張 旭,鮑毅新,劉 軍,沈良良,章書聲,方平福
(浙江師范大學(xué)生態(tài)研究所,金華 321004)
千島湖島嶼社鼠的種群數(shù)量動態(tài)特征
張 旭,鮑毅新*,劉 軍,沈良良,章書聲,方平福
(浙江師范大學(xué)生態(tài)研究所,金華 321004)
2009年7月至11月以及2010年3月至11月在千島湖地區(qū)2個島嶼上對社鼠(Niviventerconfucianus)種群進(jìn)行標(biāo)志重捕,通過對社鼠種群數(shù)量變動、更新率、居留時間以及氣候?qū)ΨN群數(shù)量影響的研究,探討在陸橋島嶼環(huán)境下社鼠種群數(shù)量動態(tài)的規(guī)律。結(jié)果顯示:兩島種群數(shù)量均是上半年數(shù)量處于高峰,而下半年數(shù)量較低,超過環(huán)境承載力可能是種群下降的主要原因,島嶼環(huán)境對社鼠數(shù)量季節(jié)消長的影響與陸地環(huán)境有所不同;兩島社鼠的種群更新率均較低,這也說明在缺乏遷入和遷出的陸橋島嶼上,僅僅依靠出生和死亡來完成種群的更新,其種群更新率是較低的。根據(jù)對社鼠居留時間的研究,兩島上社鼠的生態(tài)壽命有可能只有一年左右,這比以往研究認(rèn)為社鼠的生態(tài)壽命約一年半或更長一些明顯縮短,這可能與陸橋島嶼較特殊的生存環(huán)境有關(guān);月平均氣溫處于10—22 ℃對于社鼠種群的維持和增長是有利的,當(dāng)月平均氣溫超過22 ℃時,似乎對社鼠種群是不利的。高溫而少雨,可能是導(dǎo)致夏季社鼠種群數(shù)量下降的原因之一。
種群數(shù)量動態(tài);種群更新率;居留時間;千島湖島嶼;社鼠(Niviventerconfucianus)
生境片段化是近來生態(tài)學(xué)領(lǐng)域研究的熱點(diǎn)[1]。在生境片段化過程中獸類成為最為脆弱的類群之一,生境片段化可能是許多獸類種群生存的最大威脅[2]。小型獸類處于生態(tài)系統(tǒng)的中心位置,其通過食物鏈或網(wǎng)及間接作用幾乎和生態(tài)系統(tǒng)中的所有物種發(fā)生聯(lián)系[3],因此研究生境片段化對小型獸類的影響具有重要意義。
島嶼化是一種典型的生境片段化,其有許多顯著特征,如地理隔離,生物類群簡單,動物區(qū)系組成和歷史清楚的特點(diǎn),再加上島嶼數(shù)量眾多、不同島嶼在形狀、大小和隔離度等方面都不相同,這些特點(diǎn)使得其成為生態(tài)學(xué)家檢驗(yàn)理論和驗(yàn)證假說的天然實(shí)驗(yàn)室[4- 6]。近年來,國內(nèi)外在島嶼隔離對植物[7- 11]、爬行類[12- 13]、鳥類[14- 19]等的影響方面已開展了較多的研究。另外,國內(nèi)在對小型獸類的物種多樣性[20]、年齡結(jié)構(gòu)和繁殖狀況[21]、個體形態(tài)[22]、巢區(qū)和領(lǐng)域[23]、遺傳多樣性[24]的影響方面也逐步開展了一些研究工作,并取得了一定的成果。
生境片段化導(dǎo)致原生境的總面積減小,產(chǎn)生了隔離的異質(zhì)種群,影響到個體的行為特性[25- 26],進(jìn)而影響到群落組成及種群動態(tài)[27- 29]。而生存于小生境片段中的小種群具有很高的絕滅風(fēng)險(xiǎn)[30]。種群動態(tài)是種群生態(tài)學(xué)的核心問題,而種群數(shù)量是種群動態(tài)研究的最基本內(nèi)容。對于陸橋島嶼生境下鼠類種群數(shù)量動態(tài)的研究尚未見報(bào)道。因此,在探討了陸橋島嶼環(huán)境下估算社鼠種群數(shù)量的適用方法[31]的基礎(chǔ)上,選取千島湖島嶼對社鼠的種群數(shù)量變動、種群更新率、種群居留時間以及氣候?qū)ΨN群數(shù)量的影響進(jìn)行研究,消除島嶼間的遷移和擴(kuò)散等因素對其影響,驗(yàn)證假設(shè):(1)陸橋島嶼環(huán)境對社鼠數(shù)量季節(jié)消長的影響與陸地環(huán)境有所不同;(2)社鼠通過種群水平上的一些改變來適應(yīng)片段化生境,使種群得以延續(xù)。
1.1 標(biāo)志重捕
根據(jù)以往的經(jīng)驗(yàn),由于冬季12月至翌年2月環(huán)境溫度較低,捕獲鼠若在鼠籠內(nèi)時間過長,食物不足、低溫和產(chǎn)熱過多會導(dǎo)致部分個體的死亡,從而影響研究的結(jié)果,因此在此期間不進(jìn)行重捕。為了獲得重復(fù)數(shù)據(jù)和便于對比分析,選取千島湖地區(qū)面積適當(dāng)、生境類型相似的兩個島嶼作為研究樣地。對A島(2009年10月 — 11月以及2010年3月 — 11月)和B島(2009年7月 — 11月以及2010年3月 — 11月)的社鼠種群進(jìn)行標(biāo)志重捕,所得數(shù)據(jù)采用修正Lincoln指數(shù)法計(jì)算兩個島嶼上的社鼠種群數(shù)量。樣地概況、標(biāo)志重捕以及數(shù)量計(jì)算的方法參見文獻(xiàn)[31]。
1.2 種群更新率
用以下公式對種群更新率進(jìn)行分析[32]:
式中,θT是種群更新率,γ是T時間種群中存在的新個體的總數(shù),NT是T時間種群總個體數(shù)量。
1.3 數(shù)據(jù)處理
采用SPSS 17.0數(shù)據(jù)分析軟件對數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。相關(guān)性分析均采用線性回歸,顯著和極顯著水平分別為P≤0.05和P≤0.01。作圖均采用Excel 2003軟件進(jìn)行。
2.1 種群數(shù)量動態(tài)
整個取樣期間(2009年7月 — 11月以及2010年3月 — 11月)共標(biāo)志社鼠177只,釋放2240只次,其中A島標(biāo)志96只,釋放1193只次;B島標(biāo)志81只,釋放1047只次。分別用修正Lincoln指數(shù)法對兩個島嶼上社鼠種群數(shù)量進(jìn)行計(jì)算。
