于向東,沙 嵩,閆 斌
(中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075)
客貨共線大跨度簡支鋼桁梁橋梁軌相互作用*
于向東?,沙 嵩,閆 斌
(中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075)
以黃韓侯鐵路上某156m大跨度簡支鋼桁梁橋?yàn)楸尘?,采用理想彈塑性道床阻力模型,建立了?梁-墩一體化空間有限元模型,對鋼桁梁橋上鋼軌伸縮力、撓曲力、制動力以及斷軌力分布規(guī)律進(jìn)行了分析,探討了相鄰簡支梁支座布置、橋墩頂縱向剛度、小阻力扣件布置等設(shè)計(jì)參數(shù)對鋼軌縱向力的影響.研究表明:鋼軌伸縮力為主要控制性荷載;相鄰簡支梁宜采用與鋼桁梁相同方向的支座布置方式;隨墩頂剛度的增加,鋼桁梁橋上鋼軌伸縮力和撓曲力增大,制動力減小;在鋼桁梁橋上采用小阻力扣件即可以減小約36%的鋼軌伸縮力.
線路工程;鐵路橋梁;鋼梁橋;梁軌相互作用;鋼軌縱向力;設(shè)計(jì)參數(shù)
鐵路橋梁與軌道相互作用問題一方面影響軌道布置,另一方面影響橋跨布置和下部結(jié)構(gòu)剛度[1],研究該課題具有重要意義.國內(nèi)外學(xué)者已對混凝土簡支梁橋、連續(xù)梁橋和斜拉橋的梁軌相互作用進(jìn)行了廣泛研究[2-10],如卜一之提出了高速鐵路有砟線路與橋梁相互作用宜采用理想彈塑性阻力模型,并采用了非線性連桿模擬道砟層[5];徐慶元建立了能夠考慮單、雙線制動的三維實(shí)體單元有限元模型,探討了不同因素對混凝土簡支梁和連續(xù)梁橋線路縱向力傳遞的影響[6-7];閆斌采用帶剛臂的梁單元模擬斜拉橋主梁、非線性桿單元模擬線路阻力,分析了相鄰橋跨和鋼軌伸縮調(diào)節(jié)器對斜拉橋上無縫線路縱向力的影響[8-9];朱彬?qū)︿撓浠旌闲崩瓨驘o縫線路縱向力進(jìn)行了分析,并討論了小阻力扣件和鋼軌伸縮調(diào)節(jié)器的布置方案[10].
圖1 有限元模型及橋跨布置(單位:m)Fig.1 Finite element model and arrangement of bridge spans(unit:m)
但對大跨度簡支鋼桁梁橋上無縫線路縱向力分布特點(diǎn)的相關(guān)研究較少,相鄰不等跨度橋梁對大跨度鋼桁梁橋上無縫線路縱向力的影響也不明確.簡支鋼桁梁橋具有跨度大、自重輕、受力明確、施工周期短等優(yōu)點(diǎn),近年來使用日益廣泛.因此,有必要對大跨度簡支鋼桁梁橋與軌道相互作用進(jìn)行研究.本文以黃韓侯鐵路線上某156m簡支鋼桁梁橋?yàn)檠芯勘尘埃⒘丝紤]軌道、相鄰橋跨、路基、墩臺的鋼桁梁橋與有砟軌道相互作用有限元模型,探討了大跨度鋼桁梁橋上無縫線路縱向力的分布規(guī)律,研究了相鄰簡支梁支座布置、橋墩頂縱向剛度、小阻力扣件布置方式等設(shè)計(jì)參數(shù)對于梁軌相互作用的影響.
本工程位于黃韓侯鐵路線(客貨共線鐵路)上,大橋孔跨布置為2×24m簡支T梁+3×32m簡支T梁+ (40+4×64+40)m混凝土連續(xù)梁+32 m簡支T梁+156m鋼桁梁+24m簡支T梁+32 m簡支T梁+24m簡支T梁+32m簡支T梁.其中鋼桁梁桁高17m,桁寬8.6m,縱梁設(shè)置2處斷開,橋上鋪設(shè)單線有砟軌道,軌道采用60kg/m的鋼軌.
本文在既有研究成果的基礎(chǔ)上,采用帶豎向剛臂的梁單元模擬橋梁,用非線性彈簧模擬梁軌之間縱向連接,建立的有限元模型如圖1所示.
