范東棟 白紹竣
(1航天東方紅衛(wèi)星有限公司,北京100094)
(2北京空間機電研究所,北京100076)
由于紅外傅里葉變換光譜儀具有光譜分辨率高、光譜范圍寬和光譜一致性好等諸多優(yōu)勢[1],常被用來測量各種物質(zhì)的精細光譜。星載傅里葉變換光譜儀則是通過衛(wèi)星平臺實現(xiàn)對地球大氣圈中各種氣體分子的精細光譜探測。作為高精度的星載精密設(shè)備,星載傅里葉變換光譜儀需要適應(yīng)空間環(huán)境和衛(wèi)星平臺各種環(huán)境,尤其是平臺的振動環(huán)境。因為振動對干涉效果產(chǎn)生嚴重影響,增大了光譜探測數(shù)據(jù)的誤差。
因此,需要分析衛(wèi)星平臺的微振動條件對星載傅里葉變換光譜儀采樣信號的影響。本文通過開展建模等仿真分析,對經(jīng)過特殊設(shè)計的干涉儀微振動影響進行綜合評估,為驗證星載紅外傅里葉變換光譜儀的設(shè)計能否適應(yīng)衛(wèi)星平臺力學(xué)環(huán)境提供理論依據(jù)。
星載超高光譜分辨率光譜儀在軌采用太陽掩星工作模式,其主要過程如圖 1所示[2]。首先要求光譜儀建立對日定向關(guān)系,衛(wèi)星運行到圖1左中的光線1所示的位置時,這時獲得了沒有經(jīng)過大氣吸收的太陽光譜。當衛(wèi)星運行到一定的位置時,如圖1左中的光線2-4所示,光譜儀探測到了經(jīng)過大氣吸收的太陽光譜,將經(jīng)過大氣層的光譜與沒有經(jīng)過大氣的光譜進行差分比較,得出了不同高度的大氣中的化學(xué)成分的吸收光譜[3]。圖1右中還給出了不同高度的太陽吸收光譜曲線,結(jié)果顯示隨著高度的降低,大氣中各種氣體濃度增加,吸收路徑延長,大氣對太陽光譜吸收也更加強烈。由于不同氣體分子吸收產(chǎn)生不同波長的吸收光譜,通過光譜探測就可以實現(xiàn)不同氣體的成分和濃度探測[4]。
圖1 大氣成分探測系統(tǒng)工作原理Fig.1 Principle of atmosphere composition observing system
光線經(jīng)過了大氣層后,攜帶了反映了不同高度的吸收光譜信息,經(jīng)過復(fù)雜的正反演處理得到不同軌道高度的各種氣體成分和濃度的空間分布。如果衛(wèi)星的采樣周期越小,得到垂直分辨率越高。通過這種太陽掩星觀測模式,可以得到8~100km內(nèi)大氣成分的垂直分布。
太陽掩星工作模式和太陽輻射信號的強度,是進行星載傅里葉變換光譜儀設(shè)計的重要輸入條件??紤]到大氣分子的特征吸收光譜分辨率、輸入信號光譜輻亮度等要求,光譜儀采用空心角鏡的擺臂結(jié)構(gòu),同時以計量激光作為干涉信號的觸發(fā)采樣信號。該光譜儀系統(tǒng)主要包括太陽跟蹤器、前置光學(xué)系統(tǒng)、干涉儀、后繼光學(xué)系統(tǒng)、探測器組件等,如圖2所示。系統(tǒng)中太陽跟蹤器用于完成對日捕獲和對太陽的精確對準,并將太陽光譜信號引入由主次鏡組成的前置光學(xué)系統(tǒng),適當壓縮光學(xué)口徑后進入干涉儀;干涉儀是光譜儀的核心組成部分,由分束器補償器、角鏡、擺臂機構(gòu)、激光光學(xué)、干涉儀模擬信號處理器、干涉儀控制器等部件組成,用于完成對輸入光譜信號的干涉調(diào)制,實現(xiàn)干涉數(shù)據(jù)的采集;后置光學(xué)系統(tǒng)則實現(xiàn)干涉儀干涉輸出信號匯聚到探測器焦面,經(jīng)過探測器的光電轉(zhuǎn)換和信號處理器得到干涉信號。
圖2 光譜儀系統(tǒng)組成Fig.2 Composition of high resolution Fourier Transform Spectrometer
空心角鏡的擺臂掃描方式以及計量激光觸發(fā)采樣的方式的應(yīng)用,使得光譜儀對衛(wèi)星平臺微振動環(huán)境的適應(yīng)性得到很到提高。
光譜儀的核心模塊——干涉儀,采用了8倍放大的光路設(shè)計,這種設(shè)計在保證獲取足夠光程差同時使得儀器更加緊湊。
分析微振動對光譜儀的影響需要結(jié)合光路進行,干涉儀的光路如圖3所示。干涉儀系統(tǒng)為擺動式干涉儀,由分束器、補償器、兩個角鏡和一個端鏡共同組成。系統(tǒng)工作時,一個角鏡靠近分束器,另一個角鏡遠離分束器,從而使兩路干涉光產(chǎn)生光程差。擺動周期內(nèi),擺臂獲得最大機械掃描距離為 L,通過“端鏡—角鏡”和差動的擺臂系統(tǒng),可以實現(xiàn)最大光程差MOD為8L。
