李景娟 高建偉
作者簡(jiǎn)介:李景娟(1982-),女,博士,主要從事植物遺傳學(xué)方面的研究。
通訊作者:高建偉 (1967-),男,研究員,博士,主要從事蔬菜育種與分子生物學(xué)方面的研究。
摘要:根系形態(tài)影響植物對(duì)營(yíng)養(yǎng)元素的吸收利用,反過(guò)來(lái)營(yíng)養(yǎng)元素也會(huì)調(diào)控根系的發(fā)育。研究營(yíng)養(yǎng)元素調(diào)控根系形態(tài)的遺傳機(jī)制對(duì)定向改良根系、培育高效利用肥料的農(nóng)作物新品種具有重要意義。氮和磷是植物生長(zhǎng)所需的大量元素,本文對(duì)近年來(lái)氮磷調(diào)控根系形態(tài)的分子機(jī)制方面的研究進(jìn)展進(jìn)行了綜述。
關(guān)鍵詞:植物;根系形態(tài);氮;磷;分子機(jī)制
中圖分類號(hào):S143.4+1 文獻(xiàn)標(biāo)識(shí)號(hào):A 文章編號(hào):1001-4942(2013)06-0123-07
我國(guó)多數(shù)農(nóng)田土壤需施用化肥以使農(nóng)作物高產(chǎn),隨著施肥量的增加,肥料帶來(lái)的增產(chǎn)效果逐年遞減,作物對(duì)肥料的利用率也不斷降低。例如作為我國(guó)主要糧食作物之一的小麥,對(duì)氮肥的利用效率僅為282%,對(duì)磷肥的利用效率只有107%[1,2]。過(guò)度施肥導(dǎo)致環(huán)境惡化,使糧食增產(chǎn)面臨巨大的資源環(huán)境壓力,因此提高作物對(duì)肥料的利用效率對(duì)我國(guó)農(nóng)業(yè)的可持續(xù)發(fā)展具有重要意義。
根系是植物吸收養(yǎng)分的重要器官,其在土壤中的分布影響植物對(duì)養(yǎng)分的吸收效率。有研究表明,小麥的根干重與吸氮量具有極顯著的正相關(guān)性[3];許多調(diào)控苗期根干重的QTLs位點(diǎn)與調(diào)控苗期和/或全生育期吸氮量和吸磷量的QTLs位點(diǎn)連鎖[3,4];根系在不同土層的分布也會(huì)影響到小麥的營(yíng)養(yǎng)吸收利用效率[5,6]。
根系的生長(zhǎng)發(fā)育易受各種環(huán)境因素的影響[7,8],土壤中的營(yíng)養(yǎng)元素是調(diào)控根系形態(tài)的最重要的環(huán)境因素之一。營(yíng)養(yǎng)元素對(duì)根系形態(tài)的調(diào)控可提高植物對(duì)養(yǎng)分條件的適應(yīng)性,進(jìn)一步促進(jìn)植物對(duì)養(yǎng)分的吸收和利用。在眾多的營(yíng)養(yǎng)元素中,氮和磷是植物生長(zhǎng)發(fā)育所必需的大量元素,前人對(duì)它們調(diào)控根系形態(tài)的分子機(jī)制進(jìn)行了大量研究,本文對(duì)這方面的研究進(jìn)展進(jìn)行了綜述,旨在為進(jìn)一步研究根系形態(tài)發(fā)育及選育高效利用養(yǎng)分的作物新品種提供參考。
1 氮素對(duì)根系形態(tài)的調(diào)控及其分子機(jī)制
氮素是植物需要量最大的營(yíng)養(yǎng)元素之一。氮素營(yíng)養(yǎng)水平對(duì)根系的生長(zhǎng)發(fā)育有著明顯的影響。根系形態(tài)對(duì)氮素的響應(yīng)主要有4種形式:①低氮促進(jìn)根系的發(fā)育;②局部供氮促進(jìn)側(cè)根的伸長(zhǎng);③高碳氮比抑制側(cè)根的起始;④有機(jī)氮抑制主根的生長(zhǎng),促進(jìn)側(cè)根的發(fā)育[9]。
11 低氮促進(jìn)根系的發(fā)育
低氮抑制地上部的生長(zhǎng)而促進(jìn)根系的發(fā)育。低氮對(duì)根系發(fā)育的促進(jìn)作用是植物適應(yīng)低氮脅迫的重要機(jī)制之一。低氮條件下,植物中碳水化合物的分配比例發(fā)生變化,更多的碳水化合物向根系分配,在根中同化,促進(jìn)根系的生長(zhǎng)[10],導(dǎo)致了根冠比增加。根冠比增加是植物普遍存在的一種對(duì)缺氮的適應(yīng)性反應(yīng),利于氮素的吸收[11]。
多數(shù)陸生植物以NO-3為主要氮源。高濃度的NO-3抑制側(cè)根的發(fā)育,低濃度NO-3脅迫則促進(jìn)側(cè)根的分枝。高濃度NO-3對(duì)側(cè)根的抑制作用主要發(fā)生在側(cè)根從主根出現(xiàn)之后,生長(zhǎng)素的合成或運(yùn)輸可能參與了該信號(hào)通路,NO-3可能會(huì)抑制生長(zhǎng)素的合成或從地上部向根部的運(yùn)輸[12]。也有報(bào)道稱ABA依賴的信號(hào)途徑也參與了高NO-3抑制側(cè)根的發(fā)育過(guò)程。ABA非敏感型突變體abi4在高氮條件下對(duì)側(cè)根的抑制作用明顯降低[13]。擬南芥 ABA非敏感型突變體在外施ABA的條件下仍然能夠產(chǎn)生側(cè)根,它們對(duì)高氮的敏感性也降低,表明ABA和氮對(duì)側(cè)根的抑制作用可能有著相同的機(jī)制[9,13]。
從高NO-3轉(zhuǎn)移到低NO-3條件下時(shí),擬南芥?zhèn)雀钠鹗紩?huì)受到誘導(dǎo),在此過(guò)程中NRT21起了重要作用[14]。將擬南芥和大豆從高氮條件轉(zhuǎn)移到低氮條件下,根系生長(zhǎng)素的含量增加,表明氮會(huì)影響生長(zhǎng)素的合成和轉(zhuǎn)運(yùn)[15,16]。
