湯紹輝, 張良鵬, 吳小娟, 張嫚嫚, 王曠靖, 周鴻科, 羅羽宏, 曹明溶△
(暨南大學(xué)附屬第一醫(yī)院 1消化科,2普通外科,廣東 廣州 510632)
1000-4718(2012)09-1633-06
2012-03-22
2012-05-11
廣東省自然科學(xué)基金資助項(xiàng)目(No.9151008901000001);廣東省醫(yī)學(xué)科學(xué)技術(shù)研究基金資助項(xiàng)目(No.A2009367);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(No.11610407)
△通訊作者 Tel:020-38688039; E-mail:xiger66666@163.com
乙型肝炎病毒X蛋白通過(guò)降低P4啟動(dòng)子甲基化水平上調(diào)人IGF-II基因的轉(zhuǎn)錄*
湯紹輝1, 張良鵬1, 吳小娟1, 張嫚嫚1, 王曠靖1, 周鴻科1, 羅羽宏2, 曹明溶2△
(暨南大學(xué)附屬第一醫(yī)院1消化科,2普通外科,廣東 廣州 510632)
目的構(gòu)建穩(wěn)定表達(dá)乙型肝炎病毒X蛋白(HBx)的肝癌細(xì)胞株HepG2-HBx,探討HBx對(duì)胰島素樣生長(zhǎng)因子 II(IGF-II)基因P4啟動(dòng)子甲基化水平及轉(zhuǎn)錄表達(dá)的影響。方法應(yīng)用基因重組技術(shù),構(gòu)建含HBx基因的重組逆轉(zhuǎn)錄病毒載體pBABE-puro-HBx,采用磷酸鈣共沉淀法將其轉(zhuǎn)染293FT包裝細(xì)胞產(chǎn)生逆轉(zhuǎn)錄病毒,感染HepG2肝癌細(xì)胞,采用嘌呤霉素進(jìn)行陽(yáng)性克隆篩選,Western blotting鑒定表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx。采用亞硫酸氫鹽測(cè)序法及實(shí)時(shí)熒光定量RT-PCR檢測(cè)HepG2-HBx細(xì)胞中P4啟動(dòng)子甲基化水平及P4 mRNA表達(dá)水平變化。進(jìn)一步將體外甲基化的人IGF-II基因P4啟動(dòng)子驅(qū)動(dòng)的熒光素酶報(bào)告載體pGL3-P4及含HBx基因的pCMV-tag2B-X質(zhì)粒共轉(zhuǎn)染HepG2肝癌細(xì)胞,采用亞硫酸氫鹽測(cè)序法及雙螢光素酶實(shí)驗(yàn)檢測(cè)pGL3-P4載體上P4啟動(dòng)子甲基化水平及轉(zhuǎn)錄調(diào)控活性變化。結(jié)果(1)經(jīng)Western blotting鑒定,成功構(gòu)建了穩(wěn)定表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx;(2)表達(dá)HBx蛋白的HepG2-HBx細(xì)胞中P4啟動(dòng)子甲基化CpG位點(diǎn)的比例(9.0%)明顯低于對(duì)照細(xì)胞HepG2-control(25.0%)(P<0.01),而其P4 mRNA表達(dá)水平則為對(duì)照細(xì)胞HepG2-control的2.8倍;(3)共轉(zhuǎn)染pCMV-tag2B-X質(zhì)粒的HepG2細(xì)胞中pGL3-P4載體上P4啟動(dòng)子甲基化CpG位點(diǎn)的比例(60.8%)明顯低于共轉(zhuǎn)染對(duì)照質(zhì)粒pCMV-tag2B的HepG2細(xì)胞(84.1%)(P<0.01),而前者P4啟動(dòng)子相對(duì)螢光素酶活性(14.12±0.89)則明顯高于后者(4.61±0.76)(P<0.01)。結(jié)論HBx蛋白可降低IGF-II基因P4啟動(dòng)子甲基化水平,進(jìn)而上調(diào)其轉(zhuǎn)錄表達(dá)。
乙型肝炎病毒X蛋白; 胰島素樣生長(zhǎng)因子II; 啟動(dòng)子; DNA甲基化