A、B兩島社鼠種群數(shù)量估算結(jié)果顯示(圖1),每月種群數(shù)量變化整體趨勢基本一致,上半年數(shù)量處于高峰,而下半年數(shù)量較低。A島6月(55.74只)和B島4月(52.27只)均是在種群數(shù)量超過50只后開始下降,而B島在6月之后數(shù)量相對于A島下降的更快。
2.2 種群更新率
對社鼠種群更新率的計(jì)算結(jié)果表明(圖2),兩島差異不顯著(t=1.097,df= 9,P=0.301)。社鼠種群的更新率都比較低,除了2009年11月—2010年3月期間的種群更新率超過了50%,其他兩個捕鼠期之間種群更新率均低于50%。
圖1 兩島社鼠種群數(shù)量變化 Fig.1 Population dynamics of Niviventer confucianus in A and B islands
圖2 兩島社鼠的種群更新率 Fig.2 Turnover rate of Niviventer confucianus population in A and B islands
2.3 種群個體居留時間
兩島在整個取樣期間50%以上的個體均只捕到1—2次,A島80%的個體捕5次以下,而B島80%的個體捕4次以下;A島最長居留時間為9個月,平均居留時間為(3.40±0.24)月;而B島最長為11個月,平均居留時間為(3.20±0.27)月。從圖3和圖4中可以看到,A島社鼠種群中雌雄個體的居留時間的差異顯著(x2=15.894,df=8,P=0.044<0.05),雌性居留時間(4.20±0.38)月要長于雄性(2.55±0.24)月;而B島與A島有一定差異,社鼠種群中雌性(2.68±0.27)月和雄性(3.81±0.48)月個體的居留時間沒有顯著差異(x2=9.225,df=10,P=0.511>0.05)。
2.4 氣候條件與種群數(shù)量的關(guān)系
2.4.1 月平均氣溫
經(jīng)Pearson相關(guān)性檢驗(yàn)結(jié)果顯示,兩島月平均氣溫與種群數(shù)量均沒有顯著相關(guān)性(A島:r=-0.04,df=11,P=0.906;B島:r=-0.248,df=14,P=0.393)。但從圖5可以看出,除B島2010年4月外,月平均氣溫處于10—22 ℃對于社鼠種群的維持和增長是有利的,而當(dāng)平均氣溫超過22 ℃(A島:2010年6—9月;B島2009年7—9月和2010年6—9月)時,種群數(shù)量則下降。
圖3 A島社鼠種群雌雄個體居留時間 Fig.3 Residence time of Niviventer confucianus population in A island
圖4 B島社鼠種群雌雄個體居留時間 Fig.4 Residence time of Niviventer confucianus population in B island
2.4.2 月降雨量
經(jīng)Pearson相關(guān)性檢驗(yàn)結(jié)果顯示,兩島月降雨量與種群數(shù)量沒有顯著相關(guān)性(A島:r= 0.393,df=11,P=0.232;B島:r= 0.488,df=14,P=0.076)。A島在氣溫較高的2010年6—9月,月降雨量除2010年7月之外都較低(圖6);B島在氣溫較高的2009年7—9月和2010年6—9月,月降雨量(除2009年7月和2010年7月外)較低(圖6)。
圖5 兩島月平均氣溫與種群數(shù)量的關(guān)系 Fig.5 Monthly average temperature and population quantity in A and B islands
圖6 兩島月降雨量與種群數(shù)量的關(guān)系 Fig.6 Monthly rainfall and population quantity in A and B islands
3.1 陸橋島嶼環(huán)境下的種群數(shù)量動態(tài)
千島湖地區(qū)的島嶼是典型的片段化生境,是一種天然的圍欄。一方面,因適宜生境斑塊面積較小,生存所需的食物來源、活動范圍等受到限制,生理機(jī)能處在較高的耐受狀態(tài),外界因素的影響作用明顯加強(qiáng),種群變得相對脆弱,波動性變大[27- 28,33];另一方面,圍欄所導(dǎo)致的圍欄效應(yīng)(fence effect)會對孤立島嶼上的小型哺乳動物種群產(chǎn)生影響。例如,種群增長達(dá)到較高的密度后,由于資源的過度消耗,種群數(shù)量急劇下降[34]。作為孤立的島嶼,小型哺乳動物無法或很少能在島嶼間擴(kuò)散,其種群數(shù)量受制于環(huán)境的容納量。在一般情況下,一個島嶼的環(huán)境容納量維持在相對穩(wěn)定的水平,只有當(dāng)環(huán)境發(fā)生較大的變化時環(huán)境容納量才會發(fā)生較大的改變。本研究表明,在環(huán)境條件(面積、植被、氣候等)相似的A、B兩島中,社鼠的種群數(shù)量在超過50只后均開始下降??梢姡诿娣e和生境相似的島嶼上,環(huán)境承載力[35]也相似。因此,這是導(dǎo)致A島6月后數(shù)量開始下降、B島4月后數(shù)量開始下降的主要原因。
破碎的生境改變了原來生境能夠提供的食物的質(zhì)和量,同時也改變了隱蔽物的效能和物種間的聯(lián)系,因此增加了捕食率和種間競爭[36]。獸類捕食者對種群密度的作用屬于反密度制約類型,也就是捕食者只在獵物種群密度降低時發(fā)揮作用[37]。捕食的直接后果就是增大了獵物種群內(nèi)的死亡率。另外,捕食風(fēng)險(xiǎn)還可能改變哺乳動物獵物的活動量,例如巢區(qū)和棲息地的利用、覓食和生殖方式等[38- 39]。獵物通過對捕食風(fēng)險(xiǎn)的反應(yīng),可能影響生殖適合度,最終導(dǎo)致種群數(shù)量下降[40]。而種間競爭也可以通過影響不同物種的棲息地利用,間接地影響競爭種群內(nèi)個體的存活率[41- 43]。食物、捕食和種間競爭一起具有更強(qiáng)的累加效應(yīng)[44- 45]。在研究過程中,發(fā)現(xiàn)雖然兩島的生境類型基本相似,但B島上青毛碩鼠(Berylmysbowersi)的數(shù)量要明顯多于A島,而且6—8月在該島上發(fā)現(xiàn)有野豬活動的痕跡,因此種間競爭和捕食可能對該島種群數(shù)量變動的影響較大,這也許是導(dǎo)致B島在6月之后數(shù)量相對于A島下降的更快的主要原因。
