国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

自噬調(diào)控腎臟衰老的分子機(jī)制及中藥的干預(yù)作用

2017-02-16 12:24涂玥孫偉陳滌平萬毅剛吳薇姚建
中國中藥雜志 2016年21期
關(guān)鍵詞:分子機(jī)制自噬中藥

涂玥+孫偉+陳滌平+萬毅剛+吳薇+姚建

[摘要]衰老是生物體在遺傳和環(huán)境等多種因素共同作用下而逐漸發(fā)生的組織、器官功能性衰退。自噬是真核細(xì)胞由溶酶體介導(dǎo)而降解細(xì)胞質(zhì)成分的過程。腎臟是典型的衰老靶器官。自噬可以調(diào)控腎臟衰老,自噬水平降低就會加速腎臟衰老,反之,自噬水平升高就能延緩腎臟衰老。在這一腎臟衰老的調(diào)控過程中,哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)及其相關(guān)信號途徑,包括腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)/mTOR、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/絲氨酸-蘇氨酸激酶(serine-threonine kinase,Akt)/mTOR、AMPK/沉默信息調(diào)節(jié)因子1(silent information regulation 1,Sirt1)和轉(zhuǎn)化生長因子β(transforming growth factorβ,TGF-β)等通路發(fā)揮了重要作用。在體內(nèi)調(diào)控這些信號途徑的關(guān)鍵信號分子就可以干預(yù)腎臟衰老。一些經(jīng)典的補(bǔ)腎、活血類中藥及其提取物,如冬蟲夏草(Cordyceps sinensis)、姜黃素(curcumin)、白藜蘆醇(resveratrol)等對腎臟衰老和/或腎臟自噬具備有益的影響。因此,基于自噬調(diào)控的分子機(jī)制揭示中藥抗腎臟衰老的藥理作用是今后的發(fā)展方向之一。

[關(guān)鍵詞]腎臟衰老; 中藥; 自噬; 分子機(jī)制; mTOR信號通路

[Abstract]Aging is the gradual functional recession of the living tissues or organs caused by a variety of genetic and environmental factors together. Autophagy is a process of degrading cytoplasmic components mediated by lysosomes in eukaryotic cells. Kidney is a typical target organ of aging. Autophagy regulates renal aging. Decrease in autophagy can accelerate renal aging,whereas,increase in autophagy can delay renal aging. During the process of regulating renal aging,the mammalian target of rapamycin (mTOR) and its related signaling pathways including the adenosine monophosphate activated protein kinase (AMPK)/mTOR,the phosphatidylinositol 3-kinase (PI3K)/ serine-threonine kinase(Akt)/mTOR,the AMPK/silent information regulation 1 (Sirt1) and transforming growth factorβ (TGF-β) play the important roles in renal aging. Regulating the key signaling molecules in these pathwaysin vivo can control renal aging. Some Chinese herbal medicine (CHM) and their extracts with the effects of nourishing kidney or activating stasis, such asCordyceps sinensis, curcumin and resveratrol have the beneficial effects on renal aging and/or autophagy. Therefore,revealing the pharmacological effects of CHM in anti-renal aging based on the molecular mechanisms of autophagy will become one of the development trends in the future study.

[Key words]renal aging; Chinese herbal medicine; autophagy; molecular mechanisms; mTOR signaling pathway

doi:10.4268/cjcmm20162105

衰老(aging)是生物體在遺傳和環(huán)境等多種因素共同作用下而逐漸發(fā)生的組織、器官功能性衰退[1]。自噬(autophagy)是真核細(xì)胞由溶酶體介導(dǎo)而降解細(xì)胞質(zhì)成分的過程[2-3]。最近的研究表明,人體衰老往往伴有細(xì)胞自噬的異常[4],尤其在腎臟衰老的過程中,其調(diào)控機(jī)制與腎臟固有細(xì)胞自噬密切相關(guān)[5]。