干涉儀系統(tǒng)的光路設(shè)計中,使用了同一面靜止的端鏡和角反射鏡配合,消除了角鏡在移動中可能出現(xiàn)的傾斜、剪切等誤差。
以上針對太陽掩星工作模式的獨特設(shè)計,確保星載傅里葉變換光譜儀的方案先進,即指標先進。但必須對其是否適應(yīng)衛(wèi)星平臺的力學(xué)環(huán)境進行仿真分析,以驗證其工程可實現(xiàn)性。
圖3 干涉儀光路Fig.3 The interferometer layout of the optical system
干涉儀對振動環(huán)境較為敏感,而衛(wèi)星上具有飛輪、掃描機構(gòu)、機械制冷機等多個振動源,可能會影響干涉信號的品質(zhì),進而影響最終的探測精度。
首先,考慮一束波數(shù)為v0的單色光的干涉情況,在光程差有一定擾動的情況下干涉光強I可以表示為
式中 t為時間; uO′PD為實際光程差; B (ν0) 為光強隨波數(shù)的分布。且有
式中 uOPD為理想工作狀態(tài)下的光程差; uVIB為振動位移,假設(shè)
式中 A為振動幅值;?為振動頻率。
干涉儀采用等光程差采樣的方式,即根據(jù)計量激光的干涉信號過零點觸發(fā)干涉圖的采樣形式。計量激光干涉信號的過零點發(fā)生偏移,將造成采樣誤差,如圖4所示。圖4中黑色曲線為無擾動情況下的計量激光干涉信號,粉色曲線為有振動情況下計量激光的干涉信號,紅色曲線為主光路干涉圖。理想情況下,根據(jù)計量激光干涉信號為諧波信號,其零點位置為
對應(yīng)的過零點時間為
在有振動影響的情況下,零點的位置為
對應(yīng)的過零點時間為
理想情況下計量激光干涉信號過零點nt和有擾動情況下計量激光干涉信號過零點nt′之間偏差為
圖4示意了由振動引起的計量激光過零點的偏移情況。
圖4 計量激光干涉信號過零點偏移引起的采樣誤差示意Fig.4 Sample error of meterology laser interfere signal over zero position
為了顯示激光干涉信號過零點偏移對光譜圖的影響,根據(jù)有振動情況下的激光干涉信號過零點時刻,對一個單色光束的干涉圖進行采樣,復(fù)原后光譜圖如圖5所示,從圖中可以看出主譜線附近出現(xiàn)了鬼線。
實際上,計量激光和紅外干涉光路為共光路設(shè)計,同時又采用等光程差采樣的采樣方式,可以有效避免采樣誤差。但是,由于電子學(xué)采樣鏈路的延遲,使得探測器采樣的時刻相對激光干涉信號的過零點有一段時間的延遲 td。微振動的影響主要與延遲失配時間有關(guān)。
計算相同振動環(huán)境下,不同延遲匹配時間對光譜圖的影響,計算結(jié)果如圖6所示。圖6為頻率為83.3Hz、振動幅度為13.5×10-3gn時,延遲時間分別為0.1μs、1μs、10μs時的光譜圖,右圖為左圖的局部放大。圖7~8分別為44.8 Hz、16.7 Hz時,振動幅度30×10-3gn、50×10-3gn條件下,延遲時間分別為0.1μs、1μs、10μs時的光譜圖。比對以上各個工況條件下的光譜圖,可以看出延遲匹配也會使光譜圖產(chǎn)生鬼線,且延遲匹配時間越長產(chǎn)生的鬼線幅值越大;隨著振動量級增大,光譜圖上的鬼線幅值明顯增大。選擇振動幅度為30×10-3gn、50×10-3gn,主要考慮多數(shù)衛(wèi)星平臺的綜合振動幅度在這個范圍內(nèi)。
圖5 有無振動影響情況下的光譜圖對比Fig.5 Spectrum comparison w ith and w ithout-vibration
圖6 不同延遲匹配時間引起的光譜圖變化(右圖為左圖的局部放大)Fig.6 Changes of spectrum w ith different delay match time
圖7 在振動頻率為44.8Hz時的振動工況下光譜圖Fig.7 Spectrum under
表 1為延遲匹配為1μs時各擾動工況引起的次譜線強度對比。從表中可以看出延遲匹配誤差為1μs時不同振動工況引起的次譜線相對強度變化值接近1%。
表1 延遲匹配誤差為1μs時不同振動工況引起的次譜線相對強度Tab.1 Relative spectral signal under various vibrations
