国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高超聲速飛行器末端導(dǎo)引與控制一體化研究

2013-05-15 01:04:16國海峰李望西唐傳林
航天控制 2013年3期
關(guān)鍵詞:攻角航跡制導(dǎo)

肖 紅 王 勇 國海峰 李望西 唐傳林

空軍工程大學(xué)航空航天工程學(xué)院,西安 710038

高超聲速飛行器(Hypersonic Vehicle, HV)進(jìn)入末制導(dǎo)階段,為了以給定的彈著角精確打擊目標(biāo),需要一種滿足過載約束、受擾動影響小的導(dǎo)引律。最優(yōu)導(dǎo)引律和滑模導(dǎo)引律都需要對剩余飛行時間進(jìn)行估算,估算的精度很大程度上制約著導(dǎo)引精度[1],不易實現(xiàn)。由于HV打擊慢移動目標(biāo)對導(dǎo)引律的要求并不高,比例導(dǎo)引+系數(shù)自適應(yīng)的導(dǎo)引律(APN)有效且易于實現(xiàn)[2],是合適的選擇。由于HV跨大氣層飛行時具有復(fù)雜的氣動特性,氣動熱導(dǎo)致飛行器結(jié)構(gòu)彈性形變,加之打擊精度的高要求,HV控制器的設(shè)計變得非常復(fù)雜[3-7]。因此,針對HV的導(dǎo)引與控制一體化研究將是HV研究的方向。

針對常規(guī)導(dǎo)彈攔截機(jī)動目標(biāo)的問題,文獻(xiàn)[8]提出了基于動態(tài)逆和狀態(tài)觀測器的制導(dǎo)控制一體化設(shè)計,文獻(xiàn)[9]提出了基于自抗擾控制的制導(dǎo)與運(yùn)動控制一體化設(shè)計。它們的共同點(diǎn)是將運(yùn)動方程和姿態(tài)控制方程納入一個控制模型中求解,很好地解決了目標(biāo)機(jī)動帶來的制導(dǎo)控制難題。該方法對于打擊靜止目標(biāo)的HV沒必要,而且HV氣動特性復(fù)雜,很難實現(xiàn)。本文針對HV打擊靜止目標(biāo)的問題,結(jié)合APN的特點(diǎn),克服HV特殊的控制特點(diǎn),提出了一種新的導(dǎo)引控制一體化設(shè)計方法。同時,建立的制導(dǎo)控制一體化模型,它包含了部分制導(dǎo)指令,而不包括HV的運(yùn)動模型。根據(jù)APN所決定的彈道特性,通過分段對一體化控制模型進(jìn)行了簡化,并對各段單獨(dú)設(shè)計了魯棒控制律。對于一體化控制模型的求解,反演方法能夠很好地解決系統(tǒng)的非線性問題,而自適應(yīng)滑膜控制能夠很好地解決系統(tǒng)的參數(shù)大擾動問題,本文將二者結(jié)合,得到了滿意的一體化控制律。最后,通過對導(dǎo)引律的調(diào)整,降低控制回路發(fā)散的可能性。仿真表明,一體化設(shè)計具有較強(qiáng)的系統(tǒng)魯棒性和高打擊精度。

1 末制導(dǎo)階段問題描述

1.1 坐標(biāo)系與運(yùn)動方程

由于末制導(dǎo)階段航程較短,忽略地球自轉(zhuǎn),采用目標(biāo)坐標(biāo)系,如圖1所示。X軸指向東,Y軸指向北,Z軸以豎直向上為正;γ是航跡角,偏上為正;ψ∈[-π,+π]是航向角,順時針為正;φ∈[0,π/2]是視線角;θ∈[-π,π]是方位角,逆時針為正;V是速度。

由坐標(biāo)系可知導(dǎo)彈運(yùn)動學(xué)方程為:

(1)

目標(biāo)位于原點(diǎn),要求飛行器以給定的彈著角命中目標(biāo),因此終端條件為:γf=Γf,ψf=Ψf,Xf=Yf=Zf=0。

圖1 目標(biāo)坐標(biāo)系與幾何關(guān)系

1.2 空氣動力模型

本文采用1976年COESA美國擴(kuò)展標(biāo)準(zhǔn)大氣模型,空氣密度ρ描述為:

ρ(H)=ρ0×e-(h/H)

(2)

