范齊文,吳文娟
同濟(jì)大學(xué)附屬東方醫(yī)院醫(yī)學(xué)檢驗(yàn)科,上海 200120
被稱為白色瘟疫的結(jié)核病(tuberculosis)是伴隨人類歷史最長(zhǎng)的疾病之一,也是由單一致病菌引起死亡最多的疾病。據(jù)世界衛(wèi)生組織(World Health Organization,WHO)最新報(bào)告[1],2010年有大約880萬(wàn)例新發(fā)結(jié)核病,145萬(wàn)例死于該病。加快結(jié)核病診斷速度、提高檢測(cè)的敏感度和特異度,是控制結(jié)核病疫情的關(guān)鍵。結(jié)核病診斷的理想方法應(yīng)是快速、特異、敏感,廣大地區(qū)和人群可以接受,能區(qū)別活動(dòng)性與潛伏性結(jié)核病,能辨別結(jié)核分枝桿菌(Mycobacteriumtuberculosis)和環(huán)境中的非結(jié)核分枝桿菌及卡介苗(bacillus Calmette-Guerin, BCG),且不需昂貴儀器和專業(yè)培訓(xùn)[2]的方法。WHO[3]提出了結(jié)核病診斷研究努力的方向:通過(guò)提高檢測(cè)的敏感度和特異度達(dá)到簡(jiǎn)化和改進(jìn)結(jié)核病(包括痰涂片陰性結(jié)核病、肺外結(jié)核病及小兒結(jié)核病)的診斷;建立并推廣簡(jiǎn)單、準(zhǔn)確、安全、廉價(jià)并能快速得到結(jié)果的即時(shí)檢驗(yàn);能更有效地監(jiān)測(cè)結(jié)核病的治療;能快速檢測(cè)出是否對(duì)一線和二線抗結(jié)核藥物耐藥;能可靠鑒別潛伏感染并能評(píng)估發(fā)展為活動(dòng)性結(jié)核病的風(fēng)險(xiǎn),以實(shí)施合理的預(yù)防性治療?,F(xiàn)就近年來(lái)WHO和美國(guó)食品藥物管理局(Food and Drug Administration,F(xiàn)DA)認(rèn)可的幾種診斷試劑及新近發(fā)展的有應(yīng)用前景的診斷方法作一綜述。
1993年,美國(guó)疾病預(yù)防控制中心(Centers for Disease Control and Prevention,CDC)提出結(jié)核病診斷標(biāo)準(zhǔn),推動(dòng)了結(jié)核分枝桿菌培養(yǎng)自動(dòng)化技術(shù)的發(fā)展,第1個(gè)自動(dòng)化診斷結(jié)核分枝桿菌感染的是半自動(dòng)BACTEC 460系統(tǒng)。但由于該系統(tǒng)是通過(guò)檢測(cè)輻射信號(hào)實(shí)現(xiàn)結(jié)核病診斷,故存在一定的輻射污染;并且由于有手工操作,因此增加了操作人員感染及標(biāo)本交叉污染的風(fēng)險(xiǎn)。隨后,一些非輻射結(jié)核分枝桿菌檢測(cè)系統(tǒng)相繼面世,如BacT/Alert 3D、ESP Trek、MGIT 960系統(tǒng)等[4],其中BacT/Alert 3D、MGIT 960系統(tǒng)獲得WHO認(rèn)可[3]。
1.1.1BacT/Alert3D系統(tǒng)BacT/Alert 3D系統(tǒng)是由Organon Teknika 公司研制生產(chǎn)的,為全自動(dòng)結(jié)核液體培養(yǎng)和檢測(cè)系統(tǒng)。其原理如下:該系統(tǒng)中有許多裝有肉湯培養(yǎng)基的小瓶,當(dāng)有結(jié)核分枝桿菌生長(zhǎng)時(shí)會(huì)釋放大量CO2,從而降低培養(yǎng)基pH值,使瓶底的傳感器顏色發(fā)生變化,該變化會(huì)被系統(tǒng)內(nèi)的反射元件捕捉檢測(cè);BacT/Alert 3D 系統(tǒng)每10 min自動(dòng)讀取1次結(jié)果,讀取的數(shù)據(jù)會(huì)自動(dòng)轉(zhuǎn)換并存儲(chǔ)到數(shù)據(jù)處理系統(tǒng)。此系統(tǒng)密閉,樣本接種后沒(méi)有交叉污染,無(wú)放射性[5]。
