劉向平, 章國(guó)慶
(上海理工大學(xué)理學(xué)院,上海 200093)
帶非線性邊界的p-Laplacian問(wèn)題的多重解
劉向平, 章國(guó)慶
(上海理工大學(xué)理學(xué)院,上海 200093)
研究了外域空間上一類帶非線性邊界的p-Laplacian問(wèn)題多重解的存在性.利用極值原理和山路引理,證明了帶非線性邊界的p-Laplacian問(wèn)題至少存在2個(gè)非平凡解.
多重解;非線性邊界;山路引理
幾何學(xué)中的一些問(wèn)題都與帶非線性邊界的p-Laplacian方程相關(guān),如微分幾何中的標(biāo)量曲率問(wèn)題和Yamabe問(wèn)題[1-2]可導(dǎo)出類似的如下帶非線性邊界條件的p-Laplacian問(wèn)題
1992年,Yu[3]研究了在外域上帶Dirichlet邊界的p-Laplacian問(wèn)題.分別對(duì)超線性、次線性、超線性加次線性這3種情況進(jìn)行了討論,得到了非平凡解的存在性和正則性.2001年,Montefusco和Radulescu[4]利用山路引理證明了在無(wú)界區(qū)域上的帶非線性邊界的p-Laplacian問(wèn)題至少存在1個(gè)非平凡解.2008年,F(xiàn)ilippucci和Pucci[5]證明了外域上帶非線性邊界的p-Laplacian問(wèn)題至少存在1個(gè)非平凡解,并給出了解的正則性.但對(duì)于此類問(wèn)題多重解的研究并不多見(jiàn),本文利用山路引理和在局部區(qū)域找極小值點(diǎn)的方法,證明了問(wèn)題(1)至少有2個(gè)非平凡解,得到了多重解的存在性.
利用山路引理和在局部區(qū)域找極小值點(diǎn)的方法證明定理1.
[1] Rossi J D.El l iptic problems with nonl inear boundary conditions and the Sobolev trace theorem[M].New York:Elsevier,2005.
[2] Druet O,Hebey E.El l iptic equations of Yamabe type[J].International Mathematics Research Surveys,2005,1(1):1-113.
[3] Yu L S.Nonl inearp-Laplacian problems on unbounded domains[J].Proc A merican Mathematical Soc,1992,115(4):1037-1045.
[4] Momtefusco E,RadulescuV.Nonl ineareigenvalue problems forquasi l inearoperatorsonunbounded domains[J].Nonl inear Differ Equ Appl,2001,8(2):481-497.
[5] Fi l ippucci R,Pucci P,Radulescu V.Existence and nonexistence results forquasi l inearel l ipticexterior problems with nonl inear boundary conditions[J]. Com m Partial Differ Eqations,2008,33(3):706-717.
[6] Pfluger K.Compact traces in weighted Sobolve spaces[J].Analysis,1998,18(1):65-83.
[7] Pfluger K.Existence andmultipl icityof solutions to ap-Laplacian equationwith nonl inear boundary conditions[J].Electronic Journal ofDifferential Equations,1998(10):1-13.
[8] Diaz J I.Nonl inear partial differential equations and free boundaries[M]∥Research Notesin Mathematics. Boston:Prentice ltal l,1986.
(編輯:石 瑛)
M ultiplicity Solutions forp-Laplacian Proble m s with N onlinear Boundary Conditions
LIU Xiang-ping, ZHANG Guo-qing
(College of Sciences,University of Shanghai for Science and Technology,Shanghai 200093,China)
The existence of multiple solutions for a class ofp-Laplacian problems with nonlinear boundary conditions on exterior domain was investigated.Using extremum principle and mountain pass lem ma,the existence of at least two nontrivial solutions forp-Laplacian equations with nonlinear boundary conditions was proved.
m ultiplicity solutions;nonlinear boundary conditions;Mountain Pass Lem m a
O 175.25
A
1007-6735(2013)05-0449-03
2012-07-18
上海市自然科學(xué)基金資助項(xiàng)目(11ZR1424500);上海市一流學(xué)科建設(shè)資助項(xiàng)目(X T K X2012)
劉向平(1987-),男,碩士研究生,研究方向:偏微分方程.E-mai l:l iuxp83355650@yeah.net
章國(guó)慶(1973-),男,副教授,研究方向:偏微分方程.E-mai l:shzhangguoqing@126.com