另外,島嶼環(huán)境的特殊性會對社鼠種群數(shù)量的季節(jié)性變化產(chǎn)生一定的影響。根據(jù)Terborgh等[46]的研究方法結(jié)合研究區(qū)域的實(shí)際情況,可將千島湖的島嶼依據(jù)面積(S)劃分為 3 種類型:大型島嶼(S>30 hm2)、中型島嶼(2 hm2
3.2 種群更新和居留時間
研究種群的更新,是了解種群數(shù)量動態(tài)的重要內(nèi)容之一[51]。本研究表明社鼠的種群更新率較低,這也說明在缺乏遷入和遷出的陸橋島嶼上,僅僅依靠出生和死亡來完成種群的更新,其種群更新率是較低的。
生境的破碎化導(dǎo)致生境面積的縮小對于動物種群存在一定的生存壓力。對鳥類的研究表明,生境斑塊的面積縮小對種群遺傳狀況的影響主要通過減小局部種群來改變一系列微進(jìn)化過程[52],如近交衰退,隨機(jī)漂變等。劉軍等[24]通過對千島湖13個島嶼上社鼠的種群遺傳信息及遺傳多樣性與生境面積之間的相關(guān)性分析,從分子水平上推測千島湖地區(qū)生境面積的縮小可能引發(fā)社鼠種群快速進(jìn)化,以適應(yīng)相對狹小的生存空間。而片段化生境同樣也導(dǎo)致社鼠在種群水平上發(fā)生了改變,千島湖中型島嶼9—10月社鼠的平均胎仔數(shù)達(dá)到5.17只[21],明顯高于相近緯度浙江金華社鼠的3.77只[53]和洞庭湖區(qū)的3.7只[54],與緯度較高的北京地區(qū)的5.2只[55]和天津地區(qū)的4.5只[48]相接近。而本研究中,根據(jù)社鼠的居留時間,考慮到幼鼠從出生到能獨(dú)立生活需要一定的時間,同時由于幼年鼠個體小,容易鐵絲孔中逃出鼠籠,降低重捕率,以及捕食、疾病等造成個體的死亡等因素,兩島上社鼠的生態(tài)壽命有可能只有一年左右,這比以往研究認(rèn)為社鼠的生態(tài)壽命達(dá)一年半以上明顯縮短[55]。動物的生態(tài)壽命反映了生存條件的優(yōu)劣,生態(tài)壽命長,說明生存條件優(yōu)越[56]。陸橋島嶼環(huán)境下,其生存條件較為特殊,其生態(tài)壽命縮短。對個體小的物種,由于壽命的縮短,促使性早熟而早生后代,后代生育時間縮短,世代更新變快,這樣能產(chǎn)生更多具遺傳異質(zhì)性的后代,生態(tài)適應(yīng)幅度增大,進(jìn)化速度變快[57]。因此,社鼠通過增加胎仔數(shù)、縮短生態(tài)壽命、改變更新率和居留時間等種群水平上的變化來適應(yīng)片段化生境,使種群得以延續(xù)。
3.4 氣候條件與種群數(shù)量的關(guān)系
氣候條件是影響鼠類種群數(shù)量變動的重要因素之一,其通過影響鼠類的繁殖成功率[58]、生存環(huán)境的食物和隱蔽條件[59]等而影響種群數(shù)量。Pennycuik[60]和Triggs[61]認(rèn)為小家鼠(Musmusculus)的種群數(shù)量變化與氣候變化(如溫度和降水量)有關(guān)。陳安國等[62]認(rèn)為,氣溫、積雪等對新疆的小家鼠數(shù)量變化有影響。
本研究表明,月平均氣溫處于10—22℃對于社鼠種群的維持和增長是有利的。氣溫穩(wěn)定在10 ℃以上,可能是鼠類進(jìn)行繁殖的必要溫度[49]。一般認(rèn)為,平均氣溫達(dá)到10 ℃是進(jìn)入春季的標(biāo)準(zhǔn)[63],千島湖高覆蓋的森林植被與水體調(diào)溫的綜合效應(yīng),形成了春暖早,秋寒遲的特殊小氣候,無霜期達(dá)到263 d[64],而這一特點(diǎn)一方面就使鼠類的繁殖期開始較早,而繁殖期開始早晚對當(dāng)年種群的季節(jié)性變化特點(diǎn)及全年的種群數(shù)量水平都有較大影響,較早地開始繁殖會有利于越冬成體繁殖更多的胎數(shù),使當(dāng)年生個體盡早成熟參加繁殖以補(bǔ)充越冬成體的死亡,從而有利于其數(shù)量的增長[56]。另一方面有利于植物生長,為鼠類提供了豐富的食物和良好的隱蔽條件。適宜的氣溫、充沛的雨水和優(yōu)越的食物條件都利于鼠類繁殖,促使其數(shù)量增加。雖然社鼠能通過各種生理、行為的調(diào)節(jié)來適應(yīng)溫度的變化,對溫度具有較強(qiáng)的耐受性,但從本研究結(jié)果來看,當(dāng)月平均氣溫超過22 ℃時,似乎對社鼠種群也是不利的。
已有研究發(fā)現(xiàn),年降雨量是影響長爪沙鼠(Merionesunguiculatus)種群數(shù)量的最重要的氣候因子[65- 66]。關(guān)于降雨量對嚙齒動物種群數(shù)量的影響,張知彬和王祖望[67]認(rèn)為,雨量對不同鼠類的影響是不一致的,如夏季降雨對紅背鼠平(Clethrionomysrutilus)、大林姬鼠(Apodemuspeninsulae)、長爪沙鼠種群增長有利,但對小家鼠、大倉鼠(Cricetulustriton)、黑線倉鼠(Cricetulusbarabensis)卻不利。本研究中,在氣溫較高的6—9月,較低的月降雨量對社鼠種群是不利的。氣溫和降水量等氣候因素是彼此相互聯(lián)系、相互影響的,并非單獨(dú)地對鼠類種群數(shù)量和變動發(fā)生作用,而是綜合對種群發(fā)生作用[68]。高溫而少雨,可能是導(dǎo)致夏季社鼠種群數(shù)量下降的原因之一。