1 自噬的分類和發(fā)生過程

基于細(xì)胞內(nèi)底物進(jìn)入溶酶體的不同方式,自噬分為巨自噬、微自噬和分子伴侶介導(dǎo)的自噬等3類,目前,對巨自噬的研究最為深入,一般說的“自噬”主要是指巨自噬[3]。自噬的發(fā)生過程可人為地分成4個步驟。①自噬體膜(phagophore)的形成:在多種自噬刺激因素(氨基酸、生長因子缺乏、低氧、感染及細(xì)胞器受損等)的誘導(dǎo)下,雙層結(jié)構(gòu)的自噬體膜在待降解的細(xì)胞器或蛋白周圍形成;②自噬體(autophagosome)的形成:隔離膜緩慢伸展,完全包裹待降解的細(xì)胞器或蛋白,形成自噬體;③自噬體的運(yùn)輸、融合:待降解物被自噬體運(yùn)輸至溶酶體,并與其融合,形成自噬溶酶體(autophagolysosome);④自噬體的裂解:溶酶體中的各種水解酶和蛋白酶溶解自噬體內(nèi)膜和包裹在其中的待降解物[6]。

2 自噬的機(jī)制

近年來借助有關(guān)酵母的研究,一系列自噬相關(guān)基因(autophagy-related genes,Atgs)被相繼確定,它們在自噬的誘導(dǎo)、產(chǎn)生、成熟和再循環(huán)等過程中是必不可少的。在起始階段,最關(guān)鍵的調(diào)節(jié)分子是Ⅲ類磷脂酰肌醇3-激酶(class Ⅲ phosphatidylinositol 3-kinase,Class Ⅲ PI3K)和空泡分選蛋白34(vacuolar protein sorting associated protein 34,Vps34)。Vps34與Atg6(又稱為“Beclin1”)相互作用,募集B-細(xì)胞淋巴瘤2(B-cell lymphoma 2,BCL-2)家族蛋白、Vps15和Atg14等自噬相關(guān)蛋白而形成“核心復(fù)合物”[7]。自噬小體的形成需要2種重要的泛素-蛋白酶系統(tǒng)支持,即“Atg5-Atg12系統(tǒng)”和“微管相關(guān)蛋白輕鏈3(microtubule associated protein light chain 3,LC3)/Atg8系統(tǒng)”。對于前者,Atg12能通過Atg7發(fā)揮類似E1泛素活化酶的作用,使其連接到Atg5,進(jìn)而,Atg10發(fā)揮類似E2泛素結(jié)合酶的作用, 使得Atg5-Atg12結(jié)合物通過非共價的形式與Atg16L1形成復(fù)合物;對于后者,LC3通過Atg7(E1樣蛋白)與Atg3(E2樣蛋白)、磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)結(jié)合,形成Ⅱ型LC3。這里,LC3作為“自噬核心蛋白”,它是自噬小體形成的關(guān)鍵步驟,與泛素樣結(jié)合蛋白SQSTM1/p62相互作用,加速自噬小體至溶酶體的運(yùn)輸過程,并實(shí)現(xiàn)降解[8] (圖1)。

3 自噬與腎臟衰老的關(guān)系

細(xì)胞衰老的普遍特征就是清除代謝廢物的功能減退,導(dǎo)致受損蛋白質(zhì)、細(xì)胞器過度積累而降低細(xì)胞的生存能力;細(xì)胞自噬的重要功能就是分解和循環(huán)利用受損蛋白質(zhì)、細(xì)胞器而提高細(xì)胞的生存能力,延緩其衰老[9-10]。因此,自噬缺乏就會加速細(xì)胞衰老。

腎臟是典型的衰老靶器官。自噬在維持足細(xì)胞和近端腎小管上皮細(xì)胞的功能和穩(wěn)態(tài)方面發(fā)揮著重要作用[11-12]。研究表明,老齡大鼠和小鼠的腎臟內(nèi)會出現(xiàn)線粒體形態(tài)改變和衰老相關(guān)蛋白質(zhì)累積,同時,伴有自噬活性的降低[13-14]。敲除小鼠足細(xì)胞或近端腎小管上皮細(xì)胞特異性Atg5基因都會導(dǎo)致細(xì)胞內(nèi)損傷線粒體和泛素化蛋白(衰老相關(guān)蛋白質(zhì))的累積,進(jìn)而,引起腎臟細(xì)胞衰老[15-16]。這些研究結(jié)果提示,對于足細(xì)胞和腎小管上皮細(xì)胞而言,自噬水平降低會加速腎臟衰老。

