馬草川,王亞平,孫小科,裴瑞昌
(1.天水師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅天水 741001;2.天水市第一中學(xué),甘肅天水 741000)
具有不定位勢(shì)的漸近線性p-Laplacian Dirichlet問(wèn)題
馬草川1,王亞平2,孫小科1,裴瑞昌1
(1.天水師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅天水 741001;2.天水市第一中學(xué),甘肅天水 741000)
利用山路引理及極小作用原理,證明了當(dāng)非線性項(xiàng)在無(wú)窮遠(yuǎn)處滿足一定的漸近線
性條件時(shí),具有不定位勢(shì)的漸近線性p-Laplacian Dirichlet問(wèn)題,存在非平凡解.
非平凡解;漸近線性;Dirichlet問(wèn)題;不定位勢(shì)
近年來(lái),具有不定位勢(shì)問(wèn)題得到了廣泛的研究[1-11],其中文獻(xiàn)[4]考慮了非線性特征值問(wèn)題
其中Ω是RN(N≥1)中的有界光滑區(qū)域,V(x)滿足條件(2),利用山路引理得到問(wèn)題(3)的非凡解存在的如下結(jié)果:
引理1[5]若f:Ω×R→R滿足以下假設(shè):時(shí),問(wèn)題(3)至少有一個(gè)非平凡解.
易知u是問(wèn)題(1)的一個(gè)弱解等價(jià)于I的臨界點(diǎn).
引理2設(shè)e是λ1的非線性特征問(wèn)題(1)的特征函數(shù),并且定理1中條件成立,則當(dāng)
故由極小作用原理知結(jié)論成立.
[1]Amborosetti A,Rabinowitz P H.Variational methods in critical theory and application[J].Funct.Anal., 1973,14:349-381.
[2]Benci V,Rabinowitz P H.Critical point theorems for indefinite functional[J].Invent.Math.,1979,52:241-273.
[3]Smarandache F.Critical Point Theory and Applications[M].上海:上海科學(xué)技術(shù)出版社,1986.
[4]Cuesta M.Eigenvalue problems for the p-Laplacian with indefinite weight[J],Electronic Journal of Differential Equations,2001,33:1-9.
[5]Xuan B J.Existence results for a super linear p-Laplacian equation with indefinite weights[J].Nonlinear Analysis,2003,54:949-958.
[6]Sun J P,Li W T.Multiple positive solutions to second-order Neumann boundary value problems[J].Appl. Math.Comput.,2003,146:187-194.
[7]Gossez J P,Leadi L.Asymmetric elliptic problems in ?n[J].Electronic Journal of Differential Equations, 2006,14:207-222.
[8]Shao Z Q,Hong J X.The eigenvalue problem for the Laplacian equations[J].Acta.Mathematica Scientia, 2007,02:329-337.
[9]Ariasa M,Camposea J,Cuestab M.An asymmetric Neumann problem with weights[J].Nonlinear Analysis, 2008,25:267-280.
[10]Cuesta M,Quoirin H R.A weighted eigenvalue problem for the p-Laplacian plus a potential[J].Nonlinear Differ.Equ.Appl.,2009,16:469-491.
[11]Dumitru M,Viorica V M,Nikolaos S.Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations[J].Monatsh.Math.,2010,159:59-80.
Asymptotically linear p-Laplacian Dirichlet problem with
indefinite weights
Ma Caochuan1,Wang Yaping2,Sun Xiaoke1,Pei Ruichang1
(1.School of Mathematics and Statistics,Tianshui Normal University,Tianshui741001,China; 2.Tianshui No.1 Middle School,Tianshui741000,China)
By using mountain pass and the least action theorems,the existience of nontrivial solution is obtained for a class of asymptotically linear p-Laplacian Dirichlet problem with indefinite weights.
nontrivial solution,asymptotically linear,Dirichlet problem,indefinite weights
O175. 23;O176.3
A
1008-5513(2012)04-0501-06
2011-07-02.
天水師范學(xué)院中青年教師科研資助項(xiàng)目(TSA0937).
馬草川(1981-),碩士,講師,研究方向:偏微分方程.
2010 MSC:34B15,58E05