[1] Laurance W F, Lovejoy T E, Vasconcelos H L, Bruna E M, Didham R K, Stouffer P C, Gascon C, Bierregaard R O, Laurance S G, Sampaio E. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 2002, 16(3): 605- 618.
[2] Bright P W. Habitat fragmentation-problems and predictions for British mammals. Mammal Review, 1993, 23(3/4): 101- 111.
[3] Zhang Z B. The role of small mammals in the ecosystem // Biodiversity Committee of Chinese Academy of Sciences. Biodiversity Studies Series No. 1 Principles and Methodologies of Biodiversity Studies. Beijing: Science and Technology Press of China, 1994: 210- 217.
[4] MacArthur R H, Wilson E O. The Theory of Island Biogeography. New Jersey: Princeton University Press, 1967.
[5] Williamson M H. The MacArthur and Wilson theory today: true but trivial. Journal of Biogeography, 1989, 16: 3- 4.
[6] Vitousek P M. Oceanic islands as model systems for ecological studies. Journal of Biogeography, 2002, 29(5/6): 573- 582.
[7] Terborgh J, Feeley K, Silman M, Nuez P, Balukjian K. Vegetation dynamics of predator-free land-bridge islands. Journal of Ecology, 2006, 94(2): 253- 263.
[8] Zhang X, Xu G F, Shen D W, Gu Y J, Gao H, Luo X H, Chen X Y. Maintenance and natural regeneration of Castanopsis sclerophylla populations on islands of Qiandao Lake Region. Acta Ecologica Sinica, 2007, 27(2): 424- 431.
[9] Terborgh J W, Feeley K J. Ecosystem decay in closed forest fragments // Tropical Forest Community Ecology. Oxford: Blackwell Publishing, 2008: 308- 321.
[10] Sun Q, Lu J B, Wu J G, Zhang F F. Effects of island area on plant species distribution and conservation implications in the Thousand Island Lake region. Biodiversity Science, 2008, 16(1): 1- 7.
[11] Sun Q, Lu J B, Zhang F F, Xu G F. Plant species diversity in relation to island size. Acta Ecologica Sinica, 2009, 29(5): 2195- 2202.
[12] Shou L, Du W G, Lu W W. The causal analysis of inter-population variation in life histories of the northern grass lizard Takydromus septentrionalis: between-island differences in thermal environment, food availability and body temperature. Acta Zoologica Sinica, 2005, 51(5): 797- 805.
[13] Wang Y, Zhang J, Feeley K J, Jiang P, Ding P. Life-history traits associated with fragmentation vulnerability of lizards in the Thousand Island Lake, China. Animal Conservation, 2009, 12(4): 329- 337.
[14] Feeley K J, Terborgh J W. Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness. Ecology, 2006, 87(1): 144- 150.
[15] Zhang J C, Wang Y P, Jiang P P, Li P, Yu M J, Ding P. Nested analysis of passeriform bird assemblages in the Thousand Island Lake region. Biodiversity Science, 2008, 16(4): 321- 331.
[16] Wang Y P, Bao Y X, Yu M J, Xu G F, Ding P. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 2010, 16(5): 862- 873.
