乎完全阻斷EGCG引起鈣離子滲透的非選擇性陽(yáng)離子電流(Ca2+-permeable non-selective cation currents,NSCC)。較高濃度的EGCG(100 μmol/L)給藥5 min會(huì)誘發(fā)硝苯地平敏感的電壓依賴的Ba2+電流,而給藥超過(guò)10 min時(shí),該電流被顯著抑制,提示EGCG通過(guò)電壓門(mén)控的 Ca2+通道(voltage-operated Ca2+channels,VOCC)以及 SKF-96365和 Cd2+敏感的Ca2+滲透通道促進(jìn)Ca2+流入平滑肌細(xì)胞,是EGCG引起大鼠主動(dòng)脈環(huán)收縮的分子機(jī)制,給藥超過(guò)10 min時(shí)VOCC被抑制可能是EGCG引起大鼠主動(dòng)脈舒張的部分機(jī)制[34]。EGCG升高心室肌細(xì)胞SOD和CAT活性,降低ROS水平,調(diào)節(jié)Na+電流,恢復(fù)半激活/失活電位的改變,保護(hù)心室肌細(xì)胞Na+通道不受亞硫酸鹽引起的氧化損傷[35]。
EGCG增加大鼠心肌細(xì)胞的縮短分?jǐn)?shù),升高細(xì)胞內(nèi)收縮期Ca2+濃度,劑量依賴性地升高離體大鼠左心室最高收縮壓和收縮舒張速率。EGCG促進(jìn)心肌細(xì)胞功能和細(xì)胞內(nèi)Ca2+瞬變的作用可以被Na+/H+交換泵(Na+/H+exchanger,NHE)拮抗劑5-(N-甲基-N-異戊基)阿米洛利和反向Na+/H+交換體(reverse mode of the Na+/Ca2+exchanger,NCX)阻滯劑KB-R7943所阻斷,提示EGCG介導(dǎo)大鼠心肌Ca2+依賴的正性肌力和松弛作用部分通過(guò)激活NHE和NCX發(fā)揮[36]。EGCG與cTnC的C末端和cTnI的錨定區(qū)域形成三元絡(luò)合物,是EGCG調(diào)節(jié)離體豚鼠心臟收縮力的機(jī)制之一[37]。
綜上所述,大量研究揭示了EGCG具有心血管保護(hù)作用,耐受性良好,且通過(guò)阻止PKC和ERK1/2信號(hào)通路,抑制高糖誘導(dǎo)的血管平滑肌細(xì)胞增殖,可用于預(yù)防糖尿病的血管并發(fā)癥[38]。EGCG的治療作用與抑制氧化應(yīng)激、恢復(fù)紊亂的脂質(zhì)代謝和調(diào)節(jié)細(xì)胞離子水平等密切相關(guān),具體機(jī)制需要更深入的探索。在各種心血管疾病中,多種炎癥細(xì)胞因子和神經(jīng)體液因子如血管緊張素II和內(nèi)皮素等均通過(guò)各自介導(dǎo)的信號(hào)通路參與了病理過(guò)程,臨床上對(duì)抗這些炎性因子的治療措施在防治心血管疾病中取得較好療效[39],因此除已知的作用機(jī)制外,EGCG是否通過(guò)影響致炎細(xì)胞因子與心臟細(xì)胞相應(yīng)受體的結(jié)合或調(diào)節(jié)下游信號(hào)轉(zhuǎn)導(dǎo)發(fā)揮心臟保護(hù)作用也是進(jìn)一步研究的方向之一。
[1] Tachibana H.Green tea polyphenol sensing[J].Proc Jpn Acad Ser B Phys Biol Sci,2011,87(3):66-80.
[2] Maron DJ,Lu GP,Cai NS,et al.Cholesterol-lowering effect of a theaflavin-enriched green tea extract:a randomized controlled trial[J].Arch Intern Med,2003,163(12):1448-1453.
[3] Yang TT,Koo MW.Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion[J].Life Sci,2000,66(5):411-423.