橋墩頂縱向剛度取1 000kN/cm,橋臺頂縱向剛度取1 500kN/cm.為準(zhǔn)確模擬邊界條件,在橋梁范圍外的路基上模擬(L+40m)長度(L為橋孔平均長度)的鋼軌[11],此處取200m.線路縱向阻力模型采用《鐵路無縫線路設(shè)計(jì)規(guī)范》[12]中的理想彈塑性模型,即認(rèn)為梁軌相對縱向位移超過2mm(0.5 mm)時(shí),軌道將發(fā)生滑移.道床縱向阻力:
式中:r為線路縱向阻力,(kN/m)/軌;u為梁軌縱向相對位移,mm.
計(jì)算鋼軌伸縮力時(shí),不考慮梁溫升降的交替變化,因此本文只計(jì)算鋼桁梁升溫25℃,混凝土梁升溫15 ℃的工況[12].
計(jì)算鋼軌撓曲力時(shí),采用中-活載,分機(jī)車下和車輛下兩段等效均布加載于縱梁單元上(加載長度為200m).簡支梁計(jì)算撓曲力時(shí)可簡化為在相鄰兩孔梁上布載,連續(xù)梁在固定支座至梁端的多跨梁上布載[12],針對本橋,將活載簡化為4種最不利方式進(jìn)行加載(見圖2),計(jì)算時(shí)取4種工況下的包絡(luò)值.
圖2 列車活載加載工況示意圖Fig.2 Train living load loading conditions
計(jì)算鋼軌制動力時(shí),輪軌黏著系數(shù)取0.164[12],等效均布加載于鋼軌單元上,加載位置同撓曲力,分為左側(cè)入橋和右側(cè)入橋2種情況計(jì)算[13].
計(jì)算斷軌力時(shí),最高軌溫為61℃,最低軌溫為-15℃,取鋼軌最大降溫45℃,在鋼軌受力較大的鋼桁梁右端(活動支座端)、連續(xù)梁左端、連續(xù)梁右端3處折斷[14].
橋上無縫線路縱向力包括伸縮力、撓曲力、制動力和斷軌力.
將鋼桁梁整體升溫25℃,混凝土梁升溫15℃,計(jì)算鋼軌伸縮力,如圖3所示.
由計(jì)算可知,鋼軌最大伸縮拉應(yīng)力為47.0MPa,出現(xiàn)在鋼桁梁橋跨中附近;壓應(yīng)力最大值為73.7MPa,出現(xiàn)在鋼桁梁右側(cè)活動支座端.鋼軌伸縮拉應(yīng)力區(qū)段出現(xiàn)突變的原因是突變處縱梁設(shè)置了斷開,使得溫度作用下鋼軌的伸縮拉應(yīng)力得到了一定程度的釋放.其余梁端處由于下部結(jié)構(gòu)剛度改變,應(yīng)力也出現(xiàn)不同程度的突變.另外由于相鄰連續(xù)梁溫度跨度較大,在連續(xù)梁兩邊跨端部產(chǎn)生了較大應(yīng)力值.
鋼桁梁右側(cè)活動支座端縱梁產(chǎn)生最大縱向位移36.4mm;鋼軌的最大縱向位移為20.9mm,位置在靠近鋼桁梁活動支座的節(jié)間內(nèi).另外縱梁和鋼軌的縱向位移在連續(xù)梁邊跨端均出現(xiàn)較大峰值.
取圖2中4種最不利工況下鋼軌撓曲力,計(jì)算結(jié)果如圖4所示.
圖3 鋼軌伸縮力工況計(jì)算結(jié)果Fig.3 Calculation results of rail expansion stress
圖4 鋼軌撓曲應(yīng)力包絡(luò)圖Fig.4 The envelope diagram of bending rail stress
由于應(yīng)力得到了釋放,鋼軌撓曲拉應(yīng)力在縱梁斷開處出現(xiàn)了兩處峰值,最大值為35.9MPa;鋼桁梁活動支座端產(chǎn)生了最大壓應(yīng)力,其值為25.6 MPa,僅為最大伸縮應(yīng)力值的1/3.撓曲力峰值也出現(xiàn)在其他梁端處.