[17] Zhang M, Sun J J, Wang Y P, Jiang P P, Ding P, Xu G F. Effects of habitat fragmentation on the use of nest site resources by great tits in Thousand Island Lake, Zhejiang Province. Biodiversity Science, 2010, 19(4): 383- 389.
[18] Wang Y P, Chen S H, Ding P. Testing multiple assembly rule models in avian communities on islands of an inundated lake, Zhejiang Province, China. Journal of Biogeography, 2011, 38(7): 1330- 1344.
[19] Sun J J, Wang S Y, Wang Y P, Shao D Y, Ding P. Effects of habitat fragmentation on avian nest predation risk in Thousand Island Lake, Zhejiang Province. Biodiversity Science, 2011, 19(5): 528- 534.
[20] Zhao Q Y, Bao Y X, Sun B, Zhang L L, Hu Z Y. Analysis of the small mammals community diversity in the Qiandao Lake region. Acta Theriologica Sinica, 2009, 29(4): 406- 412.
[21] Sun B, Bao Y X, Zhang L L, Zhao Q Y. Age-structure and reproduction investigation on Niviventer confucianus living on islands at Qiandao Lake in autumn. Acta Theriologica Sinica, 2009, 29(3): 112- 119.
[22] Sun B, Bao Y X, Zhang L L, Zhao Q Y, Hu Z Y. Preliminary study on relative fatness of Niviventer confucianus on islands of Qiandao Lake region. Zoological Research, 2009, 30(5): 545- 552.
[23] Shen L L, Bao Y X, Zhang X, Wei D Z, Liu J. Effect of different seasons and sex ofNiviventerconfucianuson islands at Thousand Island Lake. Journal of Zhejiang Normal University: Natural Science, 2011, 34(3): 328- 332.
[24] Liu J, Bao Y X, Zhang X, Lin J J, Ye B, Wang Y N. Population genetics ofNiviventerconfucianusand its relationships with habitat area in Thousand Island Lake region. Acta Ecologica Sinica, 2012, 32(3): 758- 766.
[25] Saunders D A, Hobbs R J, Margules C R. Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 1991, 5(1): 18- 21.
[26] Davies K F, Margules C R. Effects of habitat fragmentation on carabid beetles: experimental evidence. Journal of Animal Ecology, 1998, 67(3): 460- 471.
[27] Holt R D, Robinson G R, Gaines M S. Vegetation dynamics in an experimentally fragmented landscape. Ecology, 1995, 76(5): 1610- 1624.
[28] Harrison S. Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology, 1999, 80(1): 70- 80.
[29] Thomas E N, Robert K S. Effect of forest patch area on population attributes of white-footed mice (Peromyscusleucopus) in fragmented landscapes. Canadian Journal of Zoology, 1996, 74(3): 467- 472.
[30] Hanski I. Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology & Evolution, 1994, 9(4): 131- 135.
[31] Zhang X, Bao Y X, Liu J, Lin J J, Shen L L, Wang Y N. A suggestion on the estimation method of population sizes ofNiviventerconfucianusin Land-bridge island. Acta Ecologica Sinica, 2012, 32(5): 1562- 1569.
[32] Briner T. Population dynamics, spatial and temporal patterns of the common vole (Microtusarvalis, Pall.) in a wildflower strip, using mark-recapture method and a new system for automatic radio tracking. Switzerland: University of Bern, 2002.
[33] Couvet D. Deleterious effects of restricted gene flow in fragmented populations. Conservation Biology, 2002, 16(2): 369- 376.
[34] Krebs C J, Keller B L, Tamarin R H. Microtus population biology: demographic changes in fluctuating populations ofM.ochrogasterandM.pennsylvanicusin southern Indiana. Ecology, 1969, 50(4): 587- 607.
[35] Pamela C A, Marilena A C, Luiz G R O, Maurício Eduardo G. Population dynamics ofEuryoryzomysrussatusandOligoryzomysnigripes(Rodentia, Cricetidae) in an Atlantic forest area, Santa Catarina Island, Southern Brazil. Biotemas, 2009, 22(2): 143- 151.
[36] Song Y L, Yang Q E, Huang S Q. Research and conservation of species diversity. Hangzhou: Zhejiang Science and Technology Press, 1998.
[37] Pearson O P. Additional measurements of the impact of carnivores on California voles (Microtuscalifornicus). Journal of Mammalogy, 1971, 52(1): 41- 49.
[38] Batzli G O. Dynamics of small mammal populations: a review // Wildlife 2001: Populations. London: Elsevier Applied Science, 1992: 831- 850.
[39] Koskela E, Yi?nen H. Suppressed breeding in the field vole (Microtusagresis): an adaptation to cyclically fluctuating predation risk. Behavioral Ecology, 1994, 6(3): 311- 315.
[40] Zhang Z Q, Wang D H. The role of extrinsic factors in the regulation of periodic population dynamics in small mammals. Acta Ecologica Sinica, 2004, 24(6): 1279- 1286.
[41] Abramsky Z, Pinshow B. Changes in foraging effort in two gerbil species correlate with habitat type and intra- and interspecific activity. Oikos, 1989, 56(1): 43- 53.
[42] Morris D W. Coexistence of specialist and generalist rodents via habitat selection. Ecology, 1996, 77(8): 2352- 2364.
[43] Cui Q H, Jiang Z G, Lian X M, Zhang T Z, Sun J P. Factors influencing habitat selection of Root Voles (Microtusoeconomus). Acta Theriologica Sinica, 2005, 25(1): 45- 51.