人胰島素樣生長(zhǎng)因子II(insulin-like growth factor II,IGF-II)是一種由67個(gè)氨基酸殘基組成的多肽,其基因含9個(gè)外顯子和4個(gè)啟動(dòng)子(P1~P4)。近年我們與其他學(xué)者研究發(fā)現(xiàn),由于P3和P4啟動(dòng)子再激活而導(dǎo)致的IGF-II基因過(guò)表達(dá)與肝細(xì)胞癌的發(fā)生發(fā)展密切相關(guān)[1-2]。P4啟動(dòng)子再激活的機(jī)制可能涉及幾個(gè)方面,其中,我們前期的研究顯示肝癌組織中P4啟動(dòng)子低甲基化可能是其再激活而致IGF-II大量表達(dá)的機(jī)制之一[3]。但是,引起P4啟動(dòng)子低甲基化的原因及機(jī)制尚不明確。
乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)在肝細(xì)胞癌的發(fā)生中具有重要作用[4],但其致癌機(jī)制尚未完全明確。在我國(guó),乙型肝炎病毒(hepatitis B virus,HBV)感染是肝細(xì)胞癌的主要病因,而我們前期的研究顯示絕大多數(shù)肝癌組織IGF-II基因P4啟動(dòng)子甲基化水平明顯降低[3],此現(xiàn)象是否提示HBx蛋白表達(dá)與P4啟動(dòng)子低甲基化存在相關(guān)性?目前國(guó)內(nèi)外尚未見(jiàn)相關(guān)的研究報(bào)道。鑒于此,本研究擬探討HBx蛋白對(duì)IGF-II基因P4啟動(dòng)子甲基化水平及轉(zhuǎn)錄表達(dá)的影響,為闡明肝癌發(fā)生中P4啟動(dòng)子低甲基化的原因及機(jī)制奠定基礎(chǔ)。
1材料
PrimeSTAR HS DNA聚合酶為TaKaRa產(chǎn)品,抗HBx抗體為Abcam產(chǎn)品,Trizol 試劑為Invitrogen產(chǎn)品,雙螢光素酶報(bào)告實(shí)驗(yàn)系統(tǒng)為Promega產(chǎn)品,pBABE-puro逆轉(zhuǎn)錄病毒載體為Addgene產(chǎn)品,pCMV-tag2B-X質(zhì)粒(含HBx基因)及對(duì)照質(zhì)粒pCMV-tag2B由廣州南方醫(yī)科大學(xué)肝病中心梁敏鋒博士惠贈(zèng),人IGF-II基因P4啟動(dòng)子驅(qū)動(dòng)的螢光素酶報(bào)告載體pGL3-P4(含P4啟動(dòng)子-1 129~+117片段)為本研究團(tuán)隊(duì)構(gòu)建,HepG2肝癌細(xì)胞株購(gòu)買于ATCC,293FT細(xì)胞購(gòu)自Invitrogen。
2方法
2.1穩(wěn)定表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx構(gòu)建
2.1.1含HBx基因的重組逆轉(zhuǎn)錄病毒載體pBABE-puro-HBx構(gòu)建 根據(jù)pCMV-tag2B-X質(zhì)粒上HBx基因序列設(shè)計(jì)引物擴(kuò)增HBx基因,上游引物5’-CCG CTC GAG ATG GCT GCT AGG CTG TGC TG-3’(含XhoI位點(diǎn)),下游引物5’-CG GAA TTC TTA GGC AGA GGT GAA AAA GTT G-3’(含EcoR I位點(diǎn)),擴(kuò)增片段長(zhǎng)度465 bp。將HBx基因的PCR產(chǎn)物純化,純化后的產(chǎn)物及pBABE-puro載體分別經(jīng)XhoI和EcoR I雙酶切,T4 DNA連接酶連接過(guò)夜,轉(zhuǎn)化大腸桿菌DH5α,用菌落PCR及雙酶切鑒定后送上海英駿生物公司測(cè)序分析。