NO-3不但作為基本營(yíng)養(yǎng),而且也作為信號(hào)分子調(diào)控根系形態(tài)。將擬南芥從無(wú)NO-3的培養(yǎng)基轉(zhuǎn)移到有NO-3的培養(yǎng)基上繼續(xù)培養(yǎng)時(shí),側(cè)根的發(fā)育會(huì)受到誘導(dǎo)。Gifford等研究表明NO-3可抑制miR167的表達(dá)水平,進(jìn)一步提高ARF8的表達(dá),從而提高側(cè)根出現(xiàn)的比例[17]。Vidal等的研究表明,NO-3可誘導(dǎo)miR393的表達(dá),miR393直接降解其靶基因AFB3,AFB3是一種生長(zhǎng)素受體,miR393通過(guò)直接影響根系對(duì)生長(zhǎng)素的感知從而進(jìn)一步調(diào)控主根和側(cè)根的發(fā)育[18]。
擬南芥對(duì)NO-3的響應(yīng)主要體現(xiàn)在側(cè)根上,主根對(duì)NO-3的響應(yīng)不敏感[19],其側(cè)根對(duì)NO-3響應(yīng)的分子機(jī)制研究較為深入,而主根對(duì)NO-3的響應(yīng)研究較少[9]。與擬南芥的根系形態(tài)有所不同,單子葉作物的根系為須根系,對(duì)NO-3的響應(yīng)也有所不同。例如在玉米中,低NO-3顯著促進(jìn)主根伸長(zhǎng),過(guò)量供NO-3則抑制主根的伸長(zhǎng)[20,21]。有研究稱生長(zhǎng)素[22]、細(xì)胞分裂素[21]和NO[23]可能參與了玉米主根對(duì)NO-3的響應(yīng),高NO-3處理會(huì)增加玉米根系中細(xì)胞分裂素的含量,降低生長(zhǎng)素和NO的水平,其具體分子機(jī)制目前尚不清楚[24]。小麥根系對(duì)NO-3的響應(yīng)與玉米有相似的表型,不僅側(cè)根受低氮誘導(dǎo),數(shù)目增加,長(zhǎng)度變長(zhǎng),主根長(zhǎng)度也變長(zhǎng),其分子機(jī)制可能與玉米主根對(duì)NO-3的響應(yīng)機(jī)制相似。
NH+4也是土壤中的主要氮源之一 ,高濃度的NH+4也會(huì)抑制根系的發(fā)育[25]。GDP-甘露糖焦磷酸化酶(GMPase)參與了高NH+4對(duì)根系的調(diào)控過(guò)程,編碼GMPase的基因突變后,根系對(duì)NH+4敏感度顯著提高[26]。GMPase基因參與的NH+4對(duì)根系發(fā)育的調(diào)控可能與生長(zhǎng)素和乙烯的動(dòng)態(tài)平衡和/或NO信號(hào)通路有關(guān)[27]。
12 局部供氮促進(jìn)側(cè)根的伸長(zhǎng)
當(dāng)局部供應(yīng)高濃度的NO-3時(shí),可以誘導(dǎo)側(cè)根的伸長(zhǎng),MADS-box轉(zhuǎn)錄因子ANR1和氮轉(zhuǎn)運(yùn)子NRT11參與了此調(diào)控過(guò)程。Zhang和Forde首次在擬南芥中克隆了ANR1基因,該基因的表達(dá)受硝酸鹽誘導(dǎo),在不同的土壤NO-3水平下直接調(diào)控硝酸鹽誘導(dǎo)的側(cè)根伸長(zhǎng)[28]。Remans等證明氮轉(zhuǎn)運(yùn)子NRT11可能在NO-3誘導(dǎo)的側(cè)根伸長(zhǎng)過(guò)程中起著重要作用,并且位于ANR1的上游[29]。生長(zhǎng)素信號(hào)途徑也可能參與了局部供NO-3促進(jìn)側(cè)根伸長(zhǎng)的過(guò)程。生長(zhǎng)素轉(zhuǎn)運(yùn)子AXR4的突變體就不能對(duì)局部高氮做出響應(yīng)[30]。局部供NO-3可降低生長(zhǎng)素從地上部向根系的運(yùn)輸,使根系中的生長(zhǎng)素含量降低到更適合側(cè)根發(fā)育的水平[31]。
局部供NH+4也可以誘導(dǎo)側(cè)根的發(fā)育,與局部供NO-3誘導(dǎo)側(cè)根伸長(zhǎng)不同,NH+4主要是誘導(dǎo)側(cè)根的起始,從而增加了側(cè)根的數(shù)目和密度,該過(guò)程依賴于胺轉(zhuǎn)運(yùn)子AMT13[32]。13 高碳氮比抑制側(cè)根的起始
擬南芥的側(cè)根發(fā)生受高碳氮比的抑制,氮轉(zhuǎn)運(yùn)子NRT21參與了此過(guò)程。AtNRT21基因突變體(lin1)的側(cè)根發(fā)生不受高碳氮比的抑制,這一表型并不是由于NO-3吸收的減少造成的,因此AtNRT21可能在這一過(guò)程中起著感受NO-3或者介導(dǎo)信號(hào)轉(zhuǎn)導(dǎo)的功能[33]。
14 谷氨酸抑制主根的生長(zhǎng)而促進(jìn)側(cè)根的發(fā)育
與NO-3和NH+4等無(wú)機(jī)氮對(duì)根系形態(tài)的調(diào)控不同,作為有機(jī)氮的谷氨酸會(huì)抑制主根的生長(zhǎng)而促進(jìn)側(cè)根發(fā)生和生長(zhǎng),生長(zhǎng)素可能參與了谷氨酸對(duì)根系的調(diào)控[34],氮轉(zhuǎn)運(yùn)子NRT11也參與其中,至于NRT11是在生長(zhǎng)素的上游還是下游起作用,目前尚不確定[35]。
2 磷對(duì)根系形態(tài)的調(diào)控及其分子機(jī)制