制動力分為左側(cè)入橋和右側(cè)入橋(制動力大小相等、方向相反)進(jìn)行計(jì)算,加載工況同撓曲力,計(jì)算結(jié)果如圖5所示.
圖5 鋼軌制動應(yīng)力包絡(luò)圖Fig.5 Envelope diagram of rail braking stress
由圖5可以看出,鋼軌制動應(yīng)力包絡(luò)值為上下對稱分布,在鋼桁梁左右兩端、連續(xù)梁兩邊跨末端,鋼軌制動應(yīng)力均出現(xiàn)了峰值,最大值(鋼桁梁右端)為46.1MPa,約為最大伸縮應(yīng)力值的一半.在峰值兩側(cè)的位置處應(yīng)力值降低較快.
在鋼軌降溫45℃工況下,計(jì)算不同位置處折斷的鋼軌斷軌力和鋼軌位移(如圖6所示).
圖6 鋼軌斷軌工況計(jì)算結(jié)果Fig.6 Calculation results of breaking stress
在折斷處鋼軌應(yīng)力均為0,并向兩側(cè)迅速增大.在遠(yuǎn)離折斷處,鋼軌應(yīng)力達(dá)到最大.鋼軌應(yīng)力在其余梁端位置出現(xiàn)了不同程度的突變.
對于本橋而言,在不同位置折斷時(shí)鋼軌位移的變化規(guī)律基本一致,雖然鋼軌在三處折斷處的位移值不同,但產(chǎn)生的斷縫寬度相差不大,斷縫寬度值分別為:48.7mm(連續(xù)梁左端折斷)、50.0mm(連續(xù)梁右端折斷)、50.8mm(鋼桁梁右端折斷).
影響大跨度鋼桁梁橋梁軌相互作用的主要參數(shù)包括相鄰簡支梁支座布置,橋墩頂縱向剛度,小阻力扣件的布置方式.
為比較相鄰橋跨(簡支梁)約束方式對鋼桁梁橋梁軌相互作用的影響,設(shè)置了如表1所示的4種支座布置形式進(jìn)行分析.
表1 相鄰簡支梁支座布置方案Tab.1 Bearing arrangement plans of adjacent simply supported bridges
在4種支座布置方案下,計(jì)算鋼軌伸縮力與各橋墩水平力,結(jié)果見表2和圖7.
對于本鋼桁梁橋而言,相鄰簡支梁支座布置方式對鋼軌伸縮力影響較小,其中方案1與方案4最大伸縮應(yīng)力值相對其他方案偏小,且兩者比較接近.考慮到對于所受水平力最大的12號墩(鋼桁梁制動墩),方案1的橋墩水平力值較方案4減少了12%,是由于此跨簡支梁固定支座布置在11號墩上,分擔(dān)了水平受力.故本橋選用方案1的簡支梁支座布置方式.
表2 不同支座布置方案下鋼軌伸縮應(yīng)力Tab.2 Rail expansion stress with different bearing arrangement plans MPa
圖7 支座布置方案對橋墩水平力的影響Fig.7 Impact of bearing arrangement plans on pier horizontal force
本文采用以下幾種不同的橋墩頂縱向剛度值:K=500kN/cm,1 000kN/cm,2 000kN/cm,5 000kN/cm,10 000kN/cm,來探討其對鋼軌縱向力的影響規(guī)律.
通過計(jì)算鋼軌伸縮力(圖8)可以看出,當(dāng)墩頂縱向剛度值增大時(shí),鋼桁梁左側(cè)固定支座端到跨中的節(jié)間,以及鋼桁梁右側(cè)活動支座端(壓應(yīng)力最大值處)的鋼軌應(yīng)力增大趨勢顯著.鋼軌縱向力最大值匯總于表3,由表3知,隨著墩頂縱向剛度的增加,鋼軌伸縮應(yīng)力和撓曲應(yīng)力的最值有增大趨勢,制動應(yīng)力的最值有減小趨勢.