[4] Ikeda I,Tsuda K,Suzuki Y,et al.Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats[J].J Nutr,2005,135(2):155-159.
[5] Gokulakrisnan A,Jayachandran Dare B,Thirunavukkarasu C.Attenuation of the cardiac inflammatory changes and lipid anomalies by(-)-epigallocatechin-gallate in cigarette smoke-exposed rats[J].Mol Cell Biochem,2011,354(1-2):1-10.
[6] Tsukamoto S,Hirotsu K,Kumazoe M,et al.Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells[J].Biochem J,2012,443(2): 525-534.
[7] Kuhn DJ,Burns AC,Kazi A,et al.Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor[J].Biochim Biophys Acta,2004,1682(1-3):1-10.
[8] Miura Y,Chiba T,Tomita I,et al.Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice[J].J Nutr,2001,131(1):27-32.
[9] Hodgson JM,Croft KD.Tea flavonoids and cardiovascular health[J].Mol Aspects Med,2010,31(6):495-502.
[10] Ramesh E,Elanchezhian R,Sakthivel M,et al.Epigallocatechin gallate improves serum lipid profile and erythrocyte and cardiac tissue antioxidant parameters in Wistar rats fed an atherogenic diet[J].Fundam Clin Pharmacol,2008,22(3):275-284.
[11] Geleijnse JM,Launer LJ,van der Kuip DA,et al.Inverse association of tea and flavoid intakes with incident myocardial infarction:the Rotterdam Study[J].Am J Clin Nutr,2002,75(5):880-886.
[12] Devika PT,Mainzen Prince PS.(-)-Epigallocatechin gallate(EGCG)prevents isoprenaline-induced cardiac marker enzymes and membrane-bound ATPases[J].J Pharm Pharmacol,2008,60(1):125-133.
[13] Devika PT,Stanely Mainzen Prince P.Preventive effect of(-)epigallocatechin gallate on lipids,lipoproteins,and enzymes of lipid metabolism in isoproterenol-induced myocardial infarction in rats[J].J Biochem Mol Toxicol,2009,23(6):387-393.
[14] Devika PT,Stanely Mainzen Prince P.(-)Epigallocatechin-gallate(EGCG)prevents mitochondrial damage in isoproterenol-induced cardiac toxicity in albino Wistar rats:a transmission electron microscopic and in vitro study[J].Pharmacol Res,2008,57(5):351-357.
[15] Dudka J,Jodynis-Liebert J,Korobowicz E,et al.Activity of NADPH-cytochrome P-450 reductase of the human heart,liver and lungs in the presence of(-)-epigallocatechin gallate,quercetin and resveratrol:an in vitro study[J].Basic Clin Pharmacol Toxicol,2005,97 (2):74-79.
[16] Devika PT,Stanely Mainzen Prince P.Protective effect of(-)-epigallocatechin-gallate(EGCG)on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats:a histopathological study[J].Biomed Pharmacother,2008,62(10):701-708.
[17] Lim SH,Kim HS,Kim YK,et al.The functional effect of epigallocatechin gallate on ischemic stroke in rats[J].Acta Neurobiol Exp(Wars),2010,70(1):40-46.
[18] 李 虹,王 蕾,肖傳實(shí),等.不同周齡自發(fā)性高血壓大鼠血管內(nèi)皮功能及氧化應(yīng)激的變化研究[J].中國(guó)病理生理雜志,2011,27(1):179-182.
[19] Li Z,Wang Y,Vanhoutte PM.Epigallocatechin gallate elicits contractions of the isolated aorta of the aged spontaneously hypertensive rat[J].Basic Clin Pharmacol Toxicol,2011,109(1):47-55.
[20] Devika PT,Prince PS.Preventive effect of(-)epigallocatechin-gallate(EGCG)on lysosomal enzymes in heart and subcellular fractions in isoproterenol-induced myocardial infarcted Wistar rats[J].Chem Biol Interact,2008,172(3):245-252.