2.1.2磷酸鈣共沉淀法轉(zhuǎn)染293FT包裝細(xì)胞產(chǎn)生逆轉(zhuǎn)錄病毒 將293FT包裝細(xì)胞接種于10 cm細(xì)胞培養(yǎng)皿,培養(yǎng)過(guò)夜。將20 μg PIK包裝質(zhì)粒分別與20 μg pBABE-puro-HBx載體及對(duì)照載體pBABE-puro混合,再依次加入適量CaCl2、H2O及HBS溶液,混勻,加入待轉(zhuǎn)染的293FT細(xì)胞中,置37 ℃培養(yǎng)箱孵育5 h,棄去培養(yǎng)基,用PBS洗滌細(xì)胞2次,加入培養(yǎng)基繼續(xù)培養(yǎng)過(guò)夜。收集含病毒的上清液,過(guò)濾,分裝置-80 ℃保存?zhèn)溆谩?/p>
2.1.3病毒上清液感染HepG2肝癌細(xì)胞及陽(yáng)性克隆篩選 將含聚凝胺(4 mg/L)的病毒上清液加入對(duì)數(shù)生長(zhǎng)期的HepG2肝癌細(xì)胞中,37 ℃培養(yǎng)3 h,吸棄培養(yǎng)基,換新病毒上清液,如此重復(fù)感染3次,完畢后換正常培養(yǎng)基。感染結(jié)束后48 h加入嘌呤霉素(0.5 mg/L)篩選陽(yáng)性克隆(包括含pBABE-puro-HBx載體及對(duì)照載體pBABE-puro的HepG2細(xì)胞克隆)。
2.1.4Western blotting鑒定表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx 制備HepG2-HBx肝癌細(xì)胞及對(duì)照肝癌細(xì)胞HepG2-control(含對(duì)照載體pBABE-puro)總蛋白,行SDS-PAGE凝膠電泳,轉(zhuǎn)膜,用脫脂奶粉封閉。加入稀釋的Ⅰ抗(抗HBx及抗β-actin)、辣根過(guò)氧化物酶(HRP)標(biāo)記的羊抗鼠Ⅱ抗,增強(qiáng)化學(xué)發(fā)光顯影,凝膠成像系統(tǒng)攝像及分析結(jié)果。
2.2表達(dá)HBx蛋白的肝癌細(xì)胞HepG2-HBx及對(duì)照肝癌細(xì)胞HepG2-control中P4啟動(dòng)子甲基化狀態(tài)及P4 mRNA表達(dá)水平分析
2.2.1亞硫酸氫鹽測(cè)序 制備HepG2-HBx細(xì)胞及對(duì)照細(xì)胞HepG2-control基因組DNA,取2 μg DNA,按CpGenomeTMDNA Modification 試劑盒(BioLabs產(chǎn)品)說(shuō)明進(jìn)行DNA修飾,純化回收修飾后的DNA用于PCR擴(kuò)增。擴(kuò)增引物根據(jù)P4啟動(dòng)子序列(GenBank進(jìn)入號(hào)NT_009308)設(shè)計(jì),上游引物5’-GTA GAA GTT TAT TTT GGT ATG TTG A-3’,下游引物5’-AAT CTC CTT CCC ACC TCC TTA TAT A-3’,片段長(zhǎng)度307 bp,擴(kuò)增區(qū)-555~-248。PCR產(chǎn)物亞克隆入pMD19-T載體,挑選陽(yáng)性克隆進(jìn)行測(cè)序分析,共測(cè)序8個(gè)克隆。
2.2.2實(shí)時(shí)熒光定量RT-PCR 根據(jù)文獻(xiàn)[5]設(shè)計(jì)IGF-II基因P4啟動(dòng)子特異的轉(zhuǎn)錄子(以下簡(jiǎn)稱P4轉(zhuǎn)錄子),上游引物5’-TCT CCT GTG AAA GAG ACT TCC AG-3’,下游引物5’- CAA GAA GGT GAG AAG CAC CAG -3’,片段長(zhǎng)度137 bp。以β-actin為對(duì)照。采用Trizol試劑制備HepG2-HBx細(xì)胞及對(duì)照細(xì)胞HepG2-control總RNA,用MMLV逆轉(zhuǎn)錄酶合成cDNA,實(shí)時(shí)熒光定量PCR擴(kuò)增與檢測(cè)IGF-II基因P4 mRNA表達(dá)水平。實(shí)驗(yàn)過(guò)程中,每個(gè)樣本同時(shí)擴(kuò)增3復(fù)管,并連續(xù)進(jìn)行2次實(shí)驗(yàn)。采用相對(duì)定量法(2-ΔΔCt)表示目的基因表達(dá)量。