圖8 墩頂縱向剛度對鋼軌伸縮應(yīng)力的影響Fig.8 Impact of pier longitudinal stiffness on rail expansion stress
表3 鋼桁梁上無縫線路縱向力最大值Tab.3 Maximum longitudinal stress of CWR in steel truss bridges MPa
小阻力扣件可以改善鋼軌縱向力分布,減小應(yīng)力幅值,本文考慮以下4種布置方案:
方案1:僅在鋼桁梁橋上布置小阻力扣件;
方案2:在鋼桁梁橋上和兩端相鄰1跨簡支梁上布置小阻力扣件;
方案3:在鋼桁梁橋上和兩端相鄰2跨簡支梁上(以及連續(xù)梁兩端的邊跨上)布置小阻力扣件;
方案4:在鋼桁梁橋上和兩端相鄰3跨簡支梁上(以及連續(xù)梁兩端的邊跨上)布置小阻力扣件.
由鋼軌伸縮力計(jì)算圖(圖9)看出,在鋼桁梁上布置小阻力扣件后鋼軌最大伸縮壓應(yīng)力(鋼桁梁活動支座端)與拉應(yīng)力(鋼桁梁跨中附近)均顯著減小,大大降低了應(yīng)力的峰值.與一般扣件方案相比,方案1的鋼軌最大伸縮拉、壓應(yīng)力降幅明顯,分別為36.0%和33.5%.方案4相對于方案1的應(yīng)力降幅僅為9.4%.由此得出,在相鄰橋跨上布置小阻力扣件對鋼桁梁上鋼軌應(yīng)力影響不大.另外由方案3和方案4看出,連續(xù)梁的應(yīng)力峰值顯著降低,因此在相鄰連續(xù)梁邊跨段應(yīng)布置小阻力扣件.
圖9 小阻力扣件布置方案對鋼軌伸縮應(yīng)力的影響Fig.9 Impact of small resistance fasteners plans on rail expansion stress
由于溫度跨度大(鋼桁梁承受的日溫差也較大),本156m簡支鋼桁梁橋的最大伸縮應(yīng)力可達(dá)73.7MPa,成為主要控制性荷載.由于其豎向剛度相對較小,其上無縫線路也承受了較大的撓曲力和制動力,分別為35.9MPa和46.1MPa,在檢算鋼軌強(qiáng)度和穩(wěn)定性時(shí)應(yīng)予以考慮.各鋼軌縱向力均在梁端下部結(jié)構(gòu)剛度發(fā)生突變處取得峰值.
相鄰簡支梁與鋼桁梁宜采用相同方向的支座布置方式,可減小鋼桁梁上鋼軌伸縮力和鋼桁梁制動墩所受的水平力,并使其他墩所受水平力分布更為均衡.
橋墩頂縱向剛度對鋼軌縱向力有較大影響,隨著墩頂縱向剛度的增加,鋼桁梁上鋼軌的伸縮力和撓曲力增大,制動力減小.
在鋼桁梁范圍內(nèi)布置小阻力扣件可減小鋼軌伸縮力36%.
[1] 廣鐘巖,高慧安.鐵路無縫線路 [M].北京:中國鐵道出版社,2005:2-35.
GUANG Zhong-yan,GAO Hui-an.Railway CWR [M].Beijing:China Railway Publishing House,2005:2-35.(In Chinese)
[2] SONG M K,NOH H C,CHOI C K.A new three-dimensional finite element analysis model of high-speed train-bridge interactions[J].Engineering Structures,2003,25(13):1611-1626.
[3] RUGE P,BIRK C.Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track-bridge interaction[J].Computers &Structures,2007,85(7/8):458-475.
[4] READ D,LOPRESTI J.Management of rail neutral temperature and longitudinal rail forces[J].Railway Track and Structure,2005,101(8):18-19.
[5] 卜一之.高速鐵路橋梁縱向力傳遞機(jī)理研究[D].成都:西南交通大學(xué)土木工程學(xué)院,1998:8-10.
BU Yi-zhi.Research on the transmission mechanism of longitudinal force for high-speed railway bridges [D].Chengdu:College of Civil Engineering,Southwest Jiaotong University,1998:8-10.(In Chinese)
[6] 徐慶元.高速鐵路橋上無縫線路縱向附加力三維有限元靜力與動力分析研究 [D].長沙:中南大學(xué)土木工程學(xué)院,2005:19-20.
XU Qing-yuan.Static and dynamic 3Dfinite element analysis of additional longitudinal forces transmission between CWR and high-speed railway bridges[D].Changsha:College of Civil Engineering,Central South University,2005:19-20.(In Chinese)
[7] 徐慶元,陳秀方.連續(xù)梁橋上無縫線路附加力研究 [J].中國鐵道科學(xué),2003,24(3):58-62.