4 自噬調(diào)控腎臟衰老的分子機(jī)制

4.1 mTOR信號途徑 哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是調(diào)控細(xì)胞自噬的關(guān)鍵信號分子,磷酸化70kD核糖體S6激酶(phosphoprotein 70 S6Kinase,p70S6K)是其下游的特異性信號分子。當(dāng)mTOR/p70S6K信號通路激活,使得核糖體與內(nèi)質(zhì)網(wǎng)黏附增強(qiáng),影響內(nèi)質(zhì)網(wǎng)膜脫落,抑制自噬體膜形成,阻斷細(xì)胞自噬[17]。因此,抑制mTOR信號通路活性可以促進(jìn)細(xì)胞自噬[18-19]。研究顯示,衰老大鼠的腎臟組織中磷酸化mTOR(phosphorylated mTOR,p-mTOR)蛋白表達(dá)增加,經(jīng)mTOR抑制劑——雷帕霉素(rapamycin)干預(yù)后,L-亮氨酸所誘導(dǎo)的細(xì)胞衰老表型得到改善[20]。Ning等發(fā)現(xiàn)[21],能量限制可降低老年雄性SD大鼠腎組織中mTOR蛋白表達(dá),增加LC3自噬蛋白表達(dá),減輕大鼠腎臟衰老。這些研究結(jié)果提示,抑制腎臟mTOR表達(dá)可以促進(jìn)細(xì)胞自噬,減輕腎臟衰老(圖2)。

4.2 AMPK信號途徑 腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)被稱為代謝的主開關(guān),它的活性由細(xì)胞的能量狀態(tài),也就是一磷酸腺苷(adenosine monophosphate,AMP)/三磷酸腺苷(adenosine triphosphate,ATP)比值所調(diào)節(jié)的[22]。在饑餓、氧化應(yīng)激、缺血、缺氧、代謝產(chǎn)物堆積等因素作用下,AMP/ATP比值升高,激活A(yù)MPK,介導(dǎo)結(jié)節(jié)性硬化復(fù)合物(tuberous sclerosis complex,TSC)2磷酸化,抑制mTOR,進(jìn)而,誘導(dǎo)細(xì)胞自噬[23]。據(jù)報道[21],能量限制能增加老年雄性SD大鼠腎組織中的AMPK蛋白表達(dá),減少mTOR蛋白表達(dá),增加細(xì)胞自噬蛋白表達(dá)。這些研究結(jié)果提示,調(diào)控腎臟AMPK信號通路活性可以促進(jìn)細(xì)胞自噬,減輕腎臟衰老(圖2)。

4.3 PI3K/Akt信號途徑 磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/絲氨酸-蘇氨酸激酶(serine-threonine kinase,Akt)信號通路也是mTOR上游的信號途徑。胰島素、生長因子與胰島素樣受體結(jié)合后,激活I(lǐng)型PI3K,進(jìn)而,活化Akt/蛋白激酶(protein kinase,PK)B信號途徑。其中,活化的Akt可以抑制TSC1/2復(fù)合物,激活mTOR/p70S6K通路,從而抑制細(xì)胞自噬[24]。Li等發(fā)現(xiàn),在機(jī)械應(yīng)力(mechanical stress)作用下,足細(xì)胞p85-PI3K,p-Akt和p-mTOR蛋白表達(dá)增加, PI3K/Akt/mTOR信號通路活化,減少LC3,Atg5以及整合素1(integrinβ1)蛋白表達(dá),降低自噬水平,促進(jìn)足細(xì)胞衰老;而螺內(nèi)酯(spironolactone)能抑制PI3K/Akt/mTOR信號通路活性,提高自噬水平,減輕機(jī)械應(yīng)力引起的足細(xì)胞衰老和黏附功能損傷[25]。Kawai等發(fā)現(xiàn),無機(jī)磷酸鹽能激活A(yù)kt/mTOR信號通路,同時縮短小鼠的壽命;但是,在敲除抗衰老基因αKlotho(Kl-/-)的小鼠中,雷帕霉素不但能阻斷mTOR通路,而且,能減輕高濃度無機(jī)磷酸鹽誘導(dǎo)的小鼠衰老,延長小鼠壽命[26]。這些研究結(jié)果提示,抑制腎臟PI3K/Akt信號通路活性可以促進(jìn)細(xì)胞自噬,減輕腎臟衰老(圖2)。