2.3雙螢光素酶報(bào)告實(shí)驗(yàn)系統(tǒng)及亞硫酸氫鹽測(cè)序檢測(cè)HBx蛋白對(duì)P4啟動(dòng)子轉(zhuǎn)錄調(diào)控的影響
2.3.1pGL3-P4載體體外甲基化、細(xì)胞轉(zhuǎn)染及瞬時(shí)表達(dá) 將pGL3-P4載體在體外用SssI CpG甲基轉(zhuǎn)移酶(BioLabs產(chǎn)品) 孵育,然后將純化后的反應(yīng)產(chǎn)物用HpaⅡ內(nèi)切酶消化,以證實(shí)完全甲基化。將完全甲基化pGL3-P4載體與pCMV-tag2B-X或其對(duì)照空質(zhì)粒pCMV-tag2B用脂質(zhì)體法共轉(zhuǎn)染HepG2肝癌細(xì)胞。操作完畢,繼續(xù)培養(yǎng)細(xì)胞48 h。實(shí)驗(yàn)過(guò)程中,每個(gè)共轉(zhuǎn)染實(shí)驗(yàn)同時(shí)做3復(fù)孔,并連續(xù)進(jìn)行2次實(shí)驗(yàn)。
2.3.2雙螢光素酶實(shí)驗(yàn) 轉(zhuǎn)染48 h后,制備上述細(xì)胞裂解物,按雙螢光素酶報(bào)告實(shí)驗(yàn)系統(tǒng)說(shuō)明檢測(cè)細(xì)胞裂解物的熒光素酶活性。
2.3.3亞硫酸氫鹽測(cè)序 轉(zhuǎn)染48 h后,制備上述細(xì)胞基因組DNA,取2μg DNA,按CpGenomeTMDNA Modification 試劑盒說(shuō)明進(jìn)行DNA修飾,純化回收修飾后的DNA用于巢式PCR擴(kuò)增。擴(kuò)增引物根據(jù)pGL3-Basic載體(GenBank進(jìn)入號(hào)U47295.2)及P4啟動(dòng)子序列設(shè)計(jì),上、下游外側(cè)引物分別為5’-AAT AGG TTG TTT TTA GTG TAA GTG-3’及5’-TCC TCC CCC CCA AAC TCA AC-3’;上、下游內(nèi)側(cè)引物分別為5’-AGT GTA AGT G TA GGT GTT AG-3’及5’-CAC ACC ACT TAC CTA AAA AC-3’,片段長(zhǎng)度241 bp,擴(kuò)增區(qū)為pGL3-P4載體上P4啟動(dòng)子-1 129~-926片段。PCR產(chǎn)物亞克隆入pMD19-T載體,挑選陽(yáng)性克隆進(jìn)行測(cè)序分析,共測(cè)序8個(gè)克隆。
3統(tǒng)計(jì)學(xué)處理
1重組逆轉(zhuǎn)錄病毒載體pBABE-puro-HBx的構(gòu)建鑒定
以pCMV-tag2B-X載體為模板,擴(kuò)增出HBx基因,克隆入pBABE-puro載體,轉(zhuǎn)化大腸桿菌DH5α后抽提重組質(zhì)粒,經(jīng)XhoI和EcoR I雙酶切得到1條約465 bp的HBx目的片段及載體大片段,見(jiàn)圖1A、B。目的片段測(cè)序分析結(jié)果與GenBank中AF223955.1HBx基因相符。
Figure 1. Construction and identification of HepG2-HBx cell lines expressing hepatitis B virus X protein (HBx). A: electrophoresis analysis of PCR product forHBxgene;B:electrophoresis analysis of dual enzyme digestion of pBABE-puro-HBx recombinant retroviral vector;C: Western blot analysis of HBx protein expression in HepG2-HBx cell line.M:DL2000 DNA marker.
