国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高中生的數(shù)學(xué)思維障礙的成因及突破方法初探

2013-04-29 21:01:07林圣枝
課程教育研究·中 2013年5期
關(guān)鍵詞:高中學(xué)生障礙解題

林圣枝

【摘要】如何減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān)?如何提高我們高中數(shù)學(xué)教學(xué)的實效性?本文通過對高中學(xué)生數(shù)學(xué)思維障礙的成因及突破方法的分析,以起到拋磚引玉的作用。

【關(guān)鍵詞】數(shù)學(xué)思維 數(shù)學(xué)思維障礙

【中圖分類號】G633.6 【文獻標(biāo)識碼】A 【文章編號】2095-3089(2013)05-0137-01

高中數(shù)學(xué)的數(shù)學(xué)思維雖然并非總等于解題,但我們可以這樣講,高中學(xué)生數(shù)學(xué)思維的形成是建立在對高中數(shù)學(xué)基本概念、定理、公式理解的基礎(chǔ)上的;發(fā)展高中學(xué)生數(shù)學(xué)思維最有效的方法是通過解決問題來實現(xiàn)的。然而,在學(xué)習(xí)高中數(shù)學(xué)過程中,我們經(jīng)常聽到學(xué)生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常??吹綄W(xué)生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,學(xué)生覺得困難,并不是因為這些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在著差異,也就是說,這時候,學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來自于我們教學(xué)中的疏漏,而更多的則來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識結(jié)構(gòu)和思維模式。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對于增強高中學(xué)生數(shù)學(xué)教學(xué)的針對性和實效性有十分重要的意義。

一、高中學(xué)生數(shù)學(xué)思維障礙的形成原因

根據(jù)布魯納的認(rèn)識發(fā)展理論,學(xué)習(xí)本身是一種認(rèn)識過程,在這個課程中,個體的學(xué)習(xí)總是要通過已知的內(nèi)部認(rèn)知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進行整理加工,以一種易于掌握的形式加以儲存。如果在教學(xué)過程中,教師不顧學(xué)生的實際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學(xué),則到學(xué)生自己去解決問題時往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經(jīng)“校正”后吸收。因此,如果教師的教學(xué)脫離學(xué)生的實際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時就勢必會造成學(xué)生對所學(xué)知識認(rèn)知上的不足、理解上的偏頗,從而在解決具體問題時就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。

二、高中數(shù)學(xué)思維障礙的具體表現(xiàn)

由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:

1.數(shù)學(xué)思維的膚淺性:由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質(zhì)。

2.數(shù)學(xué)思維的差異性:由于每個學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點,因此不同的學(xué)生對于同一數(shù)學(xué)問題的認(rèn)識、感受也不會完全相同,從而導(dǎo)致學(xué)生對數(shù)學(xué)知識理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問題時,一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。如非負(fù)實數(shù)x,y滿足x+2y=1,求x2+y2的最大、最小值。在解決這個問題時,如對x、y的范圍沒有足夠的認(rèn)識(0≤x≤1,0≤y≤1/2),那么就容易產(chǎn)生錯誤。

3.數(shù)學(xué)思維定勢的消極性:由于高中學(xué)生已經(jīng)有相當(dāng)豐富的解題經(jīng)驗,因此,有些學(xué)生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經(jīng)驗,思維陷入僵化狀態(tài)。如剛學(xué)立體幾何時,一提到兩直線垂直,學(xué)生馬上意識到這兩直線必相交,從而造成錯誤的認(rèn)識。

由此可見,學(xué)生數(shù)學(xué)思維障礙的形成,不僅不利于學(xué)生數(shù)學(xué)思維的進一步發(fā)展,而且也不利于學(xué)生解決數(shù)學(xué)問題能力的提高。所以,在平時的數(shù)學(xué)教學(xué)中注重突破學(xué)生的數(shù)學(xué)思維障礙就顯得尤為重要。

三、高中學(xué)生數(shù)學(xué)思維障礙的突破

1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時,要嚴(yán)格遵循學(xué)生認(rèn)知發(fā)展的階段性特點,照顧到學(xué)生認(rèn)知水平的個性差異,例:高一年級學(xué)生剛進校時,一般我們都要復(fù)習(xí)一下二次函數(shù)的內(nèi)容,而二次函數(shù)中最大、最小值尤其是含參數(shù)的二次函數(shù)的最大、最小值的求法學(xué)生普遍感到比較困難,為此我作了如下題型設(shè)計,對突破學(xué)生的這個難點問題有很大的幫助,而且在整個操作過程中,學(xué)生普遍(包括基礎(chǔ)差的學(xué)生)情緒亢奮,思維始終保持活躍。設(shè)計如下:

1〉求出下列函數(shù)在x∈[0,3]時的最大、最小值:(1)y=(x-1)2+1,(2)y=(x+1)2+1,(3)y=(x-4)2+1

2〉求函數(shù)y=x2-2ax+a2+2,x∈[0,3]時的最小值。

3〉求函數(shù)y=x2-2x+2,x∈[t,t+1]的最小值。

上述設(shè)計層層遞進,每做完一題,適時指出解決這類問題的要點,大大地調(diào)動了學(xué)生學(xué)習(xí)的積極性,提高了課堂效率。

2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識。數(shù)學(xué)教學(xué)中,在強調(diào)基礎(chǔ)知識的準(zhǔn)確性、規(guī)范性、熟練程度的同時,我們應(yīng)該加強數(shù)學(xué)意識教學(xué),指導(dǎo)學(xué)生以意識帶動雙基,將數(shù)學(xué)意識滲透到具體問題之中。如:設(shè)x2+y2=25,求μ= 的取值范圍。若采用常規(guī)的解題思路,μ的取值范圍不大容易求,但適當(dāng)對μ進行變形: 轉(zhuǎn)而構(gòu)造幾何圖形容易求得μ∈[6,6 ],這里對μ的適當(dāng)變形實際上是數(shù)學(xué)的轉(zhuǎn)換意識在起作用。

3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢的消極作用。誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對于突破學(xué)生的數(shù)學(xué)思維障礙會起到極其重要的作用。

使學(xué)生暴露觀點的方法很多。例如,教師可以與學(xué)生談心的方法,可以用精心設(shè)計的診斷性題目,事先了解學(xué)生可能產(chǎn)生的錯誤想法,要運用延遲評價的原則,即待所有學(xué)生的觀點充分暴露后,再提出矛盾,以免暴露不完全,解決不徹底。有時也可以設(shè)置疑難,展開討論,疑難問題引人深思,選擇學(xué)生不易理解的概念,不能正確運用的知識或容易混淆的問題讓學(xué)生討論,從錯誤中引出正確的結(jié)論,這樣學(xué)生的印象就會特別深刻。

當(dāng)前,素質(zhì)教育已經(jīng)向我們傳統(tǒng)的高中數(shù)學(xué)教學(xué)提出了更高的要求。但只要我們堅持以學(xué)生為主體,以培養(yǎng)學(xué)生的思維發(fā)展為己任,則勢必會提高高中學(xué)生數(shù)學(xué)教學(xué)質(zhì)量,擺脫題海戰(zhàn)術(shù),真正減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負(fù)擔(dān),從而為提高高中學(xué)生的整體素質(zhì)作出我們數(shù)學(xué)教師應(yīng)有的貢獻。

參考文獻:

[1]任樟輝《數(shù)學(xué)思維論》(09年9月版)

[2]郭思樂《思維與數(shù)學(xué)教學(xué)》(09年6月版)

[3]顧越嶺《數(shù)學(xué)定向分析法》(01年5月版)

猜你喜歡
高中學(xué)生障礙解題
用“同樣多”解題
設(shè)而不求巧解題
用“同樣多”解題
培養(yǎng)高中學(xué)生科學(xué)精神的實踐探索
甘肅教育(2020年6期)2020-09-11 07:46:22
睡眠障礙,遠(yuǎn)不是失眠那么簡單
跨越障礙
在閱讀的樂趣中提高高中學(xué)生的英語能力
多導(dǎo)睡眠圖在睡眠障礙診斷中的應(yīng)用
解題勿忘我
加強高中學(xué)生社團建設(shè)的思考
万宁市| 阜宁县| 襄樊市| 无锡市| 闽侯县| 新昌县| 永登县| 博兴县| 繁峙县| 万载县| 甘德县| 新建县| 习水县| 景宁| 绥化市| 彭州市| 九寨沟县| 图木舒克市| 宾阳县| 丰都县| 上蔡县| 栾川县| 桂东县| 肥西县| 原平市| 吉隆县| 宣威市| 兴山县| 新民市| 错那县| 新密市| 台北市| 民县| 客服| 高淳县| 丹巴县| 酉阳| 琼中| 景宁| 易门县| 灵川县|