磷也是影響植物生長(zhǎng)發(fā)育的大量元素。植物根系所吸收的磷主要是正磷酸鹽。根系形態(tài)對(duì)磷的響應(yīng)主要與植物的適應(yīng)性有關(guān)[36]。不同物種對(duì)磷的響應(yīng)機(jī)制有所不同。根系對(duì)磷的響應(yīng)主要有以下3種形式:①高磷促進(jìn)主根的伸長(zhǎng),抑制側(cè)根的發(fā)育,低磷抑制主根伸長(zhǎng),促進(jìn)側(cè)根發(fā)育;②磷水平影響根系的生長(zhǎng)角度;③低磷促進(jìn)根系分泌特異物質(zhì)活化難溶性磷。
21 磷水平影響主根的長(zhǎng)度、側(cè)根和根毛的長(zhǎng)度和數(shù)目
在擬南芥中,高磷能夠促進(jìn)主根伸長(zhǎng),抑制側(cè)根伸長(zhǎng),降低側(cè)根密度[37]。在磷饑餓條件下,主根的生長(zhǎng)受到抑制,而側(cè)根長(zhǎng)度、側(cè)根密度、根毛長(zhǎng)度和密度都增加,從而形成了一種高度分枝的淺層根系形態(tài)[38]。這種機(jī)制阻止了根系向下層更貧瘠土壤的生長(zhǎng),而增加了對(duì)含磷較為豐富的淺層土壤中磷的利用。
低磷條件下,擬南芥主根生長(zhǎng)功能的喪失主要是通過(guò)降低細(xì)胞的伸長(zhǎng)和逐步喪失分生組織活性造成的[39]。低磷條件下,phosphate deficiency response-2 (pdr2)突變體其根系分生組織的細(xì)胞分裂受到更明顯的抑制,這表明PDR2是低磷條件下根系分生組織發(fā)生作用所必需的,它是感受外源磷狀況并使根系做出相應(yīng)響應(yīng)的磷敏感節(jié)點(diǎn)。擬南芥主根的根尖與低磷培養(yǎng)基的物理接觸是根系做出低磷響應(yīng)的充要條件[40]。多銅氧化酶突變體low phosphate root-1/-2 (lpr1/-2)在低磷條件下形成較長(zhǎng)的主根,這表明根冠對(duì)營(yíng)養(yǎng)元素的感知具有重要作用[41]。LPRs與低磷條件下促進(jìn)側(cè)根生長(zhǎng)有沒有直接關(guān)系,目前還不清楚[7]。
根系對(duì)低磷的響應(yīng)與根系對(duì)生長(zhǎng)素敏感性的增加和生長(zhǎng)素運(yùn)輸?shù)母淖兙哂酗@著相關(guān)性[42,43]。BIG是生長(zhǎng)素運(yùn)輸所需的一個(gè)蛋白,它突變后降低了低磷條件下側(cè)根的數(shù)目[44,45]。但是,BIG以及生長(zhǎng)素的轉(zhuǎn)運(yùn)與低磷條件下根系形態(tài)的其它變化無(wú)直接關(guān)系[45]。Pérez-Torres等的研究表明,低磷誘導(dǎo)的根系對(duì)生長(zhǎng)素敏感性的增加依賴于生長(zhǎng)素受體TIR1和生長(zhǎng)素響應(yīng)因子ARF19,低磷誘導(dǎo)TIR1的表達(dá),TIR1的表達(dá)加速了生長(zhǎng)素抑制因子AUX/IAA的降解,啟動(dòng)下游響應(yīng)因子ARF19的表達(dá),從而促進(jìn)側(cè)根的形成和出現(xiàn)[46]。Franco-Zorrilla 等研究表明,細(xì)胞分裂素信號(hào)抑制根系對(duì)缺磷的多種響應(yīng)[47]。另外,GA- DELLA蛋白信號(hào)傳導(dǎo)途徑也參與了根系對(duì)缺磷的響應(yīng),DELLA蛋白是GA信號(hào)途徑中的生長(zhǎng)抑制因子,低磷會(huì)降低根系中GA的生物活性,導(dǎo)致DELLA蛋白的積累,進(jìn)一步影響根系和根毛的發(fā)育[48]。有研究表明,乙烯信號(hào)通路在低磷響應(yīng)基因的表達(dá)過(guò)程中起著正調(diào)控作用,外施乙烯合成前體ACC可顯著提高植物的低磷反應(yīng),外施乙烯信號(hào)通路的抑制劑Ag+則抑制植物的低磷反應(yīng)[49]。
許多轉(zhuǎn)錄因子也參與了磷水平對(duì)根系的調(diào)控。PHR1是調(diào)控磷的吸收和分配過(guò)程中的一個(gè)關(guān)鍵轉(zhuǎn)錄因子,它可調(diào)控許多低磷響應(yīng)基因的表達(dá)[50]。PHR1的同源基因OsPHR2的超量表達(dá)會(huì)提高根系的長(zhǎng)度和根毛的數(shù)目[51,52]。在水稻中,轉(zhuǎn)錄因子OsPTF1在根系中的表達(dá)受到低磷的誘導(dǎo),而在地上部的表達(dá)則不受影響,超表達(dá)OsPTF1后,轉(zhuǎn)基因水稻的根系總長(zhǎng)度和表面積顯著提高,耐低磷的能力也顯著提高[53]。轉(zhuǎn)錄因子OsMYB2P-1的表達(dá)也受到低磷的誘導(dǎo),在擬南芥和水稻中超表達(dá)OsMYB2P-1后,在磷充足的條件下,超表達(dá)系的主根長(zhǎng)度低于野生型,在低磷條件下,其主根和側(cè)根長(zhǎng)度都顯著增加,說(shuō)明該轉(zhuǎn)錄因子參與了磷對(duì)根系形態(tài)的調(diào)控過(guò)程[54]。在擬南芥中,轉(zhuǎn)錄因子WRKY75、ZAT6和BHLH32在根系中的表達(dá)也受到低磷的誘導(dǎo)。當(dāng)WRKY75的表達(dá)受到抑制時(shí),側(cè)根長(zhǎng)度、數(shù)目以及根毛數(shù)目都顯著降低[55]。ZAT6編碼一種鋅指蛋白類轉(zhuǎn)錄因子,超表達(dá)ZAT6后擬南芥幼苗主根的生長(zhǎng)受到明顯抑制,較老的轉(zhuǎn)基因植株的根系形態(tài)也會(huì)發(fā)生明顯改變,主根的長(zhǎng)度和側(cè)根的數(shù)目與野生型相比顯著降低,而側(cè)根的長(zhǎng)度則明顯增加[56]。BHLH32是擬南芥響應(yīng)低磷脅迫過(guò)程中的一個(gè)負(fù)調(diào)控因子,它突變后會(huì)導(dǎo)致在供磷充足條件下根毛數(shù)目的顯著增加[57]。