圖1表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx的構(gòu)建與鑒定
2表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx的鑒定
應(yīng)用Western blotting檢測(cè)HepG2-HBx及對(duì)照細(xì)胞HepG2-control的HBx蛋白表達(dá)情況,結(jié)果顯示,前者有明顯的HBx表達(dá),后者則為陰性,表明表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx構(gòu)建成功,見(jiàn)圖1C。
3HBx蛋白對(duì)HepG2-HBx肝癌細(xì)胞P4啟動(dòng)子甲基化水平及P4mRNA表達(dá)水平的影響
根據(jù)人IGF-II基因P4啟動(dòng)子序列設(shè)計(jì)引物擴(kuò)增了P4啟動(dòng)子的-555~-248片段,該片段共含有18個(gè)CpG位點(diǎn)。亞硫酸氫鹽測(cè)序結(jié)果顯示,HepG2-HBx細(xì)胞中甲基化CpG位點(diǎn)的比例(9.0%)明顯低于其對(duì)照細(xì)胞HepG2-control(25.0%),P<0.01,見(jiàn)圖2。熒光定量RT-PCR結(jié)果顯示,HepG2-HBx細(xì)胞P4 mRNA表達(dá)水平約為其對(duì)照細(xì)胞HepG2-control的2.8倍,見(jiàn)圖2。
Figure 2. Analysis of the P4 promoter methylation status (A;2=13.009,P<0.01) and P4 mRNA expression (B) ofICF-IIgene in HepG2-HBx cell line and HepG2-control cell line.Each row of circles represented sequencing results of a clone; TSS: transcription start site±s.n=6.**P<0.01vsHepG2-control..
圖2HepG2-HBx及對(duì)照細(xì)胞HepG2-control中P4啟動(dòng)子甲基化水平及P4mRNA表達(dá)水平分析
4HBx蛋白對(duì)體外甲基化pGL3-P4質(zhì)粒上P4啟動(dòng)子甲基化水平及轉(zhuǎn)錄活性的影響
根據(jù)pGL3-P4重組質(zhì)粒上pGL3-Basic載體及P4啟動(dòng)子序列設(shè)計(jì)2對(duì)引物(2條上游引物序列位于pGL3-Basic載體上),采用巢式PCR技術(shù)擴(kuò)增pGL3-P4質(zhì)粒上P4啟動(dòng)子的-1 129~-924片段,該片段共含有22個(gè)CpG位點(diǎn)。亞硫酸氫鹽測(cè)序結(jié)果顯示,共轉(zhuǎn)染pCMV-tag2B-X質(zhì)粒的HepG2細(xì)胞中P4啟動(dòng)子-1 129~-924片段甲基化CpG位點(diǎn)的比例(60.8%)明顯低于共轉(zhuǎn)染對(duì)照質(zhì)粒pCMV-tag2B的HepG2細(xì)胞(84.1%),P<0.01,見(jiàn)圖3。另一方面,雙螢光素酶實(shí)驗(yàn)結(jié)果顯示,前者P4啟動(dòng)子相對(duì)熒光素酶活性(14.12±0.89)明顯高于后者(4.61±0.76),P<0.01,見(jiàn)圖3。
HBx是一種多功能調(diào)節(jié)蛋白,在HBV感染相關(guān)肝細(xì)胞癌的發(fā)生發(fā)展過(guò)程中起重要作用,但其致癌機(jī)制復(fù)雜,許多環(huán)節(jié)尚未明確。目前的資料顯示,其作用機(jī)制可能涉及以下幾個(gè)方面。(1)HBx可反式激活各種病毒和細(xì)胞啟動(dòng)子[6]。(2)HBx參與細(xì)胞凋亡過(guò)程。在肝細(xì)胞感染HBV早期,HBx抑制凋亡,使基因突變得以積累;在晚期,HBx誘導(dǎo)肝細(xì)胞凋亡,促進(jìn)HBV復(fù)制及感染擴(kuò)散,逃避宿主細(xì)胞免疫功能,使癌前肝細(xì)胞得以存活,并進(jìn)一步惡性轉(zhuǎn)化[7-9]。(3)通過(guò)表觀遺傳機(jī)制導(dǎo)致腫瘤抑制基因等DNA序列的甲基化狀態(tài)異常等[10-11]。