其中,ρ0=1.225kg/m3,H=8.5km。

CLα為升力氣動導(dǎo)數(shù),Cl·,Cm·為滾轉(zhuǎn)力矩和俯仰力矩對“·”的氣動導(dǎo)數(shù)。各個氣動導(dǎo)數(shù)受高度和HV彈性形變影響劇烈。文獻(xiàn)[3,7]對氣動參數(shù)進(jìn)行了非線性擬合:

CLα=-8.19×10-2+4.70×10-2M+1.86×10-2α-

4.37×10-4(αM)-9.19×10-3M2-1.52×

10-4α2+5.99×10-7(αM)2+7.74×10-4M3

(3)

由于空間有限,其他氣動導(dǎo)數(shù)略。

1.3 一體化模型的建立

根據(jù)文獻(xiàn)[4-6],采用傾斜轉(zhuǎn)彎的機(jī)動方式,忽略側(cè)滑角影響,末制導(dǎo)一體化模型可描述為系統(tǒng)(4)。

(4)

2 導(dǎo)引與控制一體化設(shè)計

傳統(tǒng)控制模型不包括γ,ψ變量,是為了跟蹤導(dǎo)引指令解算出的α,σ,指令γ,ψ到α,σ的生成過程是開環(huán)的。由于氣動參數(shù)的不確定性,這種開環(huán)的過渡將造成很大的誤差,而且線性的模型無法準(zhǔn)確描述非線性耦合HV系統(tǒng)。

圖2 制導(dǎo)控制一體化示意圖

2.1 末端導(dǎo)引律分析

本文采用三維比例導(dǎo)引律:

(5)

在要求以給定彈著角打擊目標(biāo)時,飛行器橫向瞄準(zhǔn)目標(biāo)之后,才進(jìn)行縱向瞄準(zhǔn),在橫向瞄準(zhǔn)之前縱向航跡角保持不變。橫向?qū)б上禂?shù)選擇及更新方法如下[2]:

λ1的選擇與更新算法,令:

(6)

(7)

這種設(shè)計思路所得導(dǎo)引律必然使得橫向瞄準(zhǔn)完成前γ保持很小,σ變化很大。橫向瞄準(zhǔn)完成之后,導(dǎo)彈在縱向以一定的終態(tài)航跡角打擊目標(biāo),此過程σ保持很小,γ變化很大。這些特點(diǎn)可以為控制器的設(shè)計提供有用的參考價值。

2.2 自適應(yīng)Backstepping滑??刂破鞯脑O(shè)計

設(shè)在t0時刻完成橫向瞄準(zhǔn),彈道將有下式特點(diǎn):

|δψ|=|ψt0+θf+π/2|≤ε

(8)

其中ε為任意小正數(shù)。如果沒有限制橫向彈著角,則上面的條件中θf由θ代替。

本文將分兩段進(jìn)行控制器的設(shè)計,分割點(diǎn)為橫向瞄準(zhǔn)完成時刻。設(shè)u1,u2分別為分割點(diǎn)前后段控制量,則整個控制器為:

(9)

其中T為過渡時間常量。

2.2.1 控制器設(shè)計步驟

在后半段利用sinσ=σ,cosσ=1對系統(tǒng)(4)進(jìn)行化簡。

反演(Backstepping)設(shè)計方法的基本思想是將復(fù)雜的非線性系統(tǒng)分解成不超過系統(tǒng)階數(shù)的子系統(tǒng),然后為每個子系統(tǒng)分別設(shè)計李雅普諾夫函數(shù)和中間虛擬控制量,一直“后退”到整個系統(tǒng),直到完成整個控制律的設(shè)計。

(10)

(11)

定義函數(shù):

其中,k>0,則:

(12)

得:

(13)

2.2.2 穩(wěn)定性分析

將式(12)代入式(11),得:

定義函數(shù)V(e2),同理可得:

Fueue+Fδaδa

(14)

在前半段,γ很小,利用cosγ=1,sinγ=γ簡化,可得前半段的控制器函數(shù)。

2.2.3 干擾上界自適應(yīng)估計

(15)

2.3 導(dǎo)引律的改進(jìn)

由于控制回路的跟蹤能力有限,當(dāng)導(dǎo)引指令長時間超出飽和狀態(tài)時,控制回路很可能會發(fā)散??刂苹芈返娘柡鸵陨χ噶畛鲎畲笊闃?biāo)志。

(16)

(17)