22 磷水平影響根系的向重力性
與擬南芥根系對(duì)磷的響應(yīng)不同,豆科作物可通過(guò)改變根系的向重力性來(lái)提高其對(duì)磷水平的適應(yīng)性。低磷條件下,菜豆根系的生長(zhǎng)角度由向下延伸轉(zhuǎn)變?yōu)橄蛲庋由靃58]。大豆的根系構(gòu)型與磷效率密切相關(guān),淺根型大豆根系具有合理的三維空間分布[59]。磷的有效性對(duì)大豆根系的向重力性具有明顯的調(diào)節(jié)作用,這種調(diào)節(jié)作用因品種而異,磷脅迫條件下大部分品種的根構(gòu)型有變淺的趨勢(shì),這種變化趨勢(shì)與大豆適應(yīng)低磷脅迫的能力密切相關(guān)[60,61]。目前對(duì)于磷水平影響根系的向重力性的分子機(jī)制還有待深入研究。
23 低磷促進(jìn)根系分泌特異物質(zhì)活化難溶性磷
低磷條件下,有些植物的根系可以向土壤中分泌更多的有機(jī)酸和酸性磷酸酶等來(lái)活化土壤中的難溶性磷,使之變成可被植物利用的可溶性磷,促進(jìn)磷的吸收[62]。白羽扇豆在低磷條件下會(huì)形成排根向土壤中分泌有機(jī)酸和酸性磷酸酶[63]。缺磷處理后,多數(shù)玉米的品種會(huì)形成較大的根系并且分泌較多的酸性磷酸酶[64]。磷脅迫條件下番茄根系分泌的酸性磷酸酶也顯著提高[65]。在擬南芥中,共有29個(gè)編碼紫色酸性磷酸酶的基因,AtPAP12和 AtPAP26在擬南芥根系受低磷誘導(dǎo)酸性磷酸酶活性升高過(guò)程中起著主要的作用[66]。AtPAP10在轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平都受到低磷的誘導(dǎo),它與低磷誘導(dǎo)的根系表型的變化有密切關(guān)系,超表達(dá)AtPAP10后可顯著提高擬南芥在低磷條件下的主根長(zhǎng)度、側(cè)根數(shù)目和長(zhǎng)度,AtPAP10突變體的主根長(zhǎng)度、側(cè)根數(shù)目和長(zhǎng)度則顯著降低[67]。在大豆中過(guò)量表達(dá)AtPAP15可顯著提高磷效率[68]。有研究表明,乙烯信號(hào)通路在低磷誘導(dǎo)酸性磷酸酶的表達(dá)過(guò)程中起著正調(diào)控作用,乙烯信號(hào)通路的正調(diào)控因子EIN2的突變體的酸性磷酸酶活性顯著降低,乙烯信號(hào)通路的負(fù)調(diào)控因子CTR1的突變體的酸性磷酸酶活性則顯著升高[49]。
3 結(jié)論與展望
氮和磷作為植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素,對(duì)根系的發(fā)育都有顯著的影響。根系對(duì)氮和磷的響應(yīng)存在一些相同點(diǎn),例如在氮和磷匱乏的條件下都會(huì)通過(guò)促進(jìn)側(cè)根的發(fā)育來(lái)增大根系的吸收面積,從而獲得更多的養(yǎng)分,提高植物在氮磷虧缺條件下的適應(yīng)能力[12~16, 25~27, 38]。氮和磷對(duì)根系構(gòu)型的調(diào)控也存在許多不同點(diǎn)。例如低氮脅迫會(huì)促進(jìn)多數(shù)植物主根的生長(zhǎng)[20,21],而低磷則抑制主根的生長(zhǎng)[38~41],在有些植物中還能改變根系的向重力性[58~61];磷脅迫條件下可誘導(dǎo)根系分泌較多的有機(jī)酸和/或酸性磷酸酶等物質(zhì)[62~65],氮脅迫對(duì)于根系分泌物的影響尚少見報(bào)道。這與植物在長(zhǎng)期進(jìn)化過(guò)程中適應(yīng)氮和磷在土壤中的不同性質(zhì)有關(guān):氮在土壤中的移動(dòng)性和可溶性強(qiáng),增加主根長(zhǎng)度有利于根系吸收深層土壤中的氮;而磷在土壤中移動(dòng)性和可溶性差,表層土壤有效磷含量高,通過(guò)抑制主根伸長(zhǎng)和/或改變根系的向重力性等,可使更多的根系分布在有效磷豐富的表層土壤,通過(guò)刺激根系分泌較多的有機(jī)酸、酸性磷酸酶等物質(zhì),可提高土壤中的有效磷含量,促進(jìn)磷的吸收和利用。根系對(duì)氮素的響應(yīng)除了與其對(duì)氮水平的適應(yīng)性有關(guān)外,氮素也作為信號(hào)物質(zhì)來(lái)調(diào)控根系的發(fā)育[17,18],而根系對(duì)磷的響應(yīng)則主要與其對(duì)磷水平的適應(yīng)性有關(guān)。
目前關(guān)于氮磷調(diào)控根系發(fā)育的分子機(jī)制已有了一些認(rèn)識(shí),但主要集中在對(duì)于模式植物擬南芥的研究,許多作物對(duì)氮磷的響應(yīng)與擬南芥有所不同。例如擬南芥的主根對(duì)低氮處理不敏感,而小麥和玉米等的主根則受低氮誘導(dǎo)顯著伸長(zhǎng)[20,21];低磷條件下,擬南芥的主根伸長(zhǎng)受到顯著抑制,而小麥的根系長(zhǎng)度卻顯著提高[69];磷水平可改變豆科植物根系的向重力性,目前在擬南芥中尚未有研究。對(duì)于氮磷調(diào)控作物根系形態(tài)的分子機(jī)理,仍有許多方面需要深入研究。參 考 文 獻(xiàn):