[44] Hanski I, Henttonen H, Kopim?ki E, Oksanen L, Turchin P. Small-rodent dynamics and predation. Ecology, 2001, 82(6): 1505- 1520.
[45] Yang Y W, Liu Z, Liu J K. Effect on aggressive behavior of reed volesMicrotusfortisby food, predation and interspecific competition. Acta Ecologica Sinica, 2007, 27(10): 3983- 3991.
[46] Terbogrh J, Lopez L, Nuez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler G H, Lambert T D, Balbas L. Ecological meltdown in predator-free forest fragments. Science, 2001, 294(5548): 1923- 1926.
[47] Lv G Q, Cai Z Q. Primary observation on the biological characteristics of Chinese white-bellied rat. Plant Protection, 1996, 12(3): 15- 17.
[48] Guo Q B, Zhang Z T, Hao L Y, Wang Y L. An ecological investigation of rodents in the Yan Mountain area of Ji Country. Chinese Journal of Rodent Control, 1987, 3(1): 32- 34.
[49] Bao Y X, Zhuge Y. A preliminary survey on rodents in Tian-mu mountain nature reserve. Acta Theriologica Sinica, 1984, 4(3): 197- 205.
[50] Bao Y X, Zhuge Y. Ecological study of rodents in Jinhua Beishan Mountain. Acta Theriologica Sinica, 1987, 7(4): 266- 274.
[51] Zhu L B, Qian G Z. On the age structure and population renewal of field mouse (Apodemnsagrarios) from Shanghai. Acta Theriologica Sinica, 1982, 2(2): 211- 217.
[52] Gao Z S, Zuo B, Chen J H. The response of birds to forest fragmentation. Journal of Jilin Agricultural University, 2003, 25(2): 211- 214.
[53] Bao Y X, Wang Y G, Bao F X. A Primary observation of breeding behaviour and paedomorphosis ofRattusNiviventer. Journal of Zhejiang Normal University: Natural Science, 1992, 15(3): 76- 78.
[54] Zhang M W, Huang H, Wang Y, Li B. Reproductive ecology of sulphur bellied rat (Niviventerconfucianus) populations in the Dongting Lake region. Acta Ecologica Sinica, 2006, 26(3): 884- 894.
[55] Zhang J. Studies on the population ecology of sulphur bellied rat. Acta Theriologica Sinica, 1993, 13(3): 198- 204.
[56] Jiang Y J, Wei S W, Wang Z W, Zheng X W, Cui R X, Sun R Y. Productivity investigation of the root vole (Microtusoeconomus) population in the haibei alpine bushland (Potentillafruticosa) Ⅰ. population dynamics. Acta Theriologica Sinica, 1991, 11(4): 270- 278.
[57] Stearns S C. The Evolution of Life Histories. Oxford: Oxford University Press, 1992.
[58] Ferkin M H, Sorokin E S, Johnston R E, Lee C J. Attractiveness of scents varies with protein content of the diet in meadow voles. Animal Behaviour, 1997, 53(1): 133- 141.
[59] Bao Y X, Du W G. Relation between relative fatness ofRattusniviventerand climatic factors. Journal of Zhejiang Normal University: Natural Science, 2000, 23(3): 287- 290.
[60] Pennycuik P R, Johnaton P G, Westwood N H, Reisner H. Variation in numbers in a house mouse population housed in a large outdoor enclosure: seasonal fluctuations. Journal of Animal Ecology, 1986, 15(2): 371- 394.
[61] Triggs G S. The population ecology of house mice (Musdomesticus) on the late of May, Scotland. Journal of Zoology, 1991, 225(3): 449- 468.
[62] Chen A G, Zhu S K, Li C Q, Yan Z T. Relation between population dynamics ofMusmusculusand climatic factors // Research on Rat Eradication and Rodent Biology (Ⅳ). Beijing: Science Publishing House, 1981: 69- 93.
[63] Xia W P. Population dynamics of small rodents dialing forest region, lesser Khing-an mountains. Ⅱ. The influences of the climatological factors on the numbers of rodents. Acta Zoologica Sinica, 1966, 18(1): 8- 21.
[64] Ding L Z, Lu J B, Xu G F, Wu J G. Effects of ecological protection and development on landscape pattern in the Thousand-Island Lake region, Zhejiang Province. Biodiversity Science, 2004, 12(5): 473- 480.
[65] Xia W P, Liao C H, Zhong W Q, Sun C L, Tian Y. On the population dynamics and regulation ofMerionesunguiculatusin agricultural region north to Yin mountains, Inner Mongolia. Acta Theriologica Sinica, 1982, 2(1): 50- 69.
[66] Li Z L, Zhang W R. Analysis on the relation between population ofMerionesunguiculatusand factors of meteorological phenomena. Acta Theriologica Sinica, 1993, 13(2): 131- 135.
[67] Zhang Z B, Wang Z W. The Ecology and Managment of Rodent Pests. Beijing: Ocean Press, 1998.
[68] Zheng Z M, Huang Y X. Studies on the seasonal population fluctuation in Rattus rattoides. Acta Theriologica Sinica, 1988, 8(3): 199- 207.
參考文獻(xiàn):
[3] 張知彬. 小型哺乳動物在生態(tài)系統(tǒng)中的作用 // 中國科學(xué)院生物多樣性委員會. 生物多樣性研究系列專著 1生物多樣性研究的原理與方法. 北京: 中國科學(xué)技術(shù)出版社, 1994: 210- 217.
[8] 張欣, 徐高福, 沈棟偉, 顧泳潔, 高輝, 羅小華, 陳小勇. 千島湖島嶼苦櫧 (Castanopsissclerophylla) 種群的維持和天然更新. 生態(tài)學(xué)報(bào), 2007, 27(2): 424- 431.