與固體培養(yǎng)基相比,BacT/Alert 3D系統(tǒng)大大加快了結(jié)核分枝桿菌分離的速度,縮短了診斷時(shí)間[6]。除能快速?gòu)呐R床標(biāo)本中分離出結(jié)核分枝桿菌外,BacT/Alert 3D系統(tǒng)還可進(jìn)行抗結(jié)核藥物的藥敏試驗(yàn)。有相關(guān)文獻(xiàn)[7,8]對(duì)該系統(tǒng)的耐藥檢測(cè)與BACTEC 460系統(tǒng)進(jìn)行對(duì)比,結(jié)果顯示其一致性無(wú)明顯差異,表明BacT/Alert 3D系統(tǒng)可作為快速、簡(jiǎn)便檢測(cè)結(jié)核分枝桿菌及其耐藥性的先進(jìn)技術(shù)。
1.1.2MGIT960系統(tǒng)MGIT 960系統(tǒng)是美國(guó)BD公司于1996年研制的全自動(dòng)快速結(jié)核分枝桿菌培養(yǎng)鑒定藥敏儀。該儀器[9]利用熒光檢測(cè)實(shí)現(xiàn)結(jié)核分枝桿菌的鑒定和分離:在MGIT培養(yǎng)管底部包埋了釕的五水合物氧傳感器,有結(jié)核分枝桿菌生長(zhǎng)時(shí)會(huì)消耗管內(nèi)氧,氧濃度降低引發(fā)熒光產(chǎn)生。MGIT 960系統(tǒng)熒光強(qiáng)度記憶探測(cè)器每隔60 min監(jiān)測(cè)培養(yǎng)管內(nèi)的熒光強(qiáng)度,通過(guò)處理得出陽(yáng)性結(jié)果。MGIT 960 可在1~2周內(nèi)獲得結(jié)果,大大縮短了檢測(cè)周期[9,10]。
隨著結(jié)核分枝桿菌耐藥問(wèn)題的日益加劇,其耐藥性檢測(cè)對(duì)結(jié)核病的治療顯得尤為重要。近年來(lái)有相當(dāng)多文獻(xiàn)[11-14]報(bào)道用MGIT 960系統(tǒng)評(píng)估結(jié)核分枝桿菌對(duì)一線和二線抗結(jié)核藥物的敏感性及特異性,并建立了一線和二線抗結(jié)核藥物的臨界濃度,從而更好地指導(dǎo)臨床用藥治療。2010年WHO推薦使用液體自動(dòng)培養(yǎng)法作為二線藥物藥敏試驗(yàn)的金標(biāo)準(zhǔn)。
MGIT 960系統(tǒng)雖然具有自動(dòng)化程度高、無(wú)輻射危害、陽(yáng)性分離率高、檢測(cè)所需時(shí)間減少,且可進(jìn)行藥敏試驗(yàn)等優(yōu)點(diǎn),但價(jià)格昂貴,在結(jié)核病高發(fā)的發(fā)展中國(guó)家難以廣泛應(yīng)用,因此限制了其推廣。
結(jié)核分枝桿菌耐藥問(wèn)題已成為控制結(jié)核病的關(guān)鍵,耐多藥(multidrug-resistant, MDR)及廣泛耐藥(extensively drug-resistant, XDR)結(jié)核病患者日益增多,這無(wú)疑給結(jié)核病診斷帶來(lái)挑戰(zhàn)。由于結(jié)核分枝桿菌耐異煙肼[15,16]、利福平[17,18]、鏈霉素[19]及喹諾酮類藥物[20]的分子機(jī)制于20世紀(jì)末已基本闡明,因此一系列基于分子雜交的結(jié)核分枝桿菌耐藥檢測(cè)技術(shù)應(yīng)運(yùn)而生,如GenoType?MTBDRplus、GenoType?MTBDRsl及INNO-LiPA Rif.TB等方法。
1.2.1INNO-LiPARif.TB方法結(jié)核分枝桿菌對(duì)利福平耐藥是由于編碼RNA聚合酶β亞基的基因(rpoB)發(fā)生點(diǎn)突變、小片段插入或缺失造成的。比利時(shí)的de Beenhouwer等[21]最初利用反向斑點(diǎn)雜交與rpoB基因不同區(qū)域進(jìn)行雜交,然后根據(jù)雜交條帶判讀結(jié)果以檢測(cè)耐利福平結(jié)核分枝桿菌。后來(lái)此技術(shù)演變成商業(yè)化應(yīng)用的既能分辨結(jié)核與非結(jié)核分枝桿菌群,又能同時(shí)檢測(cè)利福平耐藥的INNO-LiPA Rif.TB 技術(shù)。