4.4 Sirt1信號途徑 沉默信息調(diào)節(jié)因子1(silent information regulation 1,Sirt1)是Sirtuins家族成員之一,它是一種依賴于煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)的去乙?;浮T跈C(jī)體內(nèi),Sirt1的激活受到AMPK調(diào)控,AMPK能夠增加煙酰胺磷酸核糖轉(zhuǎn)移酶(nicotinamide phosphoribosyltransferase,NAMPT)活性,將煙酰胺轉(zhuǎn)化成煙酰胺單核苷酸,增加NAD+表達(dá)水平,促進(jìn)Sirt1轉(zhuǎn)錄[27-28],隨著細(xì)胞內(nèi)NAD+/還原型煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide hydrogen,NADH)比率的增加,AMPK介導(dǎo)Sirt1去乙?;?sup>[29]。據(jù)報道[30],Sirt1的活化與能量限制介導(dǎo)的壽命延長有著密切的聯(lián)系。一方面,Sirt1可以活化自噬信號途徑中的關(guān)鍵信號分子——Atg7,Atg5 和LC3,促進(jìn)自噬小體形成,從而,提高腎臟細(xì)胞自噬水平;另一方面,在叉頭轉(zhuǎn)錄因子(fork head transcription foctor,F(xiàn)OXO)3A參與下,Sirt1還可以調(diào)控近端腎小管上皮細(xì)胞自噬,延緩腎臟衰老。研究表明,能量限制不僅能增加老年雄性Sprague Dawley大鼠腎組織中的AMPK蛋白表達(dá),減少mTOR蛋白表達(dá),還能增加Sirt1蛋白表達(dá),促進(jìn)細(xì)胞自噬,減輕腎臟衰老[21]。此外,能量限制能提高雄性糖尿病肥胖大鼠(fa/fa)近端腎小管上皮細(xì)胞內(nèi) Sirt1表達(dá)水平,繼而促進(jìn)細(xì)胞自噬,延緩腎臟衰老[31]。對于體外培養(yǎng)的衰老小鼠的近端腎小管上皮細(xì)胞,經(jīng)能量限制干預(yù)后,Sirt1蛋白表達(dá)增加,F(xiàn)OXO3A去乙?;觿。湎掠蔚腂cl-2/腺病毒E1V19-kDa相互作用蛋白質(zhì)3(Bcl-2/adenovirus E1V 19-kDa interacting protein 3,Bnip3)表達(dá)上調(diào),進(jìn)而,促進(jìn) Bnip3介導(dǎo)的自噬。這些研究結(jié)果提示,增加腎臟Sirt1表達(dá)可以促進(jìn)細(xì)胞自噬,減輕腎臟衰老(圖2)。

4.5 TGF-β信號途徑 轉(zhuǎn)化生長因子β(transforming growth factorβ,TGF-β)不僅是公認(rèn)的致腎臟纖維化因子,也是影響腎臟衰老的重要因素之一[32]。一方面,TGF-β1可以誘導(dǎo)人近端腎小管上皮細(xì)胞中自噬相關(guān)基因Atg5,Atg7和Beclin1表達(dá)上調(diào),增加自噬小體累積,激活自噬[33-34];另一方面,在某些條件下,TGF-β1還可以抑制自噬[35-37]。TGF-β的雙重功能取決于特定的細(xì)胞類型和病理?xiàng)l件,盡管如此,國內(nèi)外的學(xué)者認(rèn)為,TGF-β誘導(dǎo)腎臟纖維化和加速腎臟衰老的負(fù)面作用是肯定的(圖2)。

