国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

桁架結(jié)構(gòu)多目標(biāo)優(yōu)化的免疫克隆選擇算法

2013-04-29 00:31唐和生胡長遠(yuǎn)薛松濤
關(guān)鍵詞:多目標(biāo)優(yōu)化

唐和生 胡長遠(yuǎn) 薛松濤

摘要:為了解決帶有約束的結(jié)構(gòu)多目標(biāo)優(yōu)化問題,將免疫克隆選擇算法應(yīng)用于桁架結(jié)構(gòu)的多目標(biāo)優(yōu)化設(shè)計中. 根據(jù)免疫學(xué)基本原理,采用非支配鄰域選擇機(jī)制、比例克隆和精英策略,使算法很好地保持了所得解的多樣性、均勻性和收斂性.在桁架結(jié)構(gòu)優(yōu)化的數(shù)學(xué)模型中,采用懲罰函數(shù)法處理違反約束的情況.為了驗證所提算法的可行性和有效性,對經(jīng)典桁架進(jìn)行了優(yōu)化,并與其它方法作比較,數(shù)值結(jié)果表明,該算法在收斂速度、時間消耗和求解質(zhì)量上均具有一定的優(yōu)勢.

關(guān)鍵詞:多目標(biāo)優(yōu)化;桁架結(jié)構(gòu);精英策略;免疫克隆選擇算法

中圖分類號:TU323.4;TU311文獻(xiàn)標(biāo)識碼:A

4結(jié)論

1)基于非支配克隆選擇、比例克隆和精英主義策略的免疫克隆多目標(biāo)優(yōu)化算法,算法簡單,收斂迅速,耗時較少,易于實現(xiàn),且更好地保證了在演化過程中,種群的多樣性,使得解集能夠從可行域內(nèi)部和不可行域的邊緣向著最優(yōu)解逼近,從而更好地保證了所得最優(yōu)解的多樣性以及很好的逼近性.

2)本文對典型桁架結(jié)構(gòu)多目標(biāo)優(yōu)化進(jìn)行了數(shù)值分析,并且與NSGA II, CMOIA及相關(guān)文獻(xiàn)的優(yōu)化結(jié)果進(jìn)行了比較討論.數(shù)值結(jié)果表明,MOICSA算法在極端點擴(kuò)展、解的均勻性以及收斂速度上要優(yōu)于其他算法,所得解集能夠包含單目標(biāo)優(yōu)化的最優(yōu)解,驗證了MOICSA算法很好地保持了所得最優(yōu)解的多樣性、均勻性以及較強(qiáng)的收斂性,說明了該算法適合于結(jié)構(gòu)多目標(biāo)尺寸優(yōu)化設(shè)計分析.

參考文獻(xiàn)

[1]COELLO C, CORTES N. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.

[2]吳亮紅,王耀南,袁小芳,等. 多目標(biāo)優(yōu)化問題的差分進(jìn)化算法研究J]. 湖南大學(xué)學(xué)報:自然科學(xué)版,2009,36(2):53-57.

WU Lianghong, WANG Yaonan, YUAN Xiaofang, et al. Research on differential evolution algorithm for MOPs J]. Journal of Hunan University:Natural Sciences, 2009, 36(2): 53-57.(In Chinese)

[3]JIAO L, GONG M, R H, et al. Clonal selection with immune dominance and energy based multiobjective optimization[C]// Proceedings of the Third International Conference on Evolutionary Multicriterion Optimization.Berlin: SpringerVerlag,2005: 474-489.

[4]GONG M, JIAO L, DU H, et al. Multiobjective immune algorithm with nondominated neighborbased selection[J]. Evolutionary Computation, 2008, 16(2):225-255.

[5]DEB K, AGARWAL S, PRATAP A, et al. A fast elitist multiobjective genetic algorithm: NSGAII[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

[6]LUH G C, CHUEH C H. Multiobjective optimal design of truss structure with immune algorithm J]. Computers & Structures, 2004,82: 829-844.

[7]KOHONEN T. Selforganizing maps[M].Berlin: Springer Series in Information Sciences, 1995.

[8]申曉寧,李濤,張敏. 一種基于模糊邏輯引入偏好信息的多目標(biāo)遺傳算法J]. 南京理工大學(xué)學(xué)報,2011,35(2):245-251.

SHEN Xiaoning, LI Tao, ZHANG Min. Multiobjective optimization genetic algorithm incorporating preference information based on fuzzy logicJ]. Journal of Nanjing University of Science and Technology, 2011,35(2):245-251.(In Chinese)

[9]唐和生,范德偉,王兆亮,等. 桁架尺寸優(yōu)化微分演化算法J]. 湖南大學(xué)學(xué)報:自然科學(xué)版,2011,38(11):13-18.

TANG Hesheng, FAN Dewei, WANG Zhaoliang, et al. Differential evolution algorithm to size the optimization of truss structures J]. Journal of Hunan University:Natural Sciences, 2011, 38(11):13-18.(In Chinese)

[10]YOO J, HAJELA P. Immune network simulations in multicriterion design[J]. Structural Optimization, 1999, 18:85-94.

[11]ANCHOR K, ZYDALLIS J, GUNSCH G, et al. Extending the computer defense immune system: Network intrusion detection with a multiobjective evolutionary programming approach[C]//TIMMIS J,BENTLEY P J. First International Conference on Artficial Immune Systems.Canterburg, UK: University of Kent,2002:12-21.

[12]CARLOS A, COELLO C, CORT S N. An approach to solve multiobjective optimization problems based on an artificial immune system[C]//TIMMIS J, BENTLEY P J. First International Conference on Artficial Immune Systems. Canterbury, UK:University of Kent,2002:212-221.

[13]CUTELLO V, NICOSIA G, PAVONE M. Exploring the capability of immune algorithms: A characterization of hypemutation operators[C]// Proceedings of Third International Conference on Artificial Immune Systems. Catania, Italy: Lecture Notes in Computer Science, 2004:263-276.

[14]ERBATUR F, OHASANCEBI O, TTNC I, et al. Optimal design of planar and space structures with genetic algorithms J]. Computers and Structures, 2000,75: 209-224.

[15]PONTEROSSO P, FOX DSJ. Heuristically seeded genetic algorithms applied to truss optimization J]. Engineering with Computers, 1999, 15:345-355.

[16]RAJEEV S, KRISHNAMOORTHY C S. Discrete optimization of structures using genetic algorithms J]. Journal of Structural Engineering, 1992, 118(5):1233-1250.

猜你喜歡
多目標(biāo)優(yōu)化
基于多目標(biāo)優(yōu)化的生鮮食品聯(lián)合庫存研究
改進(jìn)的多目標(biāo)啟發(fā)式粒子群算法及其在桁架結(jié)構(gòu)設(shè)計中的應(yīng)用
群體多目標(biāo)優(yōu)化問題的權(quán)序α度聯(lián)合有效解
云計算中虛擬機(jī)放置多目標(biāo)優(yōu)化
狼群算法的研究
基于參數(shù)自適應(yīng)蟻群算法對多目標(biāo)問題的優(yōu)化
基于多目標(biāo)優(yōu)化的進(jìn)化算法研究
多目標(biāo)模糊優(yōu)化方法在橋梁設(shè)計中應(yīng)用
一種求多目標(biāo)優(yōu)化問題的正交多Agent遺傳算法
基于蟻群優(yōu)化的多目標(biāo)社區(qū)檢測算法