[10] 孫雀, 盧劍波, 鄔建國, 張鳳鳳. 千島湖庫區(qū)島嶼面積對植物分布的影響及植物物種多樣性保護(hù)研究. 生物多樣性, 2008, 16(1): 1- 7.
[11] 孫雀, 盧劍波, 張鳳鳳, 徐高福. 植物物種多樣性與島嶼面積的關(guān)系. 生態(tài)學(xué)報(bào), 2009, 29(5): 2195- 2202.
[12] 壽鹿, 杜衛(wèi)國, 陸祎瑋. 北草蜥種群間生活史變異的成因分析: 熱環(huán)境、食物可利用性和體溫的島嶼間差異. 動物學(xué)報(bào), 2005, 51(5): 797- 805.
[15] 張競成, 王彥平, 蔣萍萍, 李鵬, 于明堅(jiān), 丁平. 千島湖雀形目鳥類群落嵌套結(jié)構(gòu)分析. 生物多樣性, 2008, 16(4): 321- 331.
[17] 張蒙, 孫吉吉, 王彥平, 蔣萍萍, 丁平, 徐高福. 千島湖棲息地片段化對大山雀營巢資源利用的影響. 生物多樣性, 2010, 19(4): 383- 389.
[19] 孫吉吉, 王思宇, 王彥平, 邵德鈺, 丁平. 千島湖棲息地片段化效應(yīng)對鳥類巢捕食風(fēng)險(xiǎn)的影響. 生物多樣性, 2011, 19(5): 528- 534.
[20] 趙慶洋, 鮑毅新, 孫波, 張龍龍, 胡知淵. 千島湖島嶼小型獸類群落的多樣性. 獸類學(xué)報(bào), 2009, 29(4): 406- 412.
[21] 孫波, 鮑毅新, 張龍龍, 趙慶洋. 千島湖秋季社鼠種群年齡結(jié)構(gòu)及繁殖狀況初探. 獸類學(xué)報(bào), 2009, 29(3): 112- 119.
[22] 孫波, 鮑毅新, 張龍龍, 趙慶洋, 胡知淵. 千島湖島嶼化對社鼠的肥滿度之影響. 動物學(xué)研究, 2009, 30(5): 545- 552.
[23] 沈良良, 鮑毅新, 張旭, 魏德重, 劉軍. 千島湖社鼠巢區(qū)面積的季節(jié)變化與性別差異. 浙江師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 34(3): 328- 332.
[24] 劉軍, 鮑毅新, 張旭, 林杰君, 葉彬, 王艷妮. 千島湖社鼠種群遺傳現(xiàn)狀及與生境面積的關(guān)系. 生態(tài)學(xué)報(bào), 2012, 32(3): 758- 766.
[31] 張旭, 鮑毅新, 劉軍, 林杰君, 沈良良, 王艷妮. 陸橋島嶼環(huán)境下社鼠種群數(shù)量的估算方法. 生態(tài)學(xué)報(bào), 2012, 32(5): 1562- 1569.
[36] 宋延齡, 楊親二, 黃水青. 物種多樣性研究與保護(hù). 杭州: 浙江科學(xué)技術(shù)出版社, 1998.
[40] 張志強(qiáng), 王德華. 小型哺乳動物種群周期性波動的外因調(diào)節(jié)假說. 生態(tài)學(xué)報(bào), 2004, 24(6): 1279- 1286.
[43] 崔慶虎, 蔣志剛, 連新明, 張同作, 蘇建平. 根田鼠棲息地選擇的影響因素. 獸類學(xué)報(bào), 2005, 25(1): 45- 51.
[45] 楊月偉, 劉震, 劉季科. 食物、捕食及種間競爭對東方田鼠 (Microtusfortis) 種群攻擊行為的作用. 生態(tài)學(xué)報(bào), 2007, 27(10): 3983- 3991.
[47] 呂國強(qiáng), 蔡振卿. 社鼠生物學(xué)特性調(diào)查初報(bào). 植物保護(hù), 1996, 12(3): 15- 17.
[48] 郭全寶, 張志天, 郝連義, 王英路. 薊縣燕山區(qū)社鼠生態(tài)調(diào)查. 中國鼠類防制雜志, 1987, 3(1): 32- 34.
[49] 鮑毅新, 諸葛陽. 天目山自然保護(hù)區(qū)嚙齒類的研究. 獸類學(xué)報(bào), 1984, 4(3): 197- 205.
[50] 鮑毅新, 諸葛陽. 金華北山嚙齒類的生態(tài)研究. 獸類學(xué)報(bào), 1987, 7(4): 266- 274.
[51] 祝龍彪, 錢國禎. 黑線姬鼠種群的年齡結(jié)構(gòu)及種群更新的研究. 獸類學(xué)報(bào), 1982, 2(2): 211- 217.
[52] 高智晟, 左斌, 陳繼紅. 鳥類對森林生境片斷化的反應(yīng). 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 25(2):211- 214.
[53] 鮑毅新, 王躍光, 包福興. 社鼠的生殖行為與幼鼠生長發(fā)育的初步觀察. 浙江師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 1992, 15(3): 76- 78.
[54] 張美文, 黃璜, 王勇, 李波. 洞庭湖區(qū)社鼠的繁殖生態(tài). 生態(tài)學(xué)報(bào), 2006, 26(3): 884- 894.
[55] 張潔. 社鼠種群生態(tài)研究. 獸類學(xué)報(bào), 1993, 13(3): 198- 204.
