王其文,黃心中
(華僑大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,福建 泉州362021)
近年來(lái),對(duì)單葉調(diào)和函數(shù)成為調(diào)和擬共形映照問(wèn)題的研究引起了不少學(xué)者的關(guān)注[4-10],也得到了不少有趣的結(jié)果.
在區(qū)間(0,1)內(nèi)的最小正根.
注3 令b1=0,應(yīng)用定理2后得到的結(jié)果改進(jìn)了定理4.
3)當(dāng)α=0,β=0,γ=C時(shí),同理可得到定理5的結(jié)果.
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[3] CLINIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Math,1984,9:3-25.
[4] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27:365-372.
[5] KALAJ D,PAVLOVIC M.Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half plane[J].Ann Acad Sci Fenn Math,2005,30:159-165.
[6] 黃心中.單位圓盤(pán)上的調(diào)和擬共形同胚[J].數(shù)學(xué)年刊,2008,29A(4):519-524.
[7] 朱劍峰,黃心中.兩類調(diào)和函數(shù)的擬共形性質(zhì)[J].華僑大學(xué)學(xué)報(bào):自然科學(xué)版,2011,32(6):705-709.
[8] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch′s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[9] DORFF M,NOWAK M.Landau′s theorem for planar harmonic mappings[J].Comput Methods Funct Theory,2004,4(1):151-158.
[10] LIU Ming-sheng.Landau′s theorem for planar harmonic mappings[J].Computers and Mathe-Matics with Applications,2009,57:1142-1146.