人IGF-II是一種重要的胎兒生長(zhǎng)因子及有絲分裂原,在胚胎生長(zhǎng)發(fā)育、細(xì)胞增殖與分化等方面均有重要作用。IGF-II的表達(dá)具有組織和發(fā)育階段特異性。在胎兒的肝臟、腎臟、小腸、肺臟、大腦皮層等組織具有高濃度的IGF-II mRNA表達(dá),出生后急劇減少,但成人肝臟仍有一定水平的IGF-II mRNA表達(dá)[12-13]。IGF-II基因的這種表達(dá)特征與其復(fù)雜的基因結(jié)構(gòu),即含有9個(gè)外顯子和4個(gè)啟動(dòng)子有關(guān)。在個(gè)體不同組織及不同生長(zhǎng)發(fā)育階段,4個(gè)啟動(dòng)子呈現(xiàn)出動(dòng)態(tài)活性,總共編碼5種5′端非翻譯區(qū)不同的IGF-II mRNA,但其成熟蛋白產(chǎn)物相同。例如,在胎肝和新生兒肝中,啟動(dòng)子P2-P4被激活,P1失活,其中P3活性最大而致IGF-II mRNA大量表達(dá);在出生2個(gè)月后,肝臟IGF-II mRNA表達(dá)量則顯著下調(diào),約為新生兒峰值的1/10,一直至成人期都維持于此低水平狀態(tài),其表達(dá)主要受控于P1啟動(dòng)子,P2和P4啟動(dòng)子活性弱,而P3啟動(dòng)子在大多數(shù)成人肝臟呈關(guān)閉狀態(tài)[13]。
Figure 3. Analysis of methylation levels (A:2=23.922,P<0.01) and the relative luciferase activity (B) of P4 promoter 48 h after co-transfection ofinvitromethylated pGL3-P4 vector and pCMV-tag2B-X or control empty plasmid pCMV-tag2B into HepG2 cells.Each row of circles represented sequencing results of a clone; TSS: transcription start site±s.n=6.**P<0.01vsHepG2 (2).
圖3體外甲基化pGL3-P4載體與pCMV-tag2B-X或?qū)φ湛召|(zhì)粒pCMV-tag2B共轉(zhuǎn)染HepG2肝癌細(xì)胞48h后P4啟動(dòng)子甲基化水平及相對(duì)熒光素酶活性分析
研究發(fā)現(xiàn),DNA甲基化狀態(tài)異常與人類腫瘤的發(fā)生密切相關(guān)。在許多腫瘤中基因組DNA存在廣泛低甲基化和局部區(qū)域高甲基化共存現(xiàn)象。一般說(shuō)來(lái),真核基因啟動(dòng)子高甲基化可抑制該基因表達(dá),而低甲基化則促進(jìn)其表達(dá)[14]。 近年發(fā)現(xiàn),IGF-II在動(dòng)物模型和人類肝臟的癌前病變及肝癌組織中呈過(guò)量表達(dá),且IGF-II過(guò)表達(dá)與P3、P4啟動(dòng)子的再激活密切相關(guān)[1, 2, 15]。P4啟動(dòng)子再激活的機(jī)制可能有多個(gè)方面。我們前期發(fā)現(xiàn):與正常成人肝組織相比,肝癌組織中P4啟動(dòng)子甲基化水平明顯降低,且DNA低甲基化是P4啟動(dòng)子再激活的機(jī)制之一[3]。但是,引起P4啟動(dòng)子低甲基化的原因及發(fā)生機(jī)制尚不明確。Su等[16]檢測(cè)了419例肝癌組織,結(jié)果顯示絕大多數(shù)標(biāo)本同時(shí)存在IGF-II和HBx蛋白表達(dá);我們前期的研究顯示:在HBV相關(guān)的肝癌患者中,絕大多數(shù)肝癌組織存在P4啟動(dòng)子低甲基化及P4 mRNA高表達(dá)[2-3]。這些結(jié)果提示,HBx蛋白表達(dá)或HBV感染可能促進(jìn)肝癌組織IGF-II基因過(guò)表達(dá)。但二者之間確切的關(guān)系及其作用機(jī)制尚未明確。
在本研究中,我們構(gòu)建了表達(dá)HBx蛋白的肝癌細(xì)胞株HepG2-HBx,結(jié)果顯示,HepG2-HBx細(xì)胞P4啟動(dòng)子-555~-248片段甲基化CpG位點(diǎn)的比例明顯低于其對(duì)照細(xì)胞HepG2-control,而其P4 mRNA表達(dá)水平則為其對(duì)照細(xì)胞HepG2-control的2.8倍,提示HBx蛋白可降低P4啟動(dòng)子甲基化水平,進(jìn)而促進(jìn)IGF-II基因轉(zhuǎn)錄表達(dá)。為了進(jìn)一步驗(yàn)證上述研究結(jié)果,我們構(gòu)建了P4啟動(dòng)子驅(qū)動(dòng)的螢光素酶報(bào)告載體pGL3-P4,將其體外甲基化后與含HBx基因的pCMV-tag2B-X質(zhì)粒共轉(zhuǎn)染HepG2肝癌細(xì)胞,結(jié)果顯示,共轉(zhuǎn)染pCMV-tag2B-X質(zhì)粒的HepG2細(xì)胞中pGL3-P4載體上P4啟動(dòng)子-1 129~-924片段甲基化CpG位點(diǎn)的比例明顯低于共轉(zhuǎn)染其對(duì)照空質(zhì)粒pCMV-tag2B的HepG2細(xì)胞,而其P4啟動(dòng)子相對(duì)螢光素酶活性則明顯高于后者。