王海蓮,王良龍
(1.安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,合肥 230601;2.巢湖學(xué)院數(shù)學(xué)系,安徽巢湖 238000)
三階p-Laplacian中立型泛函微分方程的周期解
王海蓮1,2,王良龍1
(1.安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,合肥 230601;2.巢湖學(xué)院數(shù)學(xué)系,安徽巢湖 238000)
周期解;Mawhin重合度;三階;p-Laplacian方程
泛函微分方程周期解的存在性在生態(tài)學(xué)、物理和控制理論等領(lǐng)域應(yīng)用廣泛[1-4].文獻(xiàn)[5-6]證明了二階p-Laplacian中立型方程周期解的存在性;文獻(xiàn)[7]研究了四階p-Laplacian方程:
的周期解問題;文獻(xiàn)[8]得到了如下三階p-Laplacian方程
的周期解問題.基于文獻(xiàn)[5-8]的研究結(jié)果,本文考慮一類更一般的具有多個(gè)偏差變?cè)娜Ap-Laplacian方程.利用Mawhin重合度理論,研究一類三階p-Laplacian中立型泛函微分方程周期解的存在性問題,給出了這類方程存在一個(gè)T周期解的充分性條件.考慮方程:
引理5[6]若g∈CT,τ∈CT∩C1(R,R),且τ′(t)<1,?t∈[0,T],則g(μ(t))∈CT,這里μ(t)是t-τ(t)的逆算子.
引理6[9]設(shè)L是指數(shù)為零的Fredholm算子,且L滿足下列條件:
1)對(duì)任意的λ∈(0,1),x∈?Ω∩domL,L(x)≠λN x;
2)N x?ImL,?x∈?Ω∩KerL;
3)deg{QN x,Ω∩KerL,0}≠0.
則方程L x=N x在domL∩ˉΩ中至少有一個(gè)解.
從而對(duì)于任意的x∈?Ω∩KerL,μ∈[0,1],H(x,μ)=φx+(1-μ)J QN x≠0.因此,
再由引理6知,方程(1)有一個(gè)T周期解.證畢.
根據(jù)定理1可知,方程(35)至少存在一個(gè)π周期解.
[1] WANG Lianglong,WANG Zhicheng,ZOU Xingfu.Periodic Solutions of Neutral Functional Differential Equations[J].J London Math Soc,2002,65(2):439-452.
[2] WANG Lianglong,WANG Zhicheng.Controllability of Abstract Neutral Functional Differential Systems with Infinite Delay[J].Dynamics of Continuous,Discrete and Impulsive Systems,Series B:Applications &Algorithms,2002,9(2):59-70.
[3] LU Shiping,GUI Zhanjie,GE Weigao.Periodic Solutions to a Second Order Nonlinear Neutral Functional Differential Equation in the Critical Case[J].Nonlinear Analysis:Theory,Methods &Applications,2006,64(1):1587-1607.
[4] LU Shiping,GE Weigao.Periodic Solutions of Neutral Differential Equation with Multiple Deviating Arguments[J].Applied Mathematics and Computation,2004,156(3):705-717.
[5] ZHU Yanling,LU Shiping.Periodic Solutions forp-Laplician Neutral Functional Differential Equation with Deviating Arguments[J].J Math Anal Appl,2007,325(1):377-385.
[6] LU Shiping.Existence of Periodic Solution for ap-Laplician Neutral Functional Differential Equations[J].Nonlinear Analysis:Theory,Methods &Applications,2009,70(1):231-243.
[7] 劉丙鐲,劉文兵.四階p-Laplician中立型泛函微分方程周期解的存在性[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2011,49(3):430-436.(LIU Bingzhuo,LIU Wenbing.Existence of Periodic Solutions for a Fourth-Orderp-Laplacian Neutral Functional Differential Equation[J].Journal of Jilin University:Science Edition,2011,49(3):430-436.)
[8] 沈欽銳,周宗福.一類具偏差變?cè)娜Ap-Laplician方程周期解的存在性[J].吉林大學(xué)學(xué)報(bào):理學(xué)版,2012,50(1):27-34.(SHEN Qinrui,ZHOU Zongfu.Existence of Periodic Solutions for a Class of Third-Orderp-Laplacian Equation with a Deviating Argument[J].Journal of Jilin University:Science Edition,2012,50(1):27-34.)
[9] Gines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Heidelberg:Springer-Verlag,1977.
Periodic Solutions for Three-Orderp-Laplacian Neutral Functional Differential Equation
WANG Hailian1,2,WANG Lianglong1
(1.SchoolofMathematicalSciences,AnhuiUniversity,Hefei230601,China;2.DepartmentofMathematics,ChaohuUniversity,Chaohu238000,AnhuiProvince,China)
periodic solution;Mawhin’s coincidence degree;three-order;p-Laplacian equation
O175.14
A
1671-5489(2014)03-0421-08
10.13413/j.cnki.jdxblxb.2014.03.04
2013-06-18.
王海蓮(1981—),女,漢族,碩士研究生,從事微分方程的研究,E-mail:wanghailian77@163.com.通信作者:王良龍(1964—),男,漢族,博士,教授,從事微分方程的研究,E-mail:wangll@ahu.edu.cn.
高等學(xué)校博士點(diǎn)基金(批準(zhǔn)號(hào):20113401110001)、安徽省自然科學(xué)基金(批準(zhǔn)號(hào):1308085 MA01)和安徽大學(xué)研究生學(xué)術(shù)創(chuàng)新研究項(xiàng)目(批準(zhǔn)號(hào):10117700020).
趙立芹)