嚴(yán)俊,陶金波,鄧小瓊,胡丹靜,劉培鈞,盛嘉偉
(1.浙江省質(zhì)量檢測(cè)科學(xué)研究院,浙江杭州 310013;2.浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院)
研究與開(kāi)發(fā)
納米分散板片及球形葉蠟石粉體的制備及表征*
嚴(yán)俊1,2,陶金波1,鄧小瓊1,胡丹靜1,劉培鈞1,盛嘉偉2
(1.浙江省質(zhì)量檢測(cè)科學(xué)研究院,浙江杭州 310013;2.浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院)
采用高能球磨、噴霧干燥聯(lián)用工藝制備了干燥分散的板片與球形葉蠟石粉體,并對(duì)所制備的粉體進(jìn)行了粉晶X射線衍射(XRD)與場(chǎng)發(fā)射掃描電鏡(FE-SEM)測(cè)試。結(jié)果表明:葉蠟石粉體在初步研磨后,葉蠟石的晶型與層狀結(jié)構(gòu)特征未發(fā)生改變。經(jīng)噴霧干燥可得到分散的單層葉蠟石納米板片,板片厚度約為(8±2)nm,其在長(zhǎng)軸方向上的粒徑大小為0.2~1.2 μm。粉體在較長(zhǎng)時(shí)間的研磨后,經(jīng)噴霧干燥可獲得均勻粒徑的準(zhǔn)球形葉蠟石聚集體,單個(gè)聚集體微粒直徑約2.5 μm,且該聚集體由長(zhǎng)徑在納米尺度上的葉蠟石板片團(tuán)聚而成。此外,XRD測(cè)試結(jié)果表明噴霧干燥對(duì)葉蠟石粉體的晶型并沒(méi)有明顯的影響。
葉蠟石;高能球磨;噴霧干燥;掃描電鏡;XRD
葉蠟石是含水層狀硅酸鹽粘土礦物,理論化學(xué)式為Al2(Si4O10)(OH)2,廣泛應(yīng)用于涂料﹑陶瓷﹑橡膠﹑傳壓介質(zhì)及耐火材料等領(lǐng)域。就粘土礦物應(yīng)用的廣度與深度而言,其粉體顆粒的大小、形貌、晶型等是制約其應(yīng)用與影響終端產(chǎn)品質(zhì)量?jī)?yōu)劣的主要因素[1]。鑒于此,近年來(lái),制備超微細(xì)或特定性狀的礦物粉體的研究甚多,如碳酸鈣[2]、蒙脫石[3-5]、滑石[6-9]、高嶺土[10-12]等。相比之下,有關(guān)葉蠟石粉體的超細(xì)化或改型研究較少,且相關(guān)研究也較多集中于機(jī)械力研磨過(guò)程中葉蠟石相變的探討[13]。筆者以高能球磨與噴霧干燥聯(lián)用工藝,制備出了干燥分散的超細(xì)納米板片和粒徑大小較均一的球形葉蠟石粉體。
1.1 樣品制備
樣品取自浙江青田。高能球磨采用Fritsch Pulverisette 7型球磨儀:球磨在瑪瑙罐體中進(jìn)行,瑪瑙球?yàn)榍蚰ソ橘|(zhì),瑪瑙球直徑為5 mm、質(zhì)量為33.5 g,研磨粉體質(zhì)量為10 g,球磨速度為600 r/min,球磨時(shí)間為0~180 min。噴霧干燥采用SD-06 AG型噴霧干燥儀:進(jìn)口溫度為(180±2)℃,出口溫度為(95±1)℃,空氣流速為4.3 m/s,循環(huán)泵流速為485 mL/h,噴霧干燥噴嘴直徑為0.5 mm。
1.2 實(shí)驗(yàn)儀器
葉蠟石原粉的化學(xué)組成采用ARL ADVANT′X型X射線熒光光譜儀測(cè)定;采用D/Max-2500V型X射線衍射儀對(duì)葉蠟石原粉及研磨后粉體進(jìn)行物相鑒定,Cu Kα射線,衍射速度為5(°)/min,工作電壓為40 kV,電流為40 mA,接收狹縫間距為0.3 mm;采用FE-SEM S-4700型場(chǎng)發(fā)射掃描電鏡對(duì)不同研磨條件下粉體進(jìn)行形貌觀察。
2.1 葉蠟石原粉的化學(xué)組成
青田葉蠟石化學(xué)成分經(jīng)X射線熒光光譜(XRF)分析,結(jié)果見(jiàn)表1。由表1可見(jiàn),葉蠟石原礦混合物中SiO2與Al2O3的分子個(gè)數(shù)比為6.2,明顯高于理想葉蠟石晶體中SiO2與Al2O3的分子個(gè)數(shù)比4.0。經(jīng)X射線衍射結(jié)果表明,青田葉蠟石為典型的2-M型葉蠟石礦,其中伴生礦為石英[14]。
表1 葉蠟石物化性能
2.2 納米分散葉蠟石板片粉體的制備