上述兩部分實(shí)驗(yàn)結(jié)果表明,HBx蛋白可誘導(dǎo)肝癌細(xì)胞IGF-II基因P4啟動(dòng)子甲基化水平降低,進(jìn)而上調(diào)P4啟動(dòng)子轉(zhuǎn)錄活性,從而促進(jìn)IGF-II基因表達(dá)。本結(jié)果與Zheng等[10]報(bào)道相似,他們發(fā)現(xiàn)HBx蛋白可部分或完全阻止DNA 甲基轉(zhuǎn)移酶3A(DNA methyltransferases 3A,DNMT3A)與CDH6基因的啟動(dòng)子結(jié)合,引起其低甲基化從而激活轉(zhuǎn)錄。Park等[17]也發(fā)現(xiàn),HBx蛋白可下調(diào)DNMT3B表達(dá),進(jìn)而誘導(dǎo)肝癌細(xì)胞基因組DNA衛(wèi)星2重復(fù)序列低甲基化。
本研究結(jié)果將與肝癌發(fā)生有關(guān)的兩個(gè)重要因素——HBx蛋白與IGF-II基因過(guò)表達(dá)聯(lián)系起來(lái),一方面為全面深入認(rèn)識(shí)HBx蛋白致肝細(xì)胞癌分子機(jī)制補(bǔ)充了新資料,另一方面為進(jìn)一步闡明肝癌發(fā)生中P4啟動(dòng)子低甲基化的原因及機(jī)制奠定了基礎(chǔ)。
[1] Breuhahn K, Schirmacher P. Reactivation of theinsulin-likegrowthfactor-IIsignaling pathway in human hepatocellular carcinoma[J]. World J Gastroenterol, 2008, 14(11):1690 -1698.
[2] Tang SH, Yang DH, Huang W, et al. Differential promoter usage for insulin-like growth factor-II gene in Chinese hepatocellular carcinoma with hepatitis B virus infection[J]. Cancer Detect Prev, 2006, 30(2):192-203.
[3] Tang SH, Yang DH, Huang W, et al. Hypomethylated P4 promoter induces expression of the insulin-like growth factor-II gene in hepatocellular carcinoma in a Chinese population[J]. Clin Cancer Res, 2006, 12(14): 4171-4177.
[4] Shon JK, Shon BH, Park IY, et al. Hepatitis B virus-X protein recruits histone deacetylase 1 to repress insulin-like growth factor binding protein 3 transcription[J]. Virus Res, 2009, 139(1):14-21.
[5] Liao B, Hu Y, Herrick DJ, et al. The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells[J]. J Biol Chem, 2005, 280(18):18517-18524.
[6] Ng SA, Lee C. Hepatitis B virus X gene and hepatocarcinogenesis[J]. J Gastroenterol, 2011, 46(8):974-990.
[7] Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2011, 26(Suppl 1):144-152.
[8] Lau JY, Xie X, Lai MM, et al. Apoptosis and viral hepatitis[J]. Semin Liver Dis, 1998, 18(7): 169-176.
[9] Assrir N, Soussan P, Kremsdorf D, et al. Role of the hepatitis B virus proteins in pro- and anti-apoptotic processes[J]. Front Biosci, 2010, 15:12-24.
[10]Zheng DL, Zhang L, Cheng N, et al. Epigenetic modification induced by hepatitis B virus X protein via interaction withdenovoDNA methyltransferase DNMT3A[J]. J Hepatol, 2009, 50(2):377-387.