5 中藥對腎臟衰老和/或腎臟自噬的干預(yù)作用

近來的研究顯示,一些中藥及其提取物對腎臟衰老和/或腎臟自噬具備有益的影響。Zhang等發(fā)現(xiàn),高糖(30 mmol·L-1)干預(yù)系膜細(xì)胞96 h后能明顯抑制Sirt1活性,誘導(dǎo)系膜細(xì)胞衰老,而白藜蘆醇(resveratrol)1 mg·L-1聯(lián)合干預(yù)后,Sirt1活性有所增強(qiáng),系膜細(xì)胞衰老得到改善[38-39]。李春花等報道[40],在鏈脲佐菌素(streptozotocin,STZ)腹腔注射誘導(dǎo)的糖尿病腎?。╠iabetic nephropathy,DN)大鼠模型中,每天白藜蘆醇(20 mg·kg-1)灌胃,連續(xù)12周,可以明顯增加模型鼠腎組織中自噬標(biāo)志性蛋白LC3-Ⅱ和beclin1表達(dá)水平,減輕DN腎臟損傷。Gu等借助阿霉素腎病模型而發(fā)現(xiàn)阿霉素能抑制AMPK活性,并促進(jìn)腎臟細(xì)胞凋亡,而白藜蘆醇能通過激活A(yù)MPK/mTOR信號通路,誘導(dǎo)細(xì)胞自噬,減輕腎臟細(xì)胞凋亡[41]。Shen等發(fā)現(xiàn),在果蠅食物中添加姜黃素(curcumin),干預(yù)3周,可以增加果蠅的壽命[42-43];基于此,Xu等進(jìn)一步發(fā)現(xiàn),姜黃素能明顯增加H2O2干預(yù)的腎小球系膜細(xì)胞LC3Ⅱ蛋白表達(dá)水平和LC3Ⅱ/I比值,提高細(xì)胞自噬水平,減輕H2O2誘導(dǎo)的腎臟損傷[44]。黃可等發(fā)現(xiàn),對于STZ腹腔注射而誘導(dǎo)的DN大鼠模型,腎組織Klotho核酸和蛋白(抗衰老標(biāo)記物)表達(dá)水平明顯降低;每天經(jīng)冬蟲夏草(Cordyceps sinensis)5 g·kg-1灌胃,干預(yù)24周后,腎組織Klotho核酸和蛋白表達(dá)水平明顯上調(diào),腎臟衰老得到延緩[45-46]。Pan等發(fā)現(xiàn),在5/6腎切除大鼠殘余腎組織中TGF-β1及其受體的核酸和蛋白表達(dá)水平增加,自噬水平降低;經(jīng)冬蟲夏草(2 g·kg-1)灌胃,干預(yù)12周后,TGF-β1及其受體的核酸和蛋白水平下降,自噬水平升高[47]。

6 結(jié)論與展望

自噬可以調(diào)控腎臟衰老,自噬水平降低就會加速腎臟衰老,反之,自噬水平升高就能延緩腎臟衰老。在這一腎臟衰老的調(diào)控過程中,mTOR及其相關(guān)信號途徑,包括AMPK/mTOR,PI3K/Akt/mTOR,AMPK/Sirt1和TGF-β等通路發(fā)揮了重要作用。在體內(nèi)調(diào)控這些信號途徑的關(guān)鍵信號分子就可以干預(yù)腎臟衰老。國內(nèi)初步的體內(nèi)研究結(jié)果提示,一些經(jīng)典的補(bǔ)腎、活血類中藥及其提取物不僅能延緩腎臟衰老,而且,其藥理作用很可能與自噬調(diào)控的分子機(jī)制有關(guān)。然而,令人遺憾的是,“腎臟衰老”與“自噬調(diào)控”在中藥抗衰老的分子藥理學(xué)研究領(lǐng)域尚未得到有機(jī)結(jié)合。筆者所屬團(tuán)隊(duì)的前期研究表明,對于D-半乳糖誘導(dǎo)的衰老模型鼠,冬蟲夏草提取物——蟲草素(cordycepin)不但可以改善模型鼠腎功能,還可以下調(diào)其自噬蛋白LC3和抗衰老蛋白Klotho的表達(dá);大黃的活性成分——大黃酸(rhein)能夠改善Hank′s平衡鹽溶液誘導(dǎo)的大鼠腎小管上皮(NRK-52E)細(xì)胞自噬,其機(jī)制可能與調(diào)控mTOR/p70S6K信號通路中的關(guān)鍵蛋白p-mTORSer2448和p-p70S6K表達(dá)有關(guān)[48]。因此,筆者認(rèn)為,基于自噬調(diào)控的分子機(jī)制而揭示中藥(尤其是補(bǔ)腎類中藥)抗腎臟衰老的藥理作用是今后的發(fā)展方向之一。

[參考文獻(xiàn)]

[1]van Deursen J M. The role of senescent cells in ageing[J]. Nature,2014,509(7501):439.