固定在膜上的5種野生型探針(S1~S5)部分重疊覆蓋整個(gè)rpoB基因,并與野生型的基因序列發(fā)生特異雜交反應(yīng),這些探針能檢測(cè)突變的存在,但不能提供具體的突變位點(diǎn);另外4種突變型探針(R)能與4類最常見(jiàn)的突變序列雜交。如果是利福平敏感菌株,會(huì)與野生型探針發(fā)生雜交而產(chǎn)生相應(yīng)的陽(yáng)性信號(hào)條帶;如果是利福平耐藥菌株,相應(yīng)地會(huì)在至少1個(gè)耐藥型探針條帶上出現(xiàn)陽(yáng)性信號(hào)。
有相關(guān)文獻(xiàn)[22]報(bào)道,用INNO-LiPA Rif.TB方法檢測(cè)培養(yǎng)利福平耐藥結(jié)核分枝桿菌的敏感度達(dá)96.2%。從技術(shù)上講,該法只能檢測(cè)耐利福平菌株,但在結(jié)核病高發(fā)國(guó)家,高達(dá)90%的耐利福平分離菌株同時(shí)也對(duì)異煙肼耐藥[23]。利福平扮演著耐多藥結(jié)核分枝桿菌檢測(cè)靶標(biāo)的代言人,故INNO-LiPA Rif.TB可用于耐多藥結(jié)核病的初步篩查。
1.2.2GenoType?MTBDRplus及GenoType?MTBDRsl方法GenoType?MTBDRplus及GenoType?MTBDRsl由德國(guó)Hain Lifescience公司生產(chǎn),分別檢測(cè)結(jié)核分枝桿菌對(duì)異煙肼、利福平和乙胺丁醇、氨基糖苷類及喹諾酮類藥物的耐藥性,其原理與INNO-LiPA Rif.TB相似,都是將多重聚合酶鏈反應(yīng)(polymerase chain reaction,PCR)結(jié)合反向雜交技術(shù),與固定在硝化纖維膜條帶上的特異基因雜交,最后根據(jù)顯色條帶判斷是否耐藥。這2種方法可通過(guò)雜交條帶的顯色判斷突變位點(diǎn)所在。
應(yīng)用該技術(shù)檢測(cè)結(jié)核分枝桿菌的耐藥性,可在6 h內(nèi)獲得結(jié)果,真正實(shí)現(xiàn)了結(jié)核分枝桿菌的快速檢測(cè)。目前已有大量文獻(xiàn)對(duì)其進(jìn)行了評(píng)價(jià),檢測(cè)效果幾乎可與表型結(jié)果相媲美[24-28]。由此可見(jiàn),GenoType?MTBDR技術(shù)是一種快速、簡(jiǎn)便、有效檢測(cè)耐多藥結(jié)核分枝桿菌的工具。GenoType?MTBDRplus在2012年推出了GenoType MTBDRplus 2.0,更新的試劑盒可直接用來(lái)檢測(cè)痰涂片陽(yáng)性和痰涂片陰性標(biāo)本,實(shí)現(xiàn)了耐多藥結(jié)核分枝桿菌的篩檢。同時(shí)在操作上更加人性化,從原來(lái)需使用者配置PCR反應(yīng)體系變?yōu)橹苯酉蝮w系中加入模板即可。GenoType MTBDRplus 2.0的推出,必將使耐藥結(jié)核病的篩查更加快速、準(zhǔn)確。
MPB64免疫色譜法(MPB64-immunochromatographic assay,MPB64-ICA)是一種快速、簡(jiǎn)便鑒別結(jié)核與非結(jié)核分枝桿菌的方法,其原理是通過(guò)抗原-抗體反應(yīng)檢測(cè)結(jié)核分枝桿菌在液體培養(yǎng)時(shí)分泌到培養(yǎng)基中的MPB64抗原。MPB64又稱MPT64,只存在于5種BCG亞株及結(jié)核分枝桿菌復(fù)合群的培養(yǎng)濾液中,類似于純化蛋白衍生物(purified protein derivative,PPD),能誘發(fā)強(qiáng)烈的遲發(fā)型超敏反應(yīng)[29,30]。針對(duì)以上特點(diǎn),一種基于抗MPT64單克隆抗體的試劑盒Capilia TB被應(yīng)用于結(jié)核分枝桿菌的分群鑒定。該試劑盒結(jié)構(gòu)簡(jiǎn)單,是將與膠體金結(jié)合的抗MPT64鼠單克隆抗體固定在硝化纖維膜上,檢測(cè)MPT64抗原15 min即可報(bào)告結(jié)果。傳統(tǒng)的分枝桿菌分型要培養(yǎng)陽(yáng)性后做相關(guān)生化實(shí)驗(yàn),最終獲得結(jié)果需幾天至幾周,而Capilia TB試劑盒只需在液體培養(yǎng)或固體培養(yǎng)陽(yáng)性后當(dāng)天得到結(jié)果,快速、簡(jiǎn)便,為后續(xù)臨床治療節(jié)省大量時(shí)間。