葉蠟石原礦粉體微結(jié)構(gòu)特征為復(fù)合式的板片結(jié)構(gòu),見(jiàn)圖1a。該復(fù)合板片中單層葉蠟石板片厚度約為(8±2)nm[14]。上述粉體經(jīng)高能球磨30 min后,形貌特征見(jiàn)圖1b。從圖1b發(fā)現(xiàn),高能球磨使得粉體粒徑進(jìn)一步細(xì)化,但葉蠟石聚集的板片結(jié)構(gòu)特征并未徹底消失。與此同時(shí),粉體在初步研磨后發(fā)生了較低程度的團(tuán)聚,團(tuán)聚后的粉體呈近球形,見(jiàn)圖1b中的白色箭頭所示。進(jìn)一步對(duì)圖1b中研磨后的粉體進(jìn)行噴霧干燥處理,干燥后的粉體形貌特征見(jiàn)圖1c與圖1d所示。圖1d是圖1c中框線區(qū)域的放大圖像,從中可清晰地看到葉蠟石聚集的復(fù)合板片結(jié)構(gòu)特征已經(jīng)基本消失,此時(shí)粉體呈分散的單層板片結(jié)構(gòu),但是板片的粒徑大小不一,為0.2~1.2 μm。
圖1 葉蠟石粉體SEM圖
2.3 球形葉蠟石粉體的制備
進(jìn)一步對(duì)葉蠟石粉體進(jìn)行高能球磨,對(duì)研磨60、120、180 min后的粉體分別進(jìn)行掃描電鏡觀察,其電鏡照片分別見(jiàn)圖2a、圖2c與圖2e。從中可以看出,隨著機(jī)械力研磨的進(jìn)行,葉蠟石的復(fù)合板片結(jié)構(gòu)特征逐漸消失,單層葉蠟石板片的粒徑大小亦在逐漸細(xì)化。與此同時(shí),因粉體表面能的增大使得粉體團(tuán)聚現(xiàn)象逐漸嚴(yán)重。對(duì)上述研磨60、120、180 min后的粉體分別進(jìn)行噴霧干燥,所得相應(yīng)粉體的形貌特征分別見(jiàn)圖2b、圖2d與圖2f。對(duì)比不同研磨時(shí)間下的粉體圖片可以發(fā)現(xiàn),在研磨60 min后的粉體中細(xì)化的納米板片并未完全團(tuán)聚,團(tuán)聚的大顆粒與細(xì)化的葉蠟石板片共存。進(jìn)一步研磨至120min和180min,經(jīng)噴霧干燥所得的粉體形貌基本呈分散的準(zhǔn)球形結(jié)構(gòu),且單個(gè)球形團(tuán)聚顆粒粒徑大小約為2.5 μm。相比于只經(jīng)球磨后的粉體而言,可以發(fā)現(xiàn)經(jīng)噴霧干燥后的粉體粒徑趨近一致。
圖2 葉蠟石粉體SEM圖
對(duì)上述高能球磨180 min后再經(jīng)噴霧干燥的粉體進(jìn)一步進(jìn)行形貌的微區(qū)觀察,如圖3所示。由圖3可見(jiàn),研磨后的葉蠟石板片小顆粒的粒徑可實(shí)現(xiàn)其長(zhǎng)軸方向的納米尺寸。但是因納米粉體的團(tuán)聚效應(yīng),進(jìn)一步得到分散的三維尺度上的納米葉蠟石粉體(單個(gè)葉蠟石板片表面積大小在104 nm2之內(nèi))仍有待進(jìn)一步研究。
圖3 高能球磨180 min后再噴霧干燥的粉體SEM圖
2.4 研磨時(shí)間與噴霧干燥對(duì)葉蠟石晶型的影響
不同研磨時(shí)間后葉蠟石粉體的XRD譜圖見(jiàn)圖4。由圖4可知,葉蠟石在高能球磨研磨至60min后,葉蠟石的晶體結(jié)構(gòu)尚未發(fā)生改變;但研磨至120min后,葉蠟石的晶體結(jié)構(gòu)已發(fā)生明顯的變化,葉蠟石晶體結(jié)構(gòu)的(006)﹑(004)與(002)晶面衍射峰已基本消失。筆者進(jìn)一步就研磨60 min與180 min后的粉體及其相應(yīng)噴霧干燥后的粉體進(jìn)行XRD對(duì)比測(cè)試,結(jié)果見(jiàn)圖4。比較噴霧干燥前后的粉體XRD譜圖特點(diǎn)可知,粉晶衍射特征基本一致,因此表明噴霧干燥對(duì)葉蠟石晶體結(jié)構(gòu)的改變并無(wú)明顯的影響。
圖4 不同研磨時(shí)間后葉蠟石粉體的XRD譜圖
葉蠟石粉體在短時(shí)間的高能球磨下,結(jié)合噴霧干燥工藝可以制備出分散的單層葉蠟石板片顆粒,且納米板片在長(zhǎng)軸方向上的粒徑大小為0.2~1.2 μm,板片的厚度約為(8±2)nm。在較長(zhǎng)時(shí)間的球磨后,因粉體表面能的增加,研磨后的粉體逐漸出現(xiàn)團(tuán)聚,且團(tuán)聚后的準(zhǔn)球形顆粒粒徑大小不一。上述較長(zhǎng)研磨時(shí)間下的粉體再經(jīng)噴霧干燥處理后,粉體的球狀特征沒(méi)有消失,但是其顆粒的大小卻趨于均一化,且粒徑約為2.5 μm。相關(guān)葉蠟石板片在其長(zhǎng)徑方向上實(shí)現(xiàn)納米尺度的工作有待進(jìn)一步研究。
[1]Pérez-RodríguezJL,WiewioraA,Ramirez-ValleV,etal.Preparation of nano-pyrophyllite:Comparative study of sonication and grinding[J].Journal of Physics and Chemistry of Solids,2007,68(5/6):1225-1229.