[2]Levine B,Mizushima N,Virgin H W. Autophagy in immunity and inflammation[J]. Nature,2011,469(7330):323.

[3]Galluzzi L, Pietrocola F, Levine B,et al. Metabolic control of autophagy[J]. Cell,2014,159(6):1263.

[4]Rubinsztein D C,Marino G,Kroemer G. Autophagy and aging[J]. Cell,2011,146(5):682.

[5]Wang Z,Choi M E. Autophagy in kidney health and disease[J]. Antioxid Redox Signal,2014,20(3):519.

[6]Rabinowitz J D,White E. Autophagy and metabolism[J]. Science,2010,330(6009):1344.

[7]He C,Levine B. The beclin1 interactome[J]. Curr Opin Cell Biol,2010,22(2):140.

[8]Ravikumar B,Sarkar S,Davies J E,et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev,2010,90(4):1383.

[9]Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging[J]. Adv Exp Med Biol,2015,847:73.

[10]Cuervo A M,Bergamini E,Brunk U T,et al. Autophagy and aging:the importance of maintaining "clean" cells[J]. Autophagy,2005,1(3):131.

[11]Hartleben B, Wanner N, Huber T B. Autophagy in glomerular health and disease[J]. Semin Nephrol, 2014,34(1):42.

[12]Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys[J]. Nat Rev Nephrol, 2015,11(1):34.

[13]Yamamoto T, Takabatake Y, Kimura T, et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule[J]. Autophagy,2016,12(5):801.

[14]Cui J,Bai X Y,Shi S,et al. Age-related changes in the function of autophagy in rat kidneys[J]. Age(Dordr),2012,34(2):329.

[15]Hartleben B,Gdel M,Meyer-Schwesinger C,et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest,2010,120(4):1084.

[16]Kimura T,Takabatake Y,Takahashi A,et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol,2011,22(5):902.

[17]Wullschleger S,Loewith R,Hall M N. TOR signaling in growth and metabolism[J]. Cell,2006,124(3):471.

[18]Jung C H,Ro S H,Cao J,et al. mTOR regulation of autophagy[J]. FEBS Lett,2010,584(7):1287.

[19]Klionsky D J,Meijer A J,Codogno P. Autophagy and p70S6 kinase[J]. Autophagy,2005,1(1):59.

[20]Zhuo L, Cai G, Liu F,et al. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging[J]. Mech Ageing Dev,2009,130(10):700.

[21]Ning Y C,Cai G Y,Zhuo L,et al. Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage[J]. Mech Ageing Dev,2013,134(11/12):570.

[22]Chen S,Rehman S K,Zhang W,et al. Autophagy is a therapeutic target in anticancer drug resistance[J]. Biochim Biophys Acta,2010,1806(2):220.

[23]Shrivastava S,Bhanja Chowdhury J,Steele R,et al. Hepatitis C virus upregulates beclin1 for induction of autophagy and activates mTOR signaling[J]. J Virol,2012,86(16):8705.

[24]Ma X,Hu Y. Targeting PI3K/Akt/mTOR cascade:the medicinal potential, updated research highlights and challenges ahead[J]. Curr Med Chem,2013,20(24): 2991.

[25]Li D,Yan T,Xu Z,et al. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR pathway and reduce adhesive damage in podocytes under mechanical stress[J]. Biosci Rep,2016,36(4):e00355.

[26]Kawai M,Kinoshita S,Ozono K,et al. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of anαKlotho-Deficient model[J]. J Am Soc Nephrol,2016,27(9):2810.

[27]Maiese K. mTOR:driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus[J]. World J Diabetes,2015,6(2):217.