Gen-Probe是由美國(guó)San Diego基因探針公司研制并獲FDA認(rèn)可的結(jié)核分枝桿菌分子生物學(xué)診斷產(chǎn)品,可同時(shí)檢測(cè)抗酸染色陽(yáng)性/陰性的痰液標(biāo)本。Gen-Probe分子生物學(xué)診斷以rRNA為靶物,根據(jù)需要可采用Amplified MTD?Test直接擴(kuò)增試劑盒或AccuProbe探針檢測(cè)試劑盒,完成結(jié)核與非結(jié)核分枝桿菌檢測(cè)、鑒定。Amplified MTD?Test 以反轉(zhuǎn)錄擴(kuò)增技術(shù)為主導(dǎo),以rRNA為擴(kuò)增靶物,通過(guò)30 min快速等溫?cái)U(kuò)增,2.5 h內(nèi)完成結(jié)核分枝桿菌檢測(cè)全程操作。AccuProbe結(jié)合DNA探針的高靈敏度及特異度,采用雜交保護(hù)法,以化學(xué)發(fā)光信號(hào)檢測(cè)特異種屬DNA,1 h內(nèi)以單一菌落鑒定分枝桿菌種屬,特異度、靈敏度接近100%。美國(guó)CDC推薦DNA探針為鑒定結(jié)核分枝桿菌的標(biāo)準(zhǔn)方法。
羅氏AMPLICOR?MTB試驗(yàn)利用PCR擴(kuò)增分枝桿菌16S RNA中一段長(zhǎng)584 bp的片段,該片段存在于所有分枝桿菌內(nèi),再用針對(duì)結(jié)核分枝桿菌復(fù)合群的DNA探針與擴(kuò)增子雜交進(jìn)而檢測(cè)。特殊的是,該試劑盒將DNA探針包被在微孔板上,利用生物素-辣根過(guò)氧化物酶-四甲基聯(lián)苯胺底物系統(tǒng)反應(yīng)顯色,加入氫硫酸終止反應(yīng)后在450 nm波長(zhǎng)讀取吸光度(A)值。A≥0.35判為陽(yáng)性。
AMPLICOR?MTB試驗(yàn)通過(guò)在擴(kuò)增體系內(nèi)用dUTP替代dTTP及加入尿嘧啶-N-轉(zhuǎn)葡萄糖激酶(AmpErase?)來(lái)克服PCR污染[31],可為臨床、實(shí)驗(yàn)室及感染控制部門提供快速、有價(jià)值的結(jié)核病診斷和控制所需的臨床相關(guān)信息。此法操作簡(jiǎn)便,約6.5 h即可獲結(jié)果。有文獻(xiàn)[32]報(bào)道,用AMPLICOR?MTB檢測(cè)肺結(jié)核患者痰涂片陰性及肺外結(jié)核病的敏感度分別為88%、50%,特異度和陽(yáng)性預(yù)測(cè)值均為100%。美國(guó)FDA認(rèn)可其用于檢測(cè)抗酸染色陽(yáng)性的痰液標(biāo)本。
潛伏性結(jié)核病感染的診斷曾依靠結(jié)核菌素皮膚試驗(yàn)(tuberculin skin test,TST),但其敏感度和特異度都較低,且不能區(qū)分BCG接種干擾,特別是對(duì)兒童、老年人及免疫系統(tǒng)受抑制人群,檢測(cè)結(jié)果更不盡如人意[33]。近年來(lái)出現(xiàn)的以檢測(cè)CD4+T細(xì)胞分泌的γ干擾素為原理的T-SPOT.TB檢測(cè)試劑盒和QuantiFeron-Gold test (QFT) 試劑盒,能高效檢測(cè)潛伏結(jié)核分枝桿菌感染和活動(dòng)性結(jié)核病,其敏感度和特異度都顯著高于TST。