張 艷
(商南縣十里坪鎮(zhèn)九年制學(xué)校,陜西 商南 726306)
如何在新課程理念的指導(dǎo)下改革中學(xué)數(shù)學(xué)課堂教學(xué),把先進(jìn)的教學(xué)理念融入到日常的教學(xué)行為之中,已日益成為廣大數(shù)學(xué)教師關(guān)注和探討的熱點問題。全國著名教育改革家邱學(xué)華老師所創(chuàng)立的《嘗試教學(xué)理論》為教學(xué)理論注入新鮮血液,在教學(xué)實踐中產(chǎn)生強烈反響。嘗試教學(xué)理論的基本觀點是“學(xué)生能嘗試,嘗試能成功,成功能創(chuàng)新”;基本特征是“先練后講,練在當(dāng)堂”?!跋染毢笾v”,說的是在教學(xué)中,讓學(xué)生先去思考,先去練習(xí),再由教師講解,引導(dǎo)學(xué)生進(jìn)行理解和重建、再嘗試。近年我校積極引進(jìn) “嘗試教學(xué)行動研究”這個課題,進(jìn)行了積極的嘗試和教學(xué)實驗,一年來教師的教學(xué)方式發(fā)生了可喜的變化。筆者就一節(jié)一元二次方程應(yīng)用題嘗試教學(xué)實例,談?wù)勅绾尾捎脟L試教學(xué),優(yōu)化課堂教學(xué),培養(yǎng)創(chuàng)新精神。
教學(xué)內(nèi)容
人教版九年級上冊數(shù)學(xué)22章第3節(jié)探究一,本節(jié)課主要學(xué)習(xí)建立一元二次方程的數(shù)學(xué)模型解決傳播問題。
教學(xué)目標(biāo)
知識技能
1.能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。
2.能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理。
過程與方法
經(jīng)歷將實際問題抽象為數(shù)學(xué)問題的過程,探索問題中的數(shù)量關(guān)系,并能運用一元二次方程對之進(jìn)行描述。通過解決傳播問題,學(xué)會將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,發(fā)展學(xué)生的應(yīng)用意識。
情感態(tài)度
通過一元二次方程解決身邊的問題,體會數(shù)學(xué)的應(yīng)用價值,提高學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,培養(yǎng)學(xué)生的創(chuàng)新精神。
重點:列一元二次方程解有關(guān)傳播的應(yīng)用題。
難點:發(fā)現(xiàn)傳播問題中的等量關(guān)系。
教學(xué)過程:
師:(出示準(zhǔn)備練習(xí)1)(1)如果一個班里有一名同學(xué)熱愛學(xué)習(xí)數(shù)學(xué),若一名同學(xué)一年能帶動周圍4名同學(xué)也熱愛學(xué)習(xí)數(shù)學(xué),就這樣幫帶下去,兩年后班里共有幾名同學(xué)熱愛學(xué)習(xí)數(shù)學(xué)?三年后呢?
(看到這個題同學(xué)們感到很親切,都很積極地計算交流起來)
生:兩年后25名。第一年1個幫4個共5個,第二年 5個又幫 20個,1+4+4×(1+4)=25,兩年共有 25名。因為25+4×25=125,所以三年后有125名。
師:(2)若在這種幫帶方式實行在我班,現(xiàn)在有10名同學(xué)愛學(xué)數(shù)學(xué),一年后就會有多少人愛學(xué)數(shù)學(xué)了?
生:共50人,比我們班的人還多了。
(同學(xué)們都會心的笑了)
師:希望愛數(shù)學(xué)的同學(xué)也像這樣發(fā)揮團(tuán)結(jié)友愛,互幫互助的精神,帶動周圍的同學(xué)把數(shù)學(xué)這門課學(xué)好。
師:(出示準(zhǔn)備練習(xí)2)如果班里一人患了流感,一人一天傳染給了x個人,兩天后共有多少人患了流感?