[1] 王激清 我國(guó)主要糧食作物施肥增產(chǎn)效應(yīng)與養(yǎng)分利用效率的分析與評(píng)價(jià)[D] 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2007, 23-45
[2] 張福鎖, 王激清, 張衛(wèi)峰, 等 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J] 土壤學(xué)報(bào), 2008, 45(5):915-924
[3] An D G, Su J Y, Liu Q Y, et al Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L) [J] Plant and Soil, 2006, 284(1-2):73-84
[4] Su J, Zheng Q, Li H, et al Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions [J] Plant Sci, 2009,176(6):824-836
[5] 張麗娟, 巨曉棠, 高 強(qiáng), 等兩種作物對(duì)土壤不同層次標(biāo)記硝態(tài)氮利用的差異[J] 中國(guó)農(nóng)業(yè)科學(xué), 2005,38(2):333-340
[6] Wang R F, An D G, Hu C S, et al Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain [J] Crop Pasture Sci, 2011, 62(6):504-514
[7] Nibau C, Gibbs D J, Coates, J C Branching out in new directions: the control of root architecture by lateral root formation [J] New Phytol,2008,179(3):595-614
[8] Osmont K S, Sibout R,Hardtke C S Hidden branches: developments in root system architecture [J] Annu Rev Plant Biol, 2007, 58: 93-113
[9] Zhang H, Rong H,Pilbeam D Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana [J] J Exp Bot, 2007, 58(9):2329-2338
[10] Van der Werf A,Nagel O W Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion [J] Plant and Soil, 1996, 185(1):21-32
[11] Reynolds H L,Antonio C D The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion [J] Plant and Soil, 1996,185(1):75-97
[12] Walch-Liu P, Ivanov I I, Filleur S, et al Nitrogen regulation of root branching [J] Ann Bot, 2006, 97(5):875-881
[13] Signora L, De Smet I, Foyer C H, et al ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis [J] Plant J,2001,28(6):655-662
[14] Remans T, Nacry P, Pervent M, et al A central role for the nitrate transporter NRT21 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis [J] Plant Physiol, 2006, 140(3):909-921
[15] Caba J M, Centeno M L, Fernandez B, et al Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type [J] Planta, 2000,211(1):98-104
[16] Walch-Liu P, Neumann G, Bangerth F, et al Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J] J Exp Bot, 2000,51(343):227-237
[17] Gifford M L, Dean A, Gutierrez R A, et al Cell-specific nitrogen responses mediate developmental plasticity [J] Proc Natl Acad Sci USA, 2008, 105(2):803-808
[18] Vidal E A, Araus V, Lu C, et al Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J] Proceedings of the National Academy of Sciences, 2010, 107(9):4477-4482