[2]Kuk C,Hankwon C,Dae S,et al.Synthesis of dispersed CaCO3nanoparticles by the ultrafine grinding[J].Journal of Industrial and Engineering Chemistry,2009,15(2):243-246.
[3]Hrachova J,Komadel P,F(xiàn)ajnor V S.The effect of mechanical treatment on the structure of montmorillonite[J].Materials Letters,2007,61(16):3361-3365.
[4]Hrachova J,Madejova J,Billik P,et al.Dry grinding of Ca and octadecyltrimethylammonium montmorillonite[J].Journal of Colloid and Interface Science,2007,316(2):589-595.
[5]Xia Maosheng,Jiang Yinshan,Zhao Lei,et al.Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,356(1/2/3):1-9.
[6]Aglietti E F.The effect of dry grinding on the structure of talc[J]. Applied Clay Science,1994,9(2):139-147.
[7]Sanchez-Soto P J,Wiewiora A,Aviles M A,et al.Talc from Puebla deLillo,Spain.II.Effectofdrygrindingonparticlesizeandshape[J]. Applied Clay Science,1997,12(4):297-312.
[8]Zajac J,Malandrini H.Changes in the immersional enthalpy of talc in n-heptane and water as a function of grinding[J].Polish Journal of Chemistry,1997,71(5):686-691.
[9]Kano J,Miyazaki M,Saito F.Ball mill simulation and powder characteristics of ground talc in various types of mill[J].Advanced Powder Technology,2000,11(3):333-342.
[10]Garcia F G,Abrio M T R,Rodrigues M G.Effects of dry grinding ontwokaolinsofdifferentdegreesofcrystallinity[J].ClayMinerals,1991,26(6):549-565.
[11]Suraj G,Iyer C S P,Rugmini S,et al.The effect of micronization on kaolinites and their sorption behaviour[J].Applied Clay Science,1997,12(1/2):111-130.
[12]Sánchez-Soto P J,María del Carmen Jiménez de Haro,Pérez-Maqueda L A,et al.Effects of dry grinding on the structural changes of kaolinite powders[J].Journal of the American Ceramic Society,2000,83(9):1649-1657.
[13]嚴(yán)俊,胡仙超,邵佳明,等.葉臘石干法研磨中微結(jié)構(gòu)及物相變化研究[J].硅酸鹽通報(bào),2011,30(5):993-997.
[14]嚴(yán)俊,張儉,胡仙超,等.葉臘石微結(jié)構(gòu)及其晶體結(jié)構(gòu)缺陷的高分辨透射電鏡分析[J].礦物學(xué)報(bào),2012,32(1):65-73.
Preparation and characterization of nano-sized pyrophyllite powders with dispersed lamellar or spheroidal structure
Yan Jun1,2,Tao Jinbo1,Deng Xiaoqiong1,Hu Danjing1,Liu Peijun1,Sheng Jiawei2
(1.Zhejiang Institute of QualityInspection Science,Hangzhou 310013,China;2.College of Chemical Engineering and Materials Science,Zhejiang University of Technology)
Spray drying technique combining with high energy ball milling for the preparation of dry dispersed pyrophyllite powders with lamellar or spheroidal structure was studied,and the prepared powders were characterized by X-ray diffraction(XRD)and scanning electron microscope(FE-SEM).Results showed that:when grounding for a short time and sprayed drying,dispersed pyrophyllite powders with single lamellar structure were got,at the same time,the lamellar structure and crystalline character are the same as original ones,and the length of single lamellar pyrophyllite at long axis direction was at 0.2~1.2 μm with(8±2)nm in thickness.As the increasing of grinding time,pyrophyllite aggregates with spheroidal structure were achieved through spray drying technique,and the single spheroidal aggregate was about 2.5 μm in diameter,which was composed of nano-sized pyrophyllite lamellars.Furthermore,the results of XRD indicated that the spray drying did not induce the crystal structure change.
pyrophyllite;high energy ball milling;spray drying;scanning electron microscope;X-ray diffraction
TQ127.2
A
1006-4990(2013)07-0009-03
2013-01-17
嚴(yán)俊(1981—),男,博士,研究方向?yàn)榈V物功能材料,已發(fā)表論文20余篇。
浙江省科技廳重大主題專項(xiàng)(2007C111042);浙江省科技廳公益技術(shù)研究社會(huì)發(fā)展項(xiàng)目(2011C33SAB80001)。
聯(lián)系方式:yanj_zjut@163.com