生:共有〔1+x+x(1+x)〕人,即(1+x)2人。
【評析】練習(xí)1以課本例題“流感傳染問題”的結(jié)構(gòu)為模型,結(jié)合學(xué)生學(xué)習(xí)“傳幫帶”的背景,設(shè)計了一道具體數(shù)據(jù)的傳播問題,既讓學(xué)生理解了傳播的具體經(jīng)過,為后面理解例題做了鋪墊,又與學(xué)生生活聯(lián)系緊密,學(xué)生樂于接受且容易理解,特別是對學(xué)生進(jìn)行了互幫互助,團(tuán)結(jié)奮進(jìn)的思想教育,從學(xué)生會意的笑臉上,我知道學(xué)生的學(xué)習(xí)熱情被調(diào)動起來了,我便乘機告訴學(xué)生只要大家肯互幫互助,在九年級這一年里學(xué)好數(shù)學(xué)是一定能做到的。
練習(xí)2則是在本節(jié)課例題的基礎(chǔ)上反向改編的一道題,從練習(xí)1的具體數(shù)據(jù)表示到練習(xí)2的用x表示,強化學(xué)生的代數(shù)意識,與后面的例題形成了層層遞進(jìn)的關(guān)系,讓學(xué)生逐步理解如何用未知數(shù)表示兩輪傳染后的總?cè)藬?shù)。有了前面練習(xí)1的鋪墊,練習(xí)2學(xué)生做得很輕松,特別是對“兩輪傳染”理解的很到位,教學(xué)效果很好。
這兩個準(zhǔn)備練習(xí)的設(shè)計由易到難,從特殊到一般,既有例題的影子,又比例題簡單易懂,與例題渾然一體,為例題教學(xué)打下了很好的基礎(chǔ),為探究傳播規(guī)律“(1+x)2=總數(shù)”做了鋪墊,使后面的例題教學(xué)變得輕松愉快。
(一)出示嘗試題
問題:有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
(二)自學(xué)引導(dǎo)
①不看書自己嘗試列方程。
②不會做的翻書看看,再嘗試列方程。
③請做法不同的三名同學(xué)板演所列方程
生1.設(shè)每輪傳染中平均一個人傳染了x個人,根據(jù)題意得(1+x)2=121
生2.設(shè)每輪傳染中平均一個人傳染了x個人,根據(jù)題意得 1+x+x(1+x)=121
生3.設(shè)每輪傳染中平均一個人傳染了x個人,根據(jù)題意得1+x+x2=121
(三)學(xué)生討論:
①你能點評一下他們?nèi)说慕夥▎幔?/p>
組織學(xué)生小組內(nèi)討論,形成共識后請一名學(xué)生點評
生4.我們認(rèn)為第一種解法和第二種解法都對,而且是一樣的,因為 1+x+x(1+x)提公因式后就是(1+x)2。第三種解法是錯誤的,因為在第二輪傳染時第一個人也參與了傳染,故傳染了x(x+1)人而不是x人。
師:你說的很有道理,感謝你的精彩點評。
②你認(rèn)為用哪種解法解方程(1+x)2=121更合適?試一試。
生5.我用直接開平方法解得x1=10,x2=-12,因為人數(shù)不能為負(fù)數(shù),所以x=-12應(yīng)舍去,每輪傳染中平均一個人傳染了10個人.
生6.我用因式分解法也解得x1=10,x2=-12,因為人數(shù)不能為負(fù)數(shù),所以x=-12應(yīng)舍去,每輪傳染中平均一個人傳染了10個人。
師:二位同學(xué)說的都對,請你們倆在黑板上完整寫出自己的解法。
【評析】數(shù)學(xué)知識大都是通過習(xí)題形式出現(xiàn)的,有了準(zhǔn)備練習(xí)的鋪墊,例題就顯得通俗易懂,學(xué)生更容易理解和接受。以課本中的例題為嘗試題,出示嘗試題后,學(xué)生覺得與前面兩個練習(xí)很相似,同時產(chǎn)生解決問題的愿望,這時引導(dǎo)學(xué)生嘗試解決例題就成為學(xué)生自身的需要。既然學(xué)生已經(jīng)躍躍欲試,教師就順?biāo)浦圩屗麄冊囈辉?,讓學(xué)生不看書自己先嘗試列方程,練習(xí)時,教師要巡回觀察,及時了解學(xué)生嘗試練習(xí)的情況;不會做的翻書看看書上的例題分析,再嘗試列方程,符合學(xué)生自學(xué)的愿望;然后請做法不同的三名同學(xué)板演所列方程,給學(xué)生展示自己才華的機會。這樣因人而異的自學(xué)方式,便于讓學(xué)生自己用嘗試法解決嘗試題,讓程度好點的學(xué)生獲得獨立思考解決問題的機會,讓程度稍差點的學(xué)生通過自學(xué)課本獲得解決問題的方法,讓不同見解的學(xué)生有了展示自己的創(chuàng)意的平臺,做到了因材施教,以人為本。嘗試練習(xí)結(jié)束后,教師根據(jù)學(xué)生板演的情況,引導(dǎo)學(xué)生討論評講,誰做對了,誰做錯了,錯在哪里。這有利于發(fā)展學(xué)生的數(shù)學(xué)語言表達(dá)能力以及分析推理能力,更能充分利用錯誤資源讓學(xué)生在鑒別中強化認(rèn)識,提高能力。
師:剛才兩位同學(xué)做得都很好,特別提醒大家在列一元二次方程解應(yīng)用題時求出解以后一定要檢驗。剛才這個題的傳播源是一個人,若改成“有2人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?三輪后共有幾人患了流感”,應(yīng)怎樣列方程?若傳播源是a個呢?