[19] Bao J, Chen F, Gu R, et al Lateral root development of two Arabidopsis auxin transport mutants, aux 1-7 and eir 1-1, in response to nitrate supplies[J]Plant Sci,2007, 173(4):417-425
[20] Chun L, Mi G, Li J, et al Genetic analysis of maize root characteristics in response to low nitrogen stress [J] Plant and Soil,2005, 276(1-2):369-382
[21] Tian Q, Chen F, Zhang F, et al Possible involvement of cytokinin in nitrate-mediated root growth in maize [J] Plant and Soil, 2005, 277(1-2):185-196
[22] Tian Q, Chen F, Liu J, et al Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots [J] Plant Physiol, 2008, 165(9):942-951
[23] Zhao D, Tian Q, Li L, et al Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays [J] Ann Bot, 2007, 100(3):497-503
[24] Mi G, Chen F,Zhang F Multiple signaling pathways control nitrogen-mediated root elongation in maize [J] Plant Signal Behav, 2008, 3(11):1030-1032
[25] Li B H,Shi W M Effects of elevated NH+4 on Arabidopsis seedlings different in accessions [J] Acta Pedol Sinica, 2007, 44:508–515
[26] Qin C, Qian W, Wang W, et al GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana [J] Proc Natl Acad Sci, USA, 2008, 105(47):18308-18313
[27] Barth C, Gouzd Z A, Steele H P, et al A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis [J] J Exp Bot, 2010, 61(2):379-394
[28] Zhang H, Forde B G An Arabidopsis MADS box gene that controls nutrient-induces changes in root architecture [J] Science, 1998, 279(5349):407-409
[29] Remans T, Nacry P, Pervent M, et al The Arabidopsis NRT11transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J] Proc Natl Acad Sci USA, 2006, 103(50):19206-19211
[30] Dharmasiri S, Swarup R, Mockaitis K, et al AXR4 is required for localization of the auxin influx facilitator AUX1 [J] Science, 2006, 312(5777):1218-1220
[31] Liu J, An X, Cheng L, et al Auxin transport in maize roots in response to localized nitrate supply [J] Ann Bot, 2010, 106(6):1019-1026
[32] Lima J E, Kojima S, Takahashi H, et al Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1;3-Dependent Manner [J] Plant Cell, 2010, 22(11):3621-3633
[33] Little D Y, Rao H, Oliva S, et al The putative high-affinity nitrate transporter NRT21 represses lateral root initiation in response to nutritional cues [J] Proc Natl Acad Sci USA , 2005, 102(38):13693-13698
[34] Walch-Liu P, Liu L H, Remans T, et al Evidence that l-Glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana [J] Plant Cell Physiol, 2006, 47(8):1045-1057
[35] Walch-Liu P,F(xiàn)orde B G Nitrate signalling mediated by the NRT11 nitrate transporter antagonises l-glutamate-induced changes in root architecture [J] Plant J, 2008, 54(5):820-828