[28]Maiese K. New insights for oxidative stress and diabetes mellitus[J]. Oxid Med Cell Longev,2015,2015:875961.

[29]Hardie D G,Ross F A,Hawley S A. AMP-activated protein kinase:a target for drugs both ancient and modern[J]. Chem Biol,2012,19(10):1222.

[30]Kume S,Uzu T,Horiike K,et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney[J]. J Clin Invest,2010,120(4):1043.

[31]Kitada M,Takeda A,Nagai T,et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty(fa/fa)rats:a model of type 2 diabetes[J]. Exp Diabetes Res,2011,2011:908185.

[32]Bttinger E P,Bitzer M. TGF-beta signaling in renal disease[J]. J Am Soc Nephrol,2002,13(10):2600.

[33]Kiyono K,Suzuki H I,Matsuyama H,et al. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells[J]. Cancer Res,2009,69(23):8844.

[34]Xu Y,Yang S,Huang J,et al. TGF-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells[J]. Int J Mol Med,2012,29(5):781.

[35]Li C,Wang Q,Wang J F. Transforming growth factor-β(TGF-β)induces the expression of chondrogenesis-related genes through TGF-β receptor Ⅱ(TGFRⅡ)-AKT-mTOR signaling in primary cultured mouse precartilaginous stem cells[J]. Biochem Biophys Res Commun,2014,450(1):646.

[36]Carracedo A,Ma L,Teruya-Feldstein J,et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer[J]. J Clin Invest,2008,118(9):3065.

[37]Patschan D,Krupincza K,Patschan S,et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia:modulation by ischemic preconditioning[J]. Am J Physiol Renal Physiol,2006,291(1):F176.

[38]Yang T,Wang L,Zhu M,et al. Properties and molecular mechanisms of resveratrol:a review[J]. Pharmazie,2015,70(8):501.

[39]Zhang S,Cai G,F(xiàn)u B,et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence[J]. Mech Ageing Dev,2012,133(6):387.

[40]李春花,張英,李可心,等. 白藜蘆醇通過誘導(dǎo)自噬保護(hù)糖尿病腎病大鼠腎功能的研究[J]. 中國實(shí)驗(yàn)診斷學(xué),2014,18(12):1920.

[41]Gu J,Hu W,Song Z P,et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity[J]. Int Immunopharmacol,2016,32:1.

[42]Prasad S,Gupta S C,Tyagi A K,et al. Curcumin,a component of golden spice:from bedside to bench and back[J]. Biotechnol Adv,2014,32(6):1053.

[43]Shen L R,Xiao F,Yuan P,et al. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila[J]. Age(Dordr),2013,35(4):1133.

[44]Xu J,Meng K,Zhang R,et al. The use of functional chemical-protein associations to identify multi-pathway renoprotectants[J]. PLoS ONE,2014,9(5):e97906.

[45]Paterson R R. Cordyceps:a traditional Chinese medicine and another fungal therapeutic biofactory [J]. Phytochemistry,2008,69(7):1469.

[46]黃可,謝淑華,安寧,等. 冬蟲夏草通過抗氧化及抗衰老減輕糖尿病腎病大鼠腎小管損傷的研究[J]. 中國醫(yī)學(xué)創(chuàng)新,2014,11(22):15.

[47]Pan M M,Zhang M H,Ni H F,et al. Inhibition of TGF-β1/Smad signal pathway is involved in the effect ofCordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats[J]. Food Chem Toxicol,2013,58:487.

[48]涂玥,孫偉,顧劉寶,等. 大黃酸調(diào)控mTOR信號通路活性抑制腎小管上皮細(xì)胞自噬蛋白表達(dá)的分子機(jī)制[J]. 中國中藥雜志,2014,39(21):4090.

[責(zé)任編輯 馬超一]

猜你喜歡
分子機(jī)制自噬中藥
中藥久煎不能代替二次煎煮
您知道嗎,沉香也是一味中藥
中醫(yī),不僅僅有中藥
中藥貼敷治療足跟痛
縮泉丸補(bǔ)腎縮尿的分子機(jī)制探討
自噬在不同強(qiáng)度運(yùn)動影響關(guān)節(jié)軟骨細(xì)胞功能中的作用