學(xué)生討論探究填表:
師:一般情況下,若有a人患了流感,每輪傳染中平均一個人傳染了x個人,經(jīng)過兩輪傳染后共有b人患了流感,就會得到方程a(1+x)2=b.經(jīng)過n輪傳染后共有 a(1+x)n人患了流感.
【評析】學(xué)生嘗試列方程、嘗試點評以后,迫切需要知道自己算得對嗎,講得對嗎。這時聽教師講解已成為他們的迫切要求。學(xué)生會做題目.并不等于掌握了,還必須懂得規(guī)律得來的過程,理解知識的內(nèi)在聯(lián)系。因此在學(xué)生嘗試練習(xí)后,教師要進(jìn)行系統(tǒng)講解.這里教師的講解同過去舊方法不同,不要什么都從頭講起,學(xué)生親自嘗試做了練習(xí)題,教師可以針對學(xué)生感到困難的地方、關(guān)鍵的地方重點進(jìn)行講解,由于是九年級的學(xué)生,教師講解可以適當(dāng)?shù)倪M(jìn)行拓展探究,在探究時可讓學(xué)生再次討論,進(jìn)而建立起數(shù)學(xué)模型:a(1+x)2=b。
師:生活中類似于“流感傳染”的情景有很多,比如:消息的傳播、短信的發(fā)送,愛心的傳播……,你能否根據(jù)自己的生活經(jīng)驗也自編一道用一元二次方程解的傳播問題呢?
(要求:4人一小組,每組編一道題并解答,然后由組長展示問題,全班同學(xué)比賽列方程)
生1.如果一個人患了紅眼病,經(jīng)過兩輪傳染后共有25人患了紅眼病,每一輪傳染中平均一個人傳染了幾個人?
生2.一個社區(qū)有一個熱愛環(huán)保的人,兩輪后帶動了16人,每輪平均一人帶動了多少人熱愛環(huán)保?
生3.某人編了一條短信,兩輪發(fā)送后共有64人收到了這條短信,每輪中平均一人發(fā)了幾條短信?三輪后共有幾人收到了這條信息?
生4.有一種細(xì)胞分裂速度很快,兩輪分裂后共有441個細(xì)胞,每輪中平均一個細(xì)胞分裂成了多少個細(xì)胞?
(此處學(xué)生發(fā)生了爭吵,有的人認(rèn)為此題的方程是(1+x)2=441,有的人認(rèn)為此題的方程是x=441,這是多好的課堂資源呀,此刻我很欣慰,適時地組織學(xué)生進(jìn)行第三次討論,直至所有的人認(rèn)為細(xì)胞分裂與傳播問題本質(zhì)區(qū)別在于一個細(xì)胞分裂后形成了新的細(xì)胞,原來的細(xì)胞就不存在了,所以方程是x=441才對。)
生5.養(yǎng)豬場里有5只豬患了禽流感,兩輪傳染后共有1445只豬患了禽流感,每輪傳染中一只豬傳染了幾只豬?
……
【評析】學(xué)生編得熱火朝天,編出的題目五花八門,大家都搶著列方程,每個同學(xué)的方程一出,大家的方程就列出來了,讓我驚喜的是學(xué)生不僅編出的問題背景新穎,而且在編題的時候能考慮到數(shù)據(jù)要為完全平方數(shù),列出的方程才有合適的解。生5編的豬得禽流感的笑話更是把大家逗得開心一笑,卻又不失方程的基本模型,下課鈴聲在大家愉快的交流中響起了……
此刻學(xué)生不僅領(lǐng)會了數(shù)學(xué)來源于生活,更經(jīng)歷了把實際問題轉(zhuǎn)化成數(shù)學(xué)問題的過程,真正的體會了一元二次方程是刻畫現(xiàn)實生活某些問題的有效數(shù)學(xué)模型。
筆者為學(xué)生的表現(xiàn)感到高興,為自己成功的嘗試感到欣慰,也激勵著筆者在嘗試中不斷摸索,在嘗試中不斷總結(jié)。實踐證明,邱學(xué)華教授嘗試教學(xué)課堂教學(xué)結(jié)構(gòu)模式能夠有效地提高課堂教學(xué)效率,教學(xué)效果好,要不斷地去學(xué)習(xí),去實踐,去探討,可以預(yù)期會有更多的體驗和收獲。