[21] Liou YM,Kuo SC,Hsieh SR.Differential effects of a green tea-derived polyphenol(-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca2+sensitivity of cardiac and skeletal muscle[J].Pflugers Arch,2008,456(5):787-800.
[22] 胡宗禮,黃曉萍,袁學(xué)文.表沒(méi)食子兒茶素沒(méi)食子酸醋對(duì)缺血再灌注心肌細(xì)胞凋亡的作用[J].中國(guó)病理生理雜志,2005,21(10):1923-1926.
[23] Aneja R,Hake PW,Burroughs TJ,et al.Epigallocatechin,a green tea polyphenol,attenuates myocardial ischemia reperfusion injury in rats[J].Mol Med,2004,10(1-6):55-62.
[24] Al-Maghrebi M,Renno WM,Al-Ajmi N.Epigallocatechin-3-gallate inhibits apoptosis and protects testicular seminiferous tubules from ischemia/reperfusioninduced inflammation[J].Biochem Biophys Res Commun,2012,420(2):434-439.
[25] Song DK,Jang Y,Kim JH,et al.Polyphenol(-)-epigallocatechin gallate during ischemia limits infarct size via mitochondrial KATPchannel activation in isolated rat hearts[J].J Korean Med Sci,2010,25(3):380-386.
[26] 葉錦霞,王 嵐,梁日欣,等.兒茶素單體對(duì)心肌細(xì)胞缺氧再給氧損傷的保護(hù)作用及機(jī)制研究[J].中國(guó)中藥雜志,2008,33(7):801-805.
[27] 張超英,李曉惠.容量負(fù)荷與心室結(jié)構(gòu)重建的研究進(jìn)展[J].中國(guó)病理生理雜志,2011,27(2):403-406,416.
[28] Hao J,Kim CH,Ha TS,et al.Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats[J].J Vet Sci,2007,8(2):121-129.
[29] Sheng R,Gu ZL,Xie ML,et al.EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats[J].Acta Pharmacol Sin,2007,28(2): 191-201.
[30] Yu L,Zhao Y,F(xiàn)an Y,et al.Epigallocatechin-3 gallate,a green tea catechin,attenuated the downregulation of the cardiac gap junction induced by high glucose in neonatal rat cardiomyocytes[J].Cell Physiol Biochem,2010,26(3):403-412.
[31] Tadano N,Du CK,Yumoto F,et al.Biological actions of green tea catechins on cardiac troponin C[J].Br J Pharmacol,2010,161(5):1034-1043.
[32] Sheng R,Gu ZL,Xie ML,et al.EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy[J].Planta Med,2009,75(2):113-120.
[33] Li HL,Huang Y,Zhang CN,et al.Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and-independent signal pathways[J].Free Radic Biol Med,2006,40 (10):1756-1775.
[34] Campos-Toimil M,Orallo F.Effects of(-)-epigallocatechin-3-gallate in Ca2+-permeable non-selective cation channels and voltage-operated Ca2+channels in vascular smooth muscle cells[J].Life Sci,2007,80 (23):2147-2153.
[35] Wei H,Meng Z.Epigallocatechin-3-gallate protects Na+channels in rat ventricular myocytes against sulfite[J].Cardiovasc Toxicol,2010,10(3):166-173.
[36] Lorenz M,Hellige N,Rieder P,et al.Positive inotropic effects of epigallocatechin-3-gallate(EGCG)involve activation of Na+/H+and Na+/Ca2+exchangers[J].Eur J Heart Fail,2008,10(5):439-445.
[37] Robertson IM,Li MX,Sykes BD.Solution structure of human cardiac troponin C in complex with the green tea polyphenol,(-)-epigallocatechin 3-gallate[J].J Biol Chem,2009,284(34):23012-23023.
[38] Yang J,Han Y,Sun H,et al.(-)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings[J].J Agric Food Chem,2011,59 (21):11483-11490.
[39] Wolf G,Wenzel UO.Angiotensin II and cell cycle regulation[J].Hypertension,2004,43(4):693-698.