[56] 姜永進(jìn), 魏善武, 王祖望, 鄭生武, 崔瑞賢, 孫儒泳. 海北高寒草甸金露梅灌叢根田鼠種群生產(chǎn)力的研究: Ⅰ種群動態(tài). 獸類學(xué)報(bào), 1991, 11(4): 270- 278.
[59] 鮑毅新, 杜衛(wèi)國. 社鼠肥滿度與氣候環(huán)境的關(guān)系. 浙江師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 2000, 23(3): 287- 290.
[62] 陳安國, 朱盛侃, 李春秋, 嚴(yán)志堂. 小家鼠種群數(shù)量消長同氣候的關(guān)系//滅鼠和鼠類生物學(xué)研究報(bào)告第四集. 北京: 科學(xué)出版社, 1981: 69- 93.
[63] 夏武平. 帶嶺林區(qū)小形鼠類數(shù)量動態(tài)的研究——Ⅱ. 氣候條件對種群數(shù)量的影響. 動物學(xué)報(bào), 1966, 18(1): 8- 21.
[64] 丁立仲, 盧劍波, 徐高福, 鄔建國. 千島湖生態(tài)保護(hù)與建設(shè)對景觀格局的影響研究. 生物多樣性, 2004, 12(5): 473- 480.
[65] 夏武平, 廖崇惠, 鐘文勤, 孫崇路, 田云. 內(nèi)蒙古陰山北部農(nóng)業(yè)區(qū)長爪沙鼠的種群動態(tài)及其調(diào)節(jié)的研究. 獸類學(xué)報(bào), 1982, 2(1): 50- 69.
[66] 李仲來, 張萬榮. 長爪沙鼠種群數(shù)量與氣象因子的關(guān)系. 獸類學(xué)報(bào), 1993, 13(2): 131- 135.
[67] 張知彬, 王祖望. 農(nóng)業(yè)重要害鼠的生態(tài)學(xué)及控制對策. 北京: 海洋出版社, 1998.
[68] 鄭智民, 黃應(yīng)修. 黃毛鼠種群數(shù)量季節(jié)變動及其影響因素的研究. 獸類學(xué)報(bào), 1988, 8(3): 199- 207.
PopulationdynamicsofNiviventerconfucianusinThousandIslandLake
ZHANG Xu, BAO Yixin*, LIU Jun, SHEN Liangliang, ZHANG Shusheng, FANG Pingfu
InstituteofEcology,ZhejiangNormalUniversity,Jinhua321004,China
Habitat fragmentation has been a hot topic in ecological research field during recent years, and mammals are widely believed as one of the most vulnerable species in the process of habitat fragmentation. In the present study, we studied the population dynamics ofNiviventerconfucianusin Thousand Island Lake region which consists of a number of islands. From October 2009 to November 2010, we live-trapped twoNiviventerconfucianuspopulations in two islands A and B with similar area and environmental situation using capture-mark-recapture (CMR) method, and studied the impact of habitat fragmentation on the population dynamics ofNiviventerconfucianus. During the study period, the fluctuation of population, turnover rate, time of residency and effects of climate factors on the populations ofNiviventerconfucianusin both islands were investigated. Our results showed that the population in both islands began to decease when the animal number in the individual population was over 50, suggesting the both islands with similar area and environmental situation have similar environmental carrying capacity. We also found much moreBerylmysbowersiand wild boars in island B than those in island A during June to August, indicating higher living pressure forNiviventerconfucianusfrom inter specific competition and predation in island B, which might cause that the population ofNiviventerconfucianusin island B declined faster than the population in island A after June. Considering the lack of immigration and emigration in the land-bridge islands, which results in that the turnover rates were very low in the two populations, our observation indicates that the interspecific competition and predation may be the main factor affecting the population changes in the islands. In addition, we also observed that the seasonal change in the island environment has a certain impact on the populations ofNiviventerconfucianus. In the island environment, the population dynamics ofNiviventerconfucianushas its own characteristics, which verified our assumption that the impact of land-bridge island environment on the seasonal fluctuation of the number ofNiviventerconfucianusis different from terrestrial environment. Because of the poor living conditions in land-bridge islands, according to our study of the residence time ofNiviventerconfucianus, we infer that the ecological life of theNiviventerconfucianusliving in both islands might be only one year, which was significantly shorter than the ecological life of theNiviventerconfucianusliving in terrestrial environment in previous studies. Considering the shorter life expectancy and smaller body size of theNiviventerconfucianusliving in islands, they are suggested to have faster generations update to produce more genetic heterogeneity descendants, which could increase the ecological adaptation and promote the evolutionary speed. It was beneficial for the maintenance and growth ofNiviventerconfucianuspopulations when the monthly average temperature was 10—22 ℃, and it was unfavorable when the monthly average temperature exceeded 22 ℃. The high temperatures and drought might lead to the population decline ofNiviventerconfucianusin summer.
fluctuation of population; turnover rate; time of residency; land-bridge island; Chinese white-bellied rat (Niviventerconfucianus)
浙江省自然科學(xué)基金項(xiàng)目(Y507080)
2012- 05- 10;
2012- 11- 19
*通訊作者Corresponding author.E-mail: sky90@zjnu.cn
10.5846/stxb201205100685
張旭,鮑毅新,劉軍,沈良良,章書聲,方平福.千島湖島嶼社鼠的種群數(shù)量動態(tài)特征.生態(tài)學(xué)報(bào),2013,33(15):4665- 4673.
Zhang X, Bao Y X, Liu J, Shen L L, Zhang S S, Fang P F.Population dynamics ofNiviventerconfucianusin Thousand Island Lake.Acta Ecologica Sinica,2013,33(15):4665- 4673.