這2種試劑盒都是利用結(jié)核分枝桿菌RD1區(qū)域編碼的6 kDa早期分泌抗原靶分子蛋白(6 kDa early secretory antigenic target,Esat-6)和10 kDa培養(yǎng)濾液蛋白(10 kDa culture filtrate protein,Cfp10)的肽段作為特異性抗原,刺激T細(xì)胞釋放γ干擾素[34],再分別通過(guò)酶聯(lián)免疫斑點(diǎn)(enzyme-linked immunospot,ELISPOT)試驗(yàn)和全血酶聯(lián)免疫吸附試驗(yàn)(enzyme-linked immunosorbent assay,ELISA)檢測(cè)γ干擾素水平來(lái)判斷是否存在結(jié)核分枝桿菌感染。與TST相比,這2種方法不需要進(jìn)行患者隨訪,24 h內(nèi)即可獲結(jié)果,并且不會(huì)像TST因反復(fù)實(shí)驗(yàn)而影響結(jié)果。T-SPOT.TB和QFT試劑盒目前均已獲美國(guó)FDA批準(zhǔn)用于檢測(cè)臨床標(biāo)本。對(duì)這2種方法的比較,有文獻(xiàn)報(bào)道T-SPOT.TB法較QFT法更靈敏[35],但兩者均不能區(qū)別潛伏感染與活動(dòng)性結(jié)核病。
眾所周知,噬菌體感染宿主細(xì)胞后在細(xì)胞內(nèi)擴(kuò)增繁殖,達(dá)到一定量后將宿主細(xì)胞裂解并釋放到細(xì)胞外,繼續(xù)感染其他宿主細(xì)胞。有研究人員[36]利用分枝桿菌噬菌體D29感染結(jié)核分枝桿菌,受感染的結(jié)核分枝桿菌因噬菌體的擴(kuò)增破壞而裂解。隨后向培養(yǎng)液中加入快速生長(zhǎng)的恥垢分枝桿菌并傾倒成固體培養(yǎng)基平板,噬菌體隨恥垢分枝桿菌生長(zhǎng)不斷重復(fù)“感染—復(fù)制—裂解”過(guò)程,最終在平板上形成噬菌斑,根據(jù)噬菌斑數(shù)量可推算出最初的結(jié)核分枝桿菌數(shù)量。在此研究基礎(chǔ)上,英國(guó)Biotec Laboratories Limited公司研發(fā)出FASTPlaque TBTM試劑盒,用于檢測(cè)結(jié)核分枝桿菌及其對(duì)利福平的耐藥性。第1代FASTPlaque-RIFTM及FASTPlaque-MDRiTM只能應(yīng)用于結(jié)核病臨床標(biāo)本的分離株,如今的FASTPlaque-ResponseTM可用來(lái)直接檢測(cè)臨床標(biāo)本[37]。該法檢測(cè)結(jié)核分枝桿菌周期短,48 h即可獲結(jié)果;操作簡(jiǎn)便,不需特殊儀器,適用于一般實(shí)驗(yàn)室。
用普通顯微鏡觀察抗酸染色后的痰標(biāo)本是結(jié)核病診斷的標(biāo)準(zhǔn)程序,但其敏感度和特異度都較低,熒光顯微鏡的應(yīng)用大大提高了陽(yáng)性檢出率,且簡(jiǎn)便、快捷。但熒光顯微鏡也存在一些弊端,如汞蒸氣短弧光燈的使用壽命較短(200~300 h),且供應(yīng)渠道較困難,需長(zhǎng)時(shí)間預(yù)熱和降溫,需經(jīng)常維護(hù)保養(yǎng),需暗室等,這些在不同程度上限制了其應(yīng)用,尤其是在結(jié)核病高發(fā)的發(fā)展中國(guó)家[38]。2007年,Lawrenceville公司推出了Lumin發(fā)光二極管(light emitting diode, LED),只需將其替換普通光學(xué)顯微鏡的目鏡就相當(dāng)于一臺(tái)熒光顯微鏡,組裝的“熒光顯微鏡”不但克服了上述所有不足,還具有一些新的優(yōu)點(diǎn):LED的使用壽命可達(dá)30 000 h;使用電池就能維持正常工作;不產(chǎn)生紫外光而保護(hù)操作者;分辨及聚焦能力更加強(qiáng)大等[38,39]。根據(jù)WHO建議,普通顯微鏡檢測(cè)結(jié)核分枝桿菌時(shí)需放大1 000倍,至少觀察100個(gè)視野(通常為300個(gè)),而LED熒光顯微鏡只需在放大400倍觀察50個(gè)視野即可,既節(jié)省時(shí)間又大大減少工作量。由于目前對(duì)LED報(bào)道的文章較少,用其檢測(cè)結(jié)核分枝桿菌的敏感度和特異度還有待更多實(shí)驗(yàn)驗(yàn)證。
