何 非,商玉鳳,梁 心,陶建武
(1.空軍航空大學 數(shù)學教研室,長春 130022;2.空軍航空大學 飛行器控制系,長春 130022)
均衡規(guī)劃問題在經(jīng)濟學和社會學等領(lǐng)域應用廣泛[1-3],文獻[4-5]給出了解數(shù)學規(guī)劃問題的動邊界組合同倫方法,并將該方法應用到求解變分不等式問題和多目標規(guī)劃問題中[6-7],與已有的組合同倫內(nèi)點法相比,應用該方法不需要初始點為可行集的內(nèi)點,但不能保證終止點一定為可行集的內(nèi)點.本文給出了求解均衡規(guī)劃問題均衡點的同倫方法,稱為半內(nèi)點法組合同倫方程,所求問題約束除了含有不等式約束外還有等式約束,且任給x(0)∈RN均可作為初始點,而當同倫參數(shù)tk<δ(0<δ<1)時,可以保證同倫路徑上的點x(k)∈Ω(0),從而在應用上不需考慮通過解方程組的形式找到初始點,計算方便,并在較弱條件下證明了同倫路徑的存在性和收斂性.
[1]Cachon G P,Netessine S.Game Theory in Supply Chain Analysis[M].Dordrecht:Kluwer,2003.
[2]Facchinei F,PANG Jongshi.Exact Penalty Functions for Generalized Nash Problems[M].Heidelberg:Springer,2006:115-126.
[3]Krawczyk J.Numerical Solutions to Coupled-Constraint (or Generalised Nash)Equilibrium Problems [J].Computational Management Science,2007,4(2):183-204.
[4]于波,商玉鳳.解非凸規(guī)劃問題的動邊界組合同倫方法 [J].數(shù)學研究與評論,2006,26(4):831-834.(YU Bo,SHANG Yufeng.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming [J].Journal of Mathematical Research and Exposition,2006,26(4):831-834.)
[5]商玉鳳,于波.凸規(guī)劃的動邊界組合同倫方法及其收斂性 [J].吉林大學學報:理學版,2006,44(3):357-361.(SHANG Yufeng, YU Bo.Boundary Moving Combined Homotopy Method for Nonconvex Nonlinear Programming and Its Convergence[J].Journal of Jilin University:Science Edition,2006,44(3):357-361.)
[6]SHANG Yufeng,YU Bo.A Constraint Shifting Homotopy Method for Convex Multi-objective Programming[J].Journal of Computational and Applied Mathematics,2011,236(5):640-646.
[7]SHANG Yufeng,XU Qing,YU Bo.A Globally Convergent Non-interior Point Homotopy Method for Solving Variational Inequalities[J].Optimization Methods and Software,2011,26(6):933-943.
[8]M?kel?M M,Neittaanm?ki P.Nonsmooth Optimization:Analysis and Algorithms with Applications to Optimal Control[M].Singapore:World Scientific Publishing Company,Inc,1992.
[9]Allgower E L,Georg K.Numerical Path Following[M].Handbook of Numerical Analysis.Vol.5.Amsterdam:[s.n.],1996.