XU Qing-yuan,CHEN Xiu-fang.Study on additional longitudinal forces transmission between continuously welded rails and continuous beam bridge [J].China Railway Science,2003,24(3):58-62.(In Chinese)
[8] YAN Bin,DAI Gong-lian.Seismic pounding and protection measures of simply-supported beams considering interaction between continuously welded rail and bridge[J].Structural Engineering International,2013,23(1):61-67.
[9] 閆斌,戴公連.高速鐵路斜拉橋上無縫線路縱向力研究 [J].鐵道學(xué)報(bào),2012,34(3):83-87.
YAN Bin,DAI Gong-lian.CWR longitudinal force of cablestayed bridge on high-speed railway[J].Journal of the China Railway Society,2012,34(3):83-87.(In Chinese)
[10]朱彬.大跨度鋼箱混合梁斜拉橋無縫線路設(shè)計(jì)研究[J].鐵道標(biāo)準(zhǔn)設(shè)計(jì),2012(2):4-6.
ZHU Bin.Design of continuous welded rail upon long span cable-stayed bridge with steel-concrete composite box beam [J].Railway Standard Design,2012(2):4-6.(In Chinese)
[11]DS899/59Special procedures on railway Shinkansen bridge[S].Berlin:Bridge Research Institute of Railway Bridge Authority,1991.
[12]TB 10015—2012鐵路無縫線路設(shè)計(jì)規(guī)范[S].北京:中國鐵道出版社,2013:8-17.
TB 10015—2012Code for design of railway continuously welded rail[S].Beijing:China Railway Publishing House,2013:8-17.(In Chinese)
[13]趙衛(wèi)華,王平,曹陽.大跨度鋼桁梁橋上無縫線路制動力的計(jì)算[J].西南交通大學(xué)學(xué)報(bào),2012,47(3):361-366.
ZHAO Wei-hua,WANG Ping,CAO Yang.Calculation of braking force of continuous welded rail on large-span steel truss cable-stayed bridge [J].Journal of Southwest Jiaotong University,2012,47(3):361-366.(In Chinese)
[14]戴公連,閆斌.高速鐵路斜拉橋與無縫線路相互作用研究[J].土木工程學(xué)報(bào),2013,46(8):90-97.
DAI Gong-lian,YAN Bin.Interaction between cable-stayed bridge traveled by high-speed trains and continuously welded rail[J].China Civil Engineering Journal,2013,46(8):90-97.(In Chinese)
Track-bridge Interaction of Long-span Simply Supported Steel Truss Bridge in Mixed Passenger and Freight Railway
YU Xiang-dong?,SHA Song,YAN Bin
(College of Civil Engineering,Central South Univ,Changsha,Hunan 410075,China)
A beam-rail-pier 3Dfinite element model was built by adopting the mechanism of ideal elastic-plastic ballast resistance under the background of a 156mlong-span simply supported steel truss bridge on Huangling-Hancheng-Houma Railway line.The purpose was to study the distribution of longitudinal force due to temperature variations,bridge deflection,braking force and the breaking force of long rail in steel truss bridges.The influences of design parameters on longitudinal forces,such as the bearing arrangements of adjacent simply supported bridges,pier longitudinal stiffness and the arrangement of small resistance fasteners,were also discussed.It has been shown that the longitudinal force due to temperature variations plays a major role.Secondly,the bearing of adjacent simply supported bridge should be in the same direction as the steel truss bridge.Thirdly,the longitudinal force due to temperature variations and structural deflection increases and the braking force decreases as the pier longitudinal stiffness increases.Finally,the small resistance fasteners have a good effect on the longitudinal force due to temperature variations,which can reduce the force by 36%after being installed.
railroad engineering;railroad bridges;steel truss bridges;track-bridge interaction;longitudinal force of rail;design parameters
U213.912
A
1674-2974(2014)06-0106-06
2013-08-28
國家自然科學(xué)基金資助項(xiàng)目(51378503);高速鐵路基礎(chǔ)研究聯(lián)合基金資助項(xiàng)目(U1334203)
于向東(1970-),男,河南遂平人,中南大學(xué)副教授
?通訊聯(lián)系人,E-mail:xyd77@139.com