最近由Cepheid公司研發(fā)推出Xpert?MTB/RIF系統(tǒng),應(yīng)用于結(jié)核病診斷及耐藥檢測(cè)。該系統(tǒng)集眾多功能于一身[40-43]:不僅可直接從臨床標(biāo)本中診斷結(jié)核分枝桿菌的存在,還可同時(shí)檢測(cè)結(jié)核分枝桿菌對(duì)利福平的耐藥性,從標(biāo)本處理、DNA提取、半套式實(shí)時(shí)PCR擴(kuò)增結(jié)核分枝桿菌復(fù)合群耐利福平基因rpoB到結(jié)果分析,都由Xpert?MTB/RIF系統(tǒng)完成,需要手工操作的只是將標(biāo)本加入每個(gè)一次性塑料囊筒,完全實(shí)現(xiàn)了結(jié)核病診斷的自動(dòng)化。從加入標(biāo)本到獲得結(jié)果全程只需2 h,真正達(dá)到結(jié)核病診斷簡(jiǎn)便、快捷的要求。Xpert?MTB/RIF系統(tǒng)通過(guò)擴(kuò)增結(jié)核分枝桿菌rpoB基因中長(zhǎng)為81 bp的耐藥決定區(qū),然后對(duì)PCR產(chǎn)物進(jìn)行探針雜交來(lái)判斷是否對(duì)利福平耐藥,大約95%利福平耐藥株的突變基因都位于該耐藥決定區(qū)[43]。該系統(tǒng)主要由2部分組成[43]。①Xpert?MTB/RIF塑料囊筒:該囊筒內(nèi)包含處理后的液態(tài)臨床標(biāo)本、PCR緩沖液及低壓凍干的實(shí)時(shí)PCR反應(yīng)試劑;②GeneXpert 儀器:該儀器控制囊筒內(nèi)的流體學(xué)并進(jìn)行實(shí)時(shí)PCR分析。多篇文獻(xiàn)已對(duì)該系統(tǒng)進(jìn)行了評(píng)價(jià),其檢測(cè)結(jié)核分枝桿菌及對(duì)利福平耐藥的敏感度和特異度均達(dá)到98%以上,即使涂片陰性培養(yǎng)陽(yáng)性的標(biāo)本檢測(cè)也達(dá)到72.5%[41]。2010年,WHO[44]推薦應(yīng)將Xpert?MTB/RIF作為疑似耐藥及人類免疫缺陷病毒(human immunodeficiency virus,HIV)相關(guān)結(jié)核病患者的首選篩查方法。
Xpert?MTB/RIF系統(tǒng)一經(jīng)面世,因其顯著的優(yōu)點(diǎn)如操作簡(jiǎn)單、無(wú)需太多培訓(xùn)、不易造成交叉污染、對(duì)生物安全性要求低、對(duì)涂片陰性肺結(jié)核患者的敏感度高、能快速得出結(jié)果等引起了眾多研究人員的關(guān)注。但該系統(tǒng)檢測(cè)費(fèi)用相當(dāng)昂貴,目前難以在我國(guó)推廣應(yīng)用。如能在經(jīng)濟(jì)欠發(fā)達(dá)的結(jié)核病高發(fā)國(guó)家和地區(qū)普及使用,必將給結(jié)核病的診斷帶來(lái)革命性的突破。
現(xiàn)有的各結(jié)核病診斷技術(shù)相互之間并沒(méi)有任何相斥現(xiàn)象。如分子線性探針試驗(yàn)、快速藥敏試驗(yàn)等只適用于抗酸桿菌涂片陽(yáng)性樣本檢測(cè),而對(duì)涂片陰性樣本,仍需開(kāi)展常規(guī)培養(yǎng)。在現(xiàn)有的固體培養(yǎng)及藥敏試驗(yàn)基礎(chǔ)上,WHO將液體培養(yǎng)及分子線性探針試驗(yàn)作為檢測(cè)二線抗結(jié)核藥物敏感性的國(guó)際金標(biāo)準(zhǔn)。基于分子檢測(cè)系統(tǒng)具有高敏感度、特異度,簡(jiǎn)便快速,但檢測(cè)費(fèi)用昂貴的特點(diǎn),結(jié)核病診斷的突破口應(yīng)是如何降低檢測(cè)成本而達(dá)到檢測(cè)方法推廣普及。另外,結(jié)核病診斷操作的規(guī)范化、儀器試劑的標(biāo)準(zhǔn)化也是需解決的問(wèn)題。
[1] WHO. Global tuberculosis control: WHO report 2011[R/OL]. 2011. http://www.who.int/tb/publications/global_report/en.
