李立清 石瑞 顧慶偉 梁鑫 唐琳 李海龍 馬衛(wèi)武
摘要:商業(yè)活性炭分別經(jīng)過1 mol/L的硝酸、鹽酸、硫酸處理.采用Boehm滴定、傅式轉(zhuǎn)換紅外光譜儀(FTIR)、比表面積分析儀對活性炭樣品的物化性質(zhì)進(jìn)行測試.以甲苯為吸附質(zhì),在283 K下進(jìn)行了固定床吸附實(shí)驗(yàn).研究討論了改性前后活性炭對甲苯的吸附量影響,計(jì)算了相應(yīng)的動力學(xué)參數(shù)和吸附能.結(jié)果表明:酸改性可以增加活性炭表面酸性官能團(tuán)的總數(shù)量;改變孔徑分布.酸改性活性炭對甲苯的吸附量大小順序?yàn)椋篘AC,SAC,AC,ClAC.準(zhǔn)二階動力學(xué)方程比準(zhǔn)一階動力學(xué)能更好地描述甲苯在改性活性炭上的吸附過程;酸改性增大了微孔占有率,提高了吸附速度;酸改性增大活性炭吸附有機(jī)氣體的吸附能,導(dǎo)致酸改性活性炭與甲苯結(jié)合度降低.
關(guān)鍵詞:改性活性炭;表面基團(tuán);孔結(jié)構(gòu);吸附動力學(xué);吸附能
中圖分類號:O613.71 文獻(xiàn)標(biāo)識碼:A
2.5.3酸改性活性炭孔結(jié)構(gòu)參數(shù)對吸附性能影響
酸改性改變了活性炭的比表面積、總孔容.圖6給出了酸改性活性炭性能參數(shù)與吸附量之間的關(guān)系.
由圖6可知,活性炭的比表面積、總孔容與吸附量并未呈良好的線性關(guān)系,但酸改性活性炭對甲苯的吸附量,隨著活性炭的比表面積、總孔容的增大而增大.這是由于活性炭的比表面積是由微孔比表面積、中孔比表面積、大孔比表面積共同構(gòu)成的.甲苯屬于大分子吸附質(zhì),甲苯的有效吸附比表面積為微孔比表面積和中孔比表面積,占總比表面積比例較大.同理,酸改性活性炭吸附甲苯的有效孔容積也由微孔容積和部分中孔容積共同貢獻(xiàn).
3結(jié)論
1)用酸對活性炭進(jìn)行改性,可以提高活性炭表面的酸性官能團(tuán)數(shù)量,且酸性官能團(tuán)數(shù)量隨著改性酸試劑氧化性的增強(qiáng)而增多.酸對活性炭孔結(jié)構(gòu)具有侵蝕、氧化作用.硝酸的強(qiáng)氧化性導(dǎo)致活性炭孔容增大;硫酸、鹽酸的強(qiáng)酸性導(dǎo)致活性炭孔結(jié)構(gòu)受到侵蝕,孔容變小.酸改性導(dǎo)致活性炭灰分被脫出,疏通了孔道結(jié)構(gòu).
2)酸改性活性炭對甲苯的吸附量大小順序?yàn)椋篘AC,SAC,AC,ClAC,吸附量受到孔結(jié)構(gòu)和表面官能團(tuán)的共同作用.
3)酸改性活性炭的吸附量隨著有效比表面積、有效孔容的增大而增大.
4)準(zhǔn)一階、準(zhǔn)二階動力學(xué)方程都可以描述甲苯在改性活性炭上的吸附過程,但實(shí)驗(yàn)數(shù)據(jù)對準(zhǔn)二階動力學(xué)方程擬合系數(shù)相對較高,表明酸性官能團(tuán)在活性炭吸附甲苯過程中作用顯著.酸改性增大了微孔占有率,提高了吸附速度.
5)酸改性增大活性炭吸附有機(jī)氣體的吸附能,導(dǎo)致酸改性活性炭與甲苯結(jié)合度降低.
參考文獻(xiàn)
[1]WANG Ding,ELISABETH MCLAUGHLIN,ROBERT PFEFFER,et al. Aqueous phase adsorption of toluene in a packed and fluidized bed of hydrophobic aerogels[J].Chemical Engineering Journal,2011,168(3):1201-1208.
[2]JENSEN L K, LARSEN A, MLHAVE L, et al.Volatile organic compounds from wood and their influences on museum artifact materials I. Differences in wood species and analyses of causal substances of deterioration[J].Archives of Environmental Health, 2001, 56(5): 419-432
[3]GHEZINI R, SASSI M, BENGUEDDACH A. Adsorption of carbon dioxide at high pressure over HZSM5 type zeolite. Micropore volume determination by using the Dubinin Raduskevich equation and “tplot” method[J], Microporous and Mesoporous Materials, 2008, 113(1-3): 370-377
[4]KIM B J, PARK S J. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons[J].Journal of Colloid and Interface Science, 2007, 311(2): 619-621
[5]LILLORDENAS M A, CAZORLAAMORS D, LINARESSOLANO A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J].Carbon, 2005, 43(8): 1758-1767
[6]HAYDAR S,F(xiàn)ERROGAREA M,RIVERAUTRILLA J,et a1.Adsorbtion of pnitrophcnol on all activated carbon winl different oxidations[J].Mieroporous Materials,2003,4l(3):387-395.
[7]李開喜,呂春祥,凌立成.活性炭纖維的脫硫性能[J].燃料化學(xué)學(xué)報(bào),2002,30(1):89-95.
LI Kaixi, LV Chunxiang, LING Licheng, Activated carbon fiber for desulfuration performance[J]. Journal of Fuel Chemistry and Technology,2002,30(1):89-95.(In Chinese)
[8]KIM D J, LEE H I. Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan[J]. Carbon,2005,43(9):1868-1873.
[9]單曉梅、朱書全.氧化法改性煤基活性炭和椰殼活性炭的研究[J].中國礦業(yè)大學(xué)學(xué)報(bào),2003,32(6),729-733.
SHAN Xiaomei, ZHU Shuquan. Oxidation modification based coal activated carbon and coconut shell activated carbon[J]. Journal of China University of Mining and Technology,2003,32(6): 729-733.(In Chinese)
[10]CHEN J P, WU S. Acid/basetreated Toluene adsorption at low on centration [J]. Langmuir, 2004, 20(6):2233-2242.
[11]ZIELKE U, HUTTINGER K, et al. Surfaceoxidized carbon fibers: I. Surface structure and chemistry [J].Carbon, 1996, 34(16):983-998.
[12]LEON C, LEON Y. Evidence for the protonation of basal plane sites on carbon [J]. Carbon,1992, 30(5):797-811.
[13]HUANG Chenchia, LI Hongsong. Effect of surface acidic oxides of activated carbon on adsorption of ammonia [J]. Journal of Hazardous Materials, 2008, 159(2/3):523-527.
[14]QIAO Zhijun, LI Jiajun. Influence on pore structure and surface groups of activated carbon fiber over high temperature heat treatment [J]. New Carbon Materiala, 2004, 19(1): 53-56.
[15]HAMEED B H, AHMAD A A, AZIZ N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash [J]. Chemical Engineering Journal, 2007, 133(1/3):195-203.
[16]WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution [C]//Proceedings of the International Conference on Water Pollution Symposium. London: Pergamon Oxford, 1962: 231-266.
[17]LI Liqing, LI Zheng, QIN Yingxing,et al. Estimation of volatile organic compound mass transfer coefficient in the vacuum desorption of acetone from activated carbon[J]. Journal of Chemical and Engineering Data, 2010,55(11):4732-4740.