[11]Zhu YZ, Zhu R, Fan J, et al. Hepatitis B virus x protein induces hypermethylation of p16INK4Apromoter via DNA methyl transferases in the early stage of HBV-associated hepatocarcinogenesis[J]. J Viral Hepat, 2010, 17(2): 98-107.
[12]Birnbacher R, Amann G, Breitschopf H,et al. Cellular localization of insulin-like growth factor II mRNA in the human fetus and the placenta: detection with a digoxigenin-labeled cRNA probe and immunocytochemistry[J]. Pediatr Res, 1998, 43(5):614-620.
[13]Li X, Cui H, Sandstedt B, et al. Expression levels of the insulin-like growth factor-II gene (IGF2) in the human liver: developmental relationships of the four promoters[J]. J Endocrinol, 1996, 149(1):117-124.
[14]Costello JF, Fruhwald MC. Aberrant CpG-island methylation has nonrandom and tumor-type-specific patterns[J]. Nat Genet, 2000, 24(7):132-138.
[15]Nussbaum T, Samarin J, Ehemann V, et al. Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis[J]. Hepatology, 2008, 48(1):146-156.
[16]Su Q, Liu YF, Zhang JF, et al. Expression of insulin-like growth factor-II in hepatitis B cirrhosis and hepatocellular carcinoma: its relationship with hepatitis B virus antigen expression[J]. Hepatology, 1994, 19(4 pt 1): 788-799.
[17]Park IY, Sohn BH, Yu E, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein[J]. Gastroenterology, 2007, 132(4):1476-1494.
HBxreducesmethylationlevelofP4promoterandup-regulateshumanIGF-IIgenetranscription
TANG Shao-hui1, ZHANG Liang-peng1, WU Xiao-juan1, ZHANG Man-man1, WANG Kuang-jing1, ZHOU Hong-ke1, LUO Yu-hong2, CAO Ming-rong2
(1DepartmentofGastroenterology,2DepartmentofGeneralSurgery,theFirstAffiliatedHospitalofJinanUniversity,Guangzhou510632,China.E-mail:xiger66666@163.com)
AIM: To establish HepG2-HBx cell line stably expressing hepatitis B virus X protein (HBx) and to investigate the effect of HBx on the methylation status and transcription activity of human insulin-like growth factor II (IGF-II) gene P4 promoter.METHODSHBxgene was cloned into the pBABE-puro retrovirus vector to construct recombinant plasmid pBABE-puro-HBx. The latter was transfected into 293FT package cells to generate retrovirus-pBABE-puro-HBx. HepG2 cells were infected with the virus suspension and the resistant cell clones were selected by puromycin. HBx expression in the HepG2-HBx cells was analyzed by Western blotting. P4 promoter methylation status and P4 mRNA expression in HepG2-HBx cells and HepG2-control cells were detected by bisulfite sequencing and real-time fluorescence quantitative RT-PCR, respectively. Furthermore,invitromethylated pGL3-P4 vector driven by P4 promoter of human IGF-II gene was co-transfected into HepG2 cells with pCMV-tag2B-X plasmid carryingHBxgene or control empty plasmid pCMV-tag2B, and the methylation status and transcription activity of P4 promoter in pGL3-P4 vector were analyzed by bisulfite sequencing and dual-luciferase reporter assay system, respectively.RESULTSHepG2-HBx cell line stably expressing HBx was successfully constructed. The percentage of methylated CpG dinucleotides in P4 promoter was lower in HepG2-HBx cells (9.0%) than that in HepG2-control cells (25.0%) (P<0.01), and P4 mRNA expression level of the former was 2.8 times higher than that of the latter. The percentage of methylated CpG dinucleotides in P4 promoter at pGL3-P4 vector was lower in the HepG2 cells co-transfected with pCMV-tag2B-X (60.8%) than that in the HepG2 cells co-transfected with control empty plasmid pCMV-tag2B (84.1%) (P<0.01), and the relative luciferase activity of the former (14.12±0.89) was higher than that of the latter (4.61±0.76) (P<0.01).CONCLUSIONHBx may reduce the methylation level of P4 promoter and up-regulates humanIGF-IIgene transcription.
Hepatitis B virus X protein; Insulin-like growth factor II; Promoters; DNA methylation
R735
A
10.3969/j.issn.1000-4718.2012.09.017