郭銀雷,王文勝,林敏瑩
(杭州師范大學(xué)理學(xué)院,浙江杭州 310036)
隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律
郭銀雷,王文勝,林敏瑩
(杭州師范大學(xué)理學(xué)院,浙江杭州 310036)
研究了隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的極限理論,在一定條件下證明了隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律,并且給出了一個(gè)等價(jià)形式的隨機(jī)環(huán)境中隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律.
強(qiáng)大數(shù)定律;隨機(jī)游動(dòng);隨機(jī)環(huán)境
設(shè)X={Xi:i≥1}是取值于Zd,d≥1的相互獨(dú)立同分布(i.i.d.)的隨機(jī)向量,Y={Y(x):x∈Zd}取值于R的i.i.d.的隨機(jī)變量序列,設(shè)序列X與Y是定義在相同概率空間上的,但是生成相互獨(dú)立的σ-域.
Kesten等[1]研究了一維RWRS,他們?cè)O(shè)X和Y的穩(wěn)定律分別為1<α≤2和0<β≤2的吸引區(qū)域內(nèi),得到了具有平穩(wěn)增量的、非高斯的、自相似過程Gn的極限.Wang研究了在特殊集合中的RWRS弱收斂性[2],并給出了幾個(gè)隨機(jī)環(huán)境中一維隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律[3].還有一些文章研究了RWRS的增長(zhǎng)速度即隨機(jī)環(huán)境中隨機(jī)游動(dòng)的重對(duì)數(shù)律:Lewis[4]研究了隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)自正規(guī)化的重對(duì)數(shù)律;Lewis[5]證明了確定性正規(guī)化子的隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的重對(duì)數(shù)律;Khoshnevisan等[6]研究了隨機(jī)環(huán)境中一維Stable過程的重對(duì)數(shù)律,證明了γ的存在性;Chen Xia研究了可加Lévy過程局部時(shí)的大偏差和中等偏差以及重對(duì)數(shù)率[7-8].本文主要采用[3]中的方法,證明隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律.
這里的|·|表示歐幾里得范數(shù)(Euclidean norm).則本文的主要結(jié)論是隨機(jī)環(huán)境中d維隨機(jī)游動(dòng)的強(qiáng)大數(shù)定律.
假設(shè)I對(duì)隨機(jī)游動(dòng)的約束條件并不是非常嚴(yán)格的限制.以下討論另一種滿足假設(shè)I的序列.
這里0≤ρ<1,φ(·)趨向于+∞的慢變函數(shù),即:φ(·)是一個(gè)正的可測(cè)函數(shù),并且對(duì)任意的0<C<∞滿足:
注1 由定理2得,如果S是一個(gè)簡(jiǎn)單對(duì)稱的d-維隨機(jī)游動(dòng),Y是一個(gè)i.i.d.的隨機(jī)變量的集合,并且滿足E[|Y(0)|]<∞,則n→∞時(shí),G(n)/n→E[|Y(0)|] a.s..
由此就驗(yàn)證了假設(shè)I,從而定理2的結(jié)論成立.
[1]Kesten H,Spitzer F.A limit theorem related to a new class of self-similar processes[J].Z Wahr verw Geb,1979,50:5-25.
[2]Wang Wensheng.Weak convergence to fractional Brownain motion in Brownian motion[J].Probab Th Their Fields,2003,126:203-220.
[3]Wang Wensheng.Strong laws of large numbers for random walks in random sceneries[J].Acta Mathematicae Applicatae Sinica,2007,23(3):495-500.
[4]Lewis T M.A self-normalized law of the iterated logarithm for random walk in random scenery[J].Theor Prob,1992,5(4):629-659.
[5]Lewis T M.A law of the iterated logarithm for random walk in random scenery with deterministic normalizers[J].Theor Prob,1993,6(2):209-230.
[6]Khoshnevisan D,Lewis T M.A law of the iterated logarithm for stable processes in random scenery[J].Stoch Process Appl,1998,74(1):89-121.
[7]Chen Xia.Large deviations and laws of the iterated logarithm for the local times of additive stable processes[J].The Annals of Probability,2007,35(2):602-648.
[8]Chen Xia.Moderate deviations and laws of the iterated logarithm for the local times of additive Lévy processes and additive random walks[J].The Annals of Probability,2007,35(3):954-1006.
[9]林正炎,陸傳榮,蘇中根.概率極限理論基礎(chǔ)[M].北京:高等教育出版社,1999:214-219.
Strong Laws of Large Numbers ford-dimensional Random Walks in Random Sceneries
GUO Yin-lei,WANG Wen-sheng,LIN Min-ying
(College of Science,Hangzhou Normal University,Hangzhou 310036,China)
The paper researched on the limit theory ofd-dimensional random walks in random scenery,proved the strong law of large numbers ford-dimensional random walks in random scenery,and provided the strong law of large numbers of random walks with equivalent form in random scenery.
strong law of large numbers;random walk;random scenery
O211.6 MSC2010:60G15;60J65
A
1674-232X(2012)06-0520-04
10.3969/j.issn.1674-232X.2012.06.009
2012-06-08
王文勝(1970—),男,教授,主要從事概率極限理論和金融數(shù)學(xué)研究.E-mail:wswang@yaboo.cn