[2] Rosenkrands I, Aagaard C, Weldingh K, Brock I, Dziegiel MH, Singh M, Hoff S, Ravn P, Andersen P. Identification of Rv0222 from RD4 as a novel serodiagnostic target for tuberculosis [J]. Tuberculosis (Edinb), 2008, 88(4): 335-343.
[3] WHO. Pathways to better diagnostics for tuberculosis: a blueprint for the development of TB diagnostics by the new diagnostics working group of the STOP TB Partnership. 2009 [EB/OL]. http://www.who.int/tdr/publications/tdr-research-publications/tb-blueprint/en/index.html.
[4] Nair D, Capoor MR, Rawat D, Srivastava L, Aggarwal P. Standardization of first- and second-line antitubercular susceptibility testing using BacT Alert 3D System: a report from a tertiary care centre in India [J]. Braz J Infect Dis, 2009, 13(6): 422-426.
[5] Werngren J, Klintz L, Hoffner SE. Evaluation of a novel kit for use with the BacT/ALERT 3D system for drug susceptibility testing of Mycobacterium tuberculosis [J]. J Clin Microbiol, 2006, 44(6): 2130-2132.
[6] Carricajo A, Fonsale N, Vautrin AC, Aubert G. Evaluation of BacT/Alert 3D liquid culture system for recovery of mycobacteria from clinical specimens using sodium dodecyl (lauryl) sulfate-NaOH decontamination [J]. J Clin Microbiol, 2001, 39(10): 3799-3800.
[7] Bemer P, Bodmer T, Munzinger J, Perrin M, Vincent V, Drugeon H. Multicenter evaluation of the MB/BACT system for susceptibility testing of Mycobacterium tuberculosis [J]. J Clin Microbiol, 2004, 42(3): 1030-1034.
[8] Brunello F, Fontana R. Reliability of the MB/BacT system for testing susceptibility of Mycobacterium tuberculosis complex isolates to antituberculous drugs [J]. J Clin Microbiol, 2000, 38(2): 872-873.
[9] Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study [J]. J Clin Microbiol, 1999, 37(11): 3578-3582.
[10] Hanna BA, Ebrahimzadeh A, Elliott LB, Morgan MA, Novak SM, Rusch-Gerdes S, Acio M, Dunbar DF, Holmes TM, Rexer CH, Savthyakumar C, Vannier AM. Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria [J]. J Clin Microbiol, 1999, 37(3): 748-752.
[11] Krüüner A, Yates MD, Drobniewski FA. Evaluation of MGIT 960-based antimicrobial testing and determination of critical concentrations of first- and second-line antimicrobial drugs with drug-resistant clinical strains of Mycobacterium tuberculosis [J]. J Clin Microbiol, 2006, 44(3): 811-818.
[12] Rusch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials [J]. J Clin Microbiol, 2006, 44(3): 688-692.
[13] Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, Mehta A. Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs using the Bactec MGIT 960 System [J]. Int J Tuberc Lung Dis, 2008, 12(12): 1449-1455.
[14] Lin SY, Desmond E, Bonato D, Gross W, Siddiqi S. Multicenter evaluation of Bactec MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex [J]. J Clin Microbiol, 2009, 47(11): 3630-3634.
[15] Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis [J]. Nature, 1992, 358(6387): 591-593.
[16] Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis [J]. Science, 1994, 263(5144): 227-230.
[17] Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis [J]. Lancet, 1993, 341(8846): 647-650.
[18] Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis [J]. Antimicrob Agents Chemother, 1993, 37(10): 2054-2058.
[19] Finken M, Kirschner P, Meier A, Wrede A, B?ttger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot [J]. Mol Microbiol, 1993, 9(6): 1239-1246.
[20] Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations [J]. Antimicrob Agents Chemother, 1994, 38(4): 773-780.
[21] de Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R, Traore H, Portaels F. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay [J]. Tuber Lung Dis, 1995, 76(5): 425-430.
[22] M?kinen J, Marttila HJ, Marjam?ki M, Viljanen MK, Soini H. Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis [J]. J Clin Microbiol, 2006, 44(2): 350-352.
[23] Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights [J]. Clin Microbiol Rev, 1995, 8(4): 496-514.
[24] Hillemann D, Rusch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens [J]. J Clin Microbiol, 2007, 45(8): 2635-2640.