控制回路對導(dǎo)引指令的延遲很大程度上影響最終精度。本文采用比例微分的方式將導(dǎo)引指令相位提前,則最終導(dǎo)引指令為:

(18)

(19)

(20)

(21)

其中w1和w2為指令提前的修正參數(shù)。

3 仿真研究

仿真初始條件,目標(biāo)彈著角以及對應(yīng)的導(dǎo)引律配置見表1。

表1 初始條件、目標(biāo)彈著角及導(dǎo)引律配置

加入正弦波干擾(|ΔL|max=0.2L,|Δf|max=0.2f)及飛行器的尺寸參數(shù)參照文獻(xiàn)[7]的概念機(jī)。由于對航向彈著角不作要求,以下仿真只分析航跡彈著角。

圖3是HV的整個3D彈道,仿真結(jié)果表明,本文方法能夠精確打擊目標(biāo)。

圖3 導(dǎo)彈3D軌跡圖

圖4反映了升降舵力矩系數(shù)的變化情況。其它力和力矩的系數(shù)也是非線性地劇烈變化。仿真結(jié)果表明,本文方法能夠有效克服系統(tǒng)參數(shù)非線性快時變的復(fù)雜特性。

圖4 升降舵力矩系數(shù)的變化情況

圖5 攻角變化

圖6 航跡角

圖7 航跡角速率指令和實際航跡角速率

比例系數(shù)進(jìn)行了自適應(yīng)更新(如圖8),比例系數(shù)變化范圍除在終端時刻附近有較大變化外,其它時刻相對于2變化很小。為了減小高度過小使得系數(shù)更新率增大,在導(dǎo)彈與目標(biāo)還有400m的距離時停止自適應(yīng)更新,避免更新算法分母項過小。圖9是相應(yīng)的升降舵指令變化情況,最終趨于穩(wěn)定。

圖8 縱向比例系數(shù)自適應(yīng)更新情況

圖9 升降舵指令

圖10 傾側(cè)角

如圖11所示,限制副翼的偏轉(zhuǎn)指令大小在0.5rad之內(nèi),副翼偏轉(zhuǎn)量在50s附近開始大范圍波動,最終趨于穩(wěn)定。

圖6和10驗證了導(dǎo)彈運(yùn)動過程有一個明顯轉(zhuǎn)折點(diǎn)的假設(shè),在轉(zhuǎn)折點(diǎn)之前,γ很小,σ變化范圍很大;轉(zhuǎn)折點(diǎn)之后,γ變化很大,而σ?guī)缀鯙?。多次仿真可觀察出,轉(zhuǎn)折點(diǎn)以橫向瞄準(zhǔn)完成時刻為標(biāo)志,λ2(0)越大,分割點(diǎn)越明顯,對應(yīng)的最大攻角越大。

圖11 副翼指令

圖11表示了最大攻角|α|max和脫靶量stf及彈著角誤差Δγ(tf)的關(guān)系??紤]到指令飽和與延遲的方法記為方法1,反之記為方法2。由于不提前修正飽和與延遲,使得控制回路的誤差不斷積累,最終導(dǎo)致誤差很大,甚至控制回路發(fā)散。隨著最大攻角減小,方法1的誤差始終比方法2的誤差小。當(dāng)最大攻角處于中間值時,方法1的效果最明顯。當(dāng)最大攻角過小時,實現(xiàn)精確跟蹤是幾乎不可能的。

圖12 最大攻角與誤差

4 結(jié)論

針對HV以給定彈著角打擊目標(biāo)的要求,及HV復(fù)雜的特性,本文提出了導(dǎo)引與控制一體化的設(shè)計思想,并建立了一體化控制模型。結(jié)合APN制導(dǎo)律的特點(diǎn),對一體化控制模型分2段進(jìn)行了簡化。在此基礎(chǔ)上設(shè)計出了對參數(shù)不確定性具有魯棒性的自適應(yīng)Backstepping滑模控制器,有效解決了系統(tǒng)的非線性與耦合性問題。在對控制律考察后,相應(yīng)地改進(jìn)了制導(dǎo)律,進(jìn)而增強(qiáng)了系統(tǒng)的穩(wěn)定性。本文的一體化設(shè)計方法,實現(xiàn)了導(dǎo)引和控制的有機(jī)結(jié)合,有效可行,提高了系統(tǒng)整體性能。

參 考 文 獻(xiàn)

[1] 朱凱,齊乃明.基于滑膜干擾觀測器的垂直攻擊制導(dǎo)律研究[J].兵工學(xué)報,2011,32(12):1462-1467.(ZHU Kai,QI Naiming.Research on Vertical Terminal Guidance Law Based on Sliding Mode Disturbance Observer[J].Acta Armamentarii,2011,31(12):1462-1467.)