[36] Fitter A, Williamson L, Linkohr B, et al Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions [J] Proc R Soc Lond B, 2002, 269(1504):2017-2022
[37] Linkohr B I, Williamson L C, Fitter A H et al Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis [J] Plant J, 2002, 29(6):751-760
[38] Williamson L C, Ribrioux S P, Fitter A H, et al Phosphate availability regulates root system architecture in Arabidopsis [J] Plant Physiol, 2001, 126(2):875-882
[39] Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, et al Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana [J] Plant Cell Physiol, 2005, 46(1):174-184
[40] Reymond M, Svistoonoff S, Loudet O, et al Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana [J] Plant Cell Environ, 2006, 29(1):115-125
[41] Svistoonoff S, Creff A, Reymond M, et al Root tip contact with low-phosphate media reprograms plant root architecture [J] Nat Genet, 2007, 39(6):792-796
[42] Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, et al Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system [J] Plant Physiol, 2002, 129(1):244-256
[43] Jain A, Poling M D, Karthikeyan A S, et al Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis [J] Plant Physiol,2007,144(1):232-247
[44] Gil P, Dewey E, Friml J, et al BIG: a calossin-like protein required for polar auxin transport in Arabidopsis [J] Genes Dev, 2001, 15(15):1985-1997
[45] Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, et al An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis Identification of BIG as a mediator of auxin in pericycle cell activation [J] Plant Physiol,2005,137(2):681-691
[46] Pérez-Torres C A, López-Bucio J, Cruz-Ramírez A, et al Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor [J] Plant Cell, 2008, 20(12):3258-3272
[47] Franco-Zorrilla J M, Martin A C, Leyva A, et al Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3 [J] Plant Physiol,2005,138(2),847-857
[48] Jiang C, Gao X, Liao L, et al Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis [J] Plant Physiol, 2007, 145(4), 1460-1470
[49] Lei M, Zhu C, Liu Y, et al Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis [J] New Phytol, 2011, 189(4): 1084-1095
[50] Rubio V, Linhares F, Solano R, et al A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae [J] Genes Dev, 2001, 15(16):2122-2133
[51] Nilsson L, Múller R, Nielsen T H Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana [J] Plant Cell Environ, 2007, 30(12):1499-1512