本文詳細分析了微振動可能引起的干涉信號變化對光程差、計量激光過零點位置及延遲匹配時間的影響。文中干涉儀光學(xué)系統(tǒng)采用角鏡和端鏡的組合,有效地避免了剪切、傾斜等誤差的影響。綜合以上分析,對于擺臂式空心角鏡干涉儀,其對干涉信號影響最大的因素來自于延遲匹配的誤差。文中仿真結(jié)果顯示這種干涉儀系統(tǒng)具有較強的振動環(huán)境適應(yīng)能力,在小于的振動環(huán)境下,可以保證次譜線相對強度小于1%,證明了本文采用星載傅里葉變換光譜儀可以適應(yīng)衛(wèi)星平臺的微振動環(huán)境。
References)
[1]邢廷,龔惠興.大氣探測傅里葉變換光譜儀[J].遙感技術(shù)與應(yīng)用,1999, 14(1): 7-11.XING Ting, GONG Huixing. Spaceborne Fourier Transform Spectrometer for Atmospheric Sounding[J]. Remote Sensing Technology and Application, 1999, 14(1):7-11. (In Chinese)
[2]Marc-Andre Soucy, Francois Chateauneuf, Christophe Deutsch, et al. ACE-FTS Instrument Detailed Design[J].Proceedings of the SPIE,2002, 4814: 176-188.
[3]巫曉麗, 范東棟, 王平. 空間大氣成份探測傅立葉變換紅外光譜儀[J]. 航天返回與遙感, 2007, 28(2): 63-67.WU Xiaoli, FAN Dongdong, WANG Ping. Fourier-transform Infrared Spectrometer for Space Atmospheric Composition Detecting [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 63-67.(In Chinese)
[4]Nassar R, Boone C, Walker K A, et al. SciSat-1: Retrieval A lgorithms, ACEFTS Testing and the ACE Database[J]. Proceedings of SPIE, 2004, 5151: 173-183.
[5]Saggin B, Comolli L, Vittorio Form isano. Mechanical Disturbances in Fourier Spectrometers [J]. Applied Optics,2007, 46(22):5248-56.
[6]Comolli L, Saggina B. Evaluation of the Sensitivity to Mechanical Vibrations of an IR Fourier Spectrometer [J]. Review of Scientific Instruments, 2005, 76:123112-8.
[7]Comolli L, Saggina B. Analysis of Disturbances in the Planetary Fourier Spectrometer Through Numerical Modeling [J].Planetary and Space Science, 2010, 58:864-874.
[8]Luca Palchetti, Davide Lastrucci. Spectral Noise Due to Sampling Errors in Fourier Transform Spectroscopy [J]. Applied Optics, 2001, 40(19): 3235-43.
[9]曾立波,尹邦勝,何冰,等. 傅立葉變換紅外光譜儀動鏡傾斜誤差分析[J]. 光學(xué)精密工程, 2006, 14(2): 191-196.ZENG Libo, YIN Bangsheng, HE Bing, et al. Error Analysis of Moving M irror in Fourier Transform Interferometer [J]. Optics and Precision Engineering, 2006, 14(2): 191-196. (In Chinese)
[10]Jyrki Kauppinen, Pekka Saarinen. Line-shape Distortions in M isaligned Cube Corner Interferometers[J]. Applied Optics,1992,31(1): 69:74.