[2] Lu P, Doman D B, Schierman J D.Adaptive Terminal

Guidance for Hypervelocity Impact in Specified Direction[C]//AIAA Guidance, Navi-gation, and Control Conference and Exhibit,San Francisco: AIAA, 2005: 2108-2129.

[3] Keshmiri S,Colgren R,Mirmirami M.Development of an Aerodynamic Database for a Generic Hypersonic Air Vehicle[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2005:1-21,AIAA 2005-6257.

[4] Jeffrey J.Dickeson, Armando A.Rodriguez, Srikanth Sridharan.Elevator Sizing, Placement, and Control-Relevant Tradeoffs for Hypersonic Vehicles[C].AIAA Guidance, Navigation, and Control Conference2-5 August 2010, Toronto, Ontario Canada:AIAA,2010:2010-8339.

[5] 張紅梅,張國山.高超聲速飛行器的建模與控制[D].天津:天津大學(xué), 2011.

[6] 李海軍,黃顯林.再入機(jī)動彈頭的建模與控制[D].哈爾濱: 哈爾濱工業(yè)大學(xué), 2010.

[7] Richard Colgren, Shahriar Keshmiri.Nonlinear Ten-Degree-of-Freedom Dynamics Model of a Generic Hypersonic Vehicle[J].Journal of Aircraft, 2009, 46(3):800-813.

[8] 尹永鑫,石文,楊明,等.基于動態(tài)逆和狀態(tài)觀測的制導(dǎo)控制一體化設(shè)計[J].系統(tǒng)工程與電子技術(shù),2011,33(6):1342-1345.(YIN Yongxin, SHI Wen, YANG Ming.Integrated Guidance and Control Based on Dynamic Inverse and Extended State Observer Method[J].System Engineering and Electronics, 2011,33(6):1342-1345.)

[9] 趙春哲.基于自抗擾控制的制導(dǎo)與運(yùn)動控制一體化設(shè)計[J].系統(tǒng)科學(xué)與數(shù)學(xué),2010,30(6): 742-751.(ZHAO Chunzhe.Adrc Based Integrated Guidance and Control Scheme[J].Journal of Systems Science and Mathematical Sciences, 2010,30(6):742-751.)

[10] 高為炳.變結(jié)構(gòu)控制的理論及設(shè)計方法[M].北京:科學(xué)出版社,1999.

猜你喜歡
攻角航跡制導(dǎo)
夢的航跡
青年歌聲(2019年12期)2019-12-17 06:32:32
風(fēng)標(biāo)式攻角傳感器在超聲速飛行運(yùn)載火箭中的應(yīng)用研究
自適應(yīng)引導(dǎo)長度的無人機(jī)航跡跟蹤方法
大攻角狀態(tài)壓氣機(jī)分離流及葉片動力響應(yīng)特性
基于MPSC和CPN制導(dǎo)方法的協(xié)同制導(dǎo)律
基于在線軌跡迭代的自適應(yīng)再入制導(dǎo)
視覺導(dǎo)航下基于H2/H∞的航跡跟蹤
帶有攻擊角約束的無抖振滑模制導(dǎo)律設(shè)計
附加攻角效應(yīng)對顫振穩(wěn)定性能影響
振動與沖擊(2015年2期)2015-05-16 05:37:34
民用飛機(jī)攻角傳感器安裝定位研究
吐鲁番市| 麦盖提县| 临汾市| 兰州市| 博乐市| 都江堰市| 缙云县| 吉林市| 太保市| 赣榆县| 威海市| 酒泉市| 宁津县| 荣昌县| 崇左市| 江川县| 府谷县| 九龙县| 南阳市| 乐业县| 宜昌市| 龙口市| 东乌| 太和县| 巴彦县| 武威市| 日照市| 五河县| 临泽县| 稷山县| 刚察县| 海林市| 香格里拉县| 孟津县| 同德县| 张家口市| 宁国市| 盱眙县| 阳泉市| 东辽县| 乌拉特后旗|