[25] Miotto P, Piana F, Cirillo DM, Migliori GB. Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis [J]. J Clin Microbiol, 2008, 46(1): 393-394.
[26] Jin J, Zhang Y, Fan X, Diao N, Shao L, Wang F, Hu P, Wang S, Weng X, Zhang W. Evaluation of the GenoType?MTBDRplus assay and identification of a rare mutation for improving MDR-TB detection [J]. Int J Tuberc Lung Dis, 2012, 16(4): 521-526.
[27] Lacoma A, Garcia-Sierra N, Prat C, Maldonado J, Ruiz-Manzano J, Haba L, Gavin P, Samper S, Ausina V, Dominguez J. GenoType MTBDRsl for molecular detection of second-drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples [J]. J Clin Mirobiol, 2012, 50(1):30-36.
[28] Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates [J]. J Clin Microbiol, 2010, 48(5):1683-1689.
[29] Harboe M, Nagai S, Patarroyo ME, Torres ML, Ramirez C, Cruz N. Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG [J]. Infect Immun, 1986, 52(1): 293-302.
[30] Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis [J]. Infect Immun, 1991, 59(1): 372-382.
[31] D′Amato RF, Wallman AA, Hochstein LH, Colaninno PM, Scardamaglia M, Ardila E, Ghouri M, Kim K, Patel RC, Miller A. Rapid diagnosis of pulmonary tuberculosis by using Roche AMPLICOR Mycobacterium tuberculosis PCR test [J]. J Clin Microbiol, 1995, 33(7): 1832-1834.
[32] Selman CB, Poggi HM, Román JC, García PC, Lagos ML. Assessment of the Amplicor PCR?for the detection of Mycobacterium tuberculosis in smear negative respiratory and non respiratory specimens: A retrospective analysis [J]. Rev Chilena Infectol, 2009, 26(6): 495-498.
[33] Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test [J]. Clin Infect Dis, 1993, 17 (6):968-975.
[34] Lalvani A, Pathan AA, McShane H, Wilkinson RJ, Latif M, Conlon CP, Pasvol G, Hill AVS. Rapid detection of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells [J]. Am J Respir Crit Care Med, 2001, 163(4): 824-828.
[35] Ferrara G, Losi M, D'Amico R, Roversi P, Piro R, Meacci M, Meccugni B, Dori IM, Andreani A, Bergamini BM, Mussini C, Rumpianesi F, Fabbri LM, Richeldi L. Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study [J]. Lancet, 2006, 367(9519): 1328-1334.
[36] Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis [J]. Nat Med, 1997, 3(4): 465-468.
[37] Minion J, Pai M. Bacteriophage assays for rifampicin resistance detection in Mycobacterium tuberculosis: updated meta-analysis [J]. Int J Tuberc Lung Dis, 2010, 14(8): 941-951.
[38] Trusov A, Bumgarner R, Valijev R, Chestnova R, Talevski S, Vragoterova C, Neeley ES. Comparison of LuminTMLED fluorescent attachment, fluorescent microscopy and Ziehl-Neelsen for AFB diagnosis [J]. Int J Tuberc Lung Dis, 2009, 13(7): 836-841.
[39] Affolabi D, Torrea G, Odoun M, Senou N, Ligali MA, Anagonou S, Van Deun A. Comparison of two LED fluorescence microscopy build-on modules for acid-fast smear microscopy [J]. Int J Tuberc Lung Dis, 2010, 14(2): 160-164.
[40] Banada PP, Sivasubramani SK, Blakemore R, Boehme C, Perkins MD, Fennelly K, Alland D. Containment of bioaerosol infection risk by the Xpert MTB/RIF Assay and its applicability to point-of-care settings [J]. J Clin Microbiol, 2010, 48(10): 3551-3557.
[41] Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. Rapid molecular detection of tuberculosis and rifampin resistance [J]. N Engl J Med, 2010, 363(11): 1005-1015.
[42] Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D. Evaluation of the analytical performance of the Xpert MTB/RIF Assay [J].J Clin Microbiol, 2010, 48(7): 2495-2501.
[43] Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop J, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NTN, Jones-Lopez EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan B, Winn-Deen E, Christel L, Dailey P, Perkins MD, Persing DH, Alland D. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology [J].J Clin Microbiol, 2010, 48(1): 229-237.
[44] WHO. Ripid implementation of the Xpert MTB/RIF diagnostic test. Technical and operational ‘How-to’ practical considerations [EB/OL]. 2011. http://www.who.int/tb/publications/2011/en.