[52] Zhou J, Jiao F, Wu Z, et al OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants [J] Plant Physiol, 2008, 146(4):1673-1686
[53] Yi K, Wu Z, Zhou J, et al OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice [J] Plant Physiol, 2005, 138(4):2087-2096
[54] Dai X, Wang Y, Yang A, et al OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice [J] Plant Physiol, 2012, 159(1),169-183
[55] Devaiah B N, Karthikeyan A S, Raghothama K G WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J] Plant Physiol, 2007, 143(4):1789-1801
[56] Devaiah B N, Nagarajan V K, Raghothama K G Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6 [J] Plant Physiol, 2007, 145(1):147-159
[57] Chen Z H, Nimmo G A, Jenkins G I, et al BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis [J] Biochem J, 2007, 405(1):191-198
[58] Bonser A M, Lynch J, Snapp S Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris [J] New Phytol, 1996, 132(2):281-288
[59] 趙 靜, 付家兵, 廖 紅, 等 大豆磷效率應(yīng)用核心種質(zhì)的根構(gòu)型性狀評(píng)價(jià)[J] 科學(xué)通報(bào), 2004, 49(13): 1249-1257
[60] Liao H, Rubio G, Yan X L, et al Effect of phosphorus availability on basal root shallowness in common bean [J] Plant and Soil, 2001, 232(1):69-79
[61] 劉 靈, 廖 紅, 王秀榮, 等 不同根構(gòu)型大豆對(duì)低磷的適應(yīng)性變化及其與磷效率的關(guān)系[J] 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(4):1089-1099
[62] 洪常青, 聶艷麗 根系分泌物及其在植物營(yíng)養(yǎng)中的作用[J]生態(tài)環(huán)境, 2003,12(4):508-511
[63] Schulze J, Temple G, Temple S J, et al Nitrogen fixation by white lupin under phosphorus deficiency [J] Ann Bot, 2006, 98(4):731-740
[64] Gaume A, Mchler F, De León C, et al Low-P tolerance by maize (Zea mays L) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation [J] Plant and Soil, 2001, 228(2):253-264
[65] Goldstein A H, Baertlein R G Phosphate starvation inducible excretion of acid phosphatase by cells of Lycopersicon esculentum in suspension culture [J] J Cell Biochem Suppl, 1987, 11: 38-45
[66] Tran H T, Qian W, Hurley B A, et al Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana [J] Plant Cell Environ, 2010, 33(11):1789-1803
[67] Wang L, Li Z, Qian W, et al The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation [J] Plant Physiol, 2011, 157(3):1283-1299
[68] Wang X, Wang Y, Tian J, et al Overexpressing AtPAP15 enhances phosphorus efficiency in soybean [J] Plant Physiol, 2009, 151(1):233-240
[69] 孫海國(guó), 張福鎖 缺磷脅迫下的小麥根系形態(tài)特征研究[J] 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(3):295-299