植物細(xì)胞壁纖維素生物合成的調(diào)控
高艷 陳光輝 陳秀娟 謝麗瓊
(新疆大學(xué)生命科學(xué)與技術(shù)學(xué)院,烏魯木齊 830046)
纖維素是自然界最豐富的生物多聚體,是生物質(zhì)能源的主要組成物質(zhì)。植物細(xì)胞壁中纖維素的生物合成主要由纖維素合成酶(Cellulose synthase,CesA)催化完成,纖維素的生物合成受到植物激素,信號分子,轉(zhuǎn)錄因子以及某些特殊蛋白質(zhì)的調(diào)節(jié)。目前的研究集中在對纖維素合酶基因的轉(zhuǎn)錄及翻譯后修飾的調(diào)控。總結(jié)了高等植物調(diào)控纖維素生物合成的研究近況。
纖維素 生物合成 調(diào)控
根據(jù)形成階段不同植物細(xì)胞壁分為初生壁和次生壁。細(xì)胞在生長過程中形成的壁物質(zhì)是初生壁,細(xì)胞停止增大后壁物質(zhì)沉積于初生壁內(nèi)側(cè)形成次生壁。纖維素占初生壁干重的10%-14%,次生壁干重的40%-60%,在一些特殊細(xì)胞中甚至占到98%,如棉纖維[1]。纖維素是自然界最豐富的生物多聚體之一[2]。
纖維素是由位于細(xì)胞膜上的纖維素合酶復(fù)合體(Cellulose synthase complex,CSC)合成。纖維素合酶復(fù)合體直徑大約20-30 nm,質(zhì)膜冰凍蝕刻切片顯示CSC是由6個(gè)亞單位組成的蓮座結(jié)構(gòu)[3]。每個(gè)亞單位由6個(gè)纖維素合酶單體組成,利用UDP-葡糖(UDP-Glu)催化合成葡聚糖鏈(圖1)[4]。一個(gè)亞單位可形成6條葡聚糖鏈,這些葡聚糖鏈形成纖維素的微纖絲,每個(gè)CSC蓮座結(jié)構(gòu)可合成36(6×6)個(gè)獨(dú)立的纖維素微纖絲[5],最終聚合為纖維素分子。
纖維素合酶復(fù)合體在高爾基體中裝配,通過分泌泡轉(zhuǎn)運(yùn)并結(jié)合在細(xì)胞膜上[6]。有研究通過CESA異位標(biāo)簽(epitope tagging)方法分離出了CESA低聚體,但沒有檢測到帶有標(biāo)記的完整蓮座體[7]。分離出的低聚體似乎是CSC復(fù)合體裝配中的中間體[8],至今未能提取出完整的CSC復(fù)合體,有推測表明,細(xì)胞內(nèi)處于穩(wěn)態(tài)水平的CESA含量較低,如果細(xì)胞內(nèi)CESA的化學(xué)計(jì)量高于正常水平,CESA會(huì)被快速去除[9]。纖維素的生物合成依賴?yán)w維素合酶基因(Cellulose synthase gene,CesA)家族。植物中,纖維素合酶是多基因家族成員。在擬南芥基因組中有10個(gè)CesA基因(CesA1-CesA10),水稻中有10個(gè)CesA基因,玉米屬中有9個(gè)CesA基因,大麥中有9個(gè)CesA基因[10-12]。
植物中除了CesA基因外,還有類纖維素合酶(Cellulose synthase-like,CSL)基因家族參與纖維素
的生物合成。擬南芥CSL蛋白有9個(gè)家族,分別為CSLA/B/C/D/E/F/G/H/J[13],CSL基因在序列上與CesA部分同源,主要參與各種β-聚糖鏈的合成[14,15]。
圖1 細(xì)胞壁纖維素合成模式圖[4]
纖維素的生物合成的調(diào)節(jié)包括CesA基因的轉(zhuǎn)錄調(diào)節(jié),CESA蛋白的翻譯后修飾,CSC復(fù)合體的裝配、運(yùn)輸與定位以及對葡聚糖合成過程中參與的其他酶類的調(diào)節(jié)等過程。已有研究表明,轉(zhuǎn)錄因子,植物激素,化學(xué)物質(zhì)和某些信號分子對纖維素的合成有一定的作用,如MYB家族蛋白、SND1、VND家族蛋白、NO、NAA及BR等。
位于膜上的纖維素合成酶復(fù)合體是纖維素生物合成的主要場所,其中任何一個(gè)纖維素合酶蛋白的缺失,都會(huì)影響CSC復(fù)合體的裝配,影響纖維素的生物合成[7,8]。而不同的纖維素合酶在植物的不同發(fā)育過程中起作用。擬南芥中的研究表明,AtCesA1、AtCesA3、AtCesA6與初生壁合成相關(guān)[5]。AtCesA1,AtCesA3基因?qū)?xì)胞的生長是必需的,缺失表現(xiàn)為致死突變。AtCesA6缺失突變體prc1-1,在正常光照條件下,與野生型Col-0相比根長度縮短了1.5-2倍,prc1-1纖維素含量下降30%,在弱光下CesA6等位基因突變體之間根長度的變動(dòng)幅度更為明顯[16]。在初生壁合成過程中,AtCesA2、AtCesA5、AtCesA9與AtCesA6在功能上有部分冗余。AtCesA9突變后沒有引起莖葉中纖維素含量的變化,但是種子中纖維素含量卻下降了25%,且四氮唑鹽能夠滲透種皮,表明AtCesA9在種子表皮徑向細(xì)胞壁的合成過程中的起作用[17]。盡管AtCesA2在功能上與AtCesA6冗余,但是雙突變體cesa2cesa3和cesa2 cesa6 cesa9三突變體的花粉在電鏡下可看出明顯的生長缺陷,這些突變體也都是配子致死型突變,說明CesA基因之間的功能冗余可能限于局部組織[18]。擬南芥中AtCesA4、AtCesA7、AtCesA8與次生壁合成相關(guān)[5]。在相關(guān)突變體中,植株表現(xiàn)維管束塌陷、無規(guī)則膨脹等,成熟莖中纖維素含量與野生型相比下降30%[19],基因的突變對初生壁形成影響較?。?9,20]。AtCESA7蛋白含有磷酸化位點(diǎn),磷酸化后能夠被降解[18]。在番茄中,實(shí)時(shí)定量PCR試驗(yàn)發(fā)現(xiàn),不同的組織中,不同CesA基因的表達(dá)情況不同,CesA3mRNA在莖中富集最多,達(dá)到90%;其次在莖節(jié),達(dá)到70%;CesA2
在正在發(fā)育的花中表達(dá)量最高,達(dá)到70%,在莖中達(dá)到60%,不同組織中CesA2的表達(dá)普遍比CesA4高,尤其是在莖中[21]。通過酵母雙雜交試驗(yàn)發(fā)現(xiàn),初生壁的CESA蛋白可以與次生壁的CESA蛋白發(fā)生相互作用,體內(nèi)試驗(yàn)也發(fā)現(xiàn)CESA1可以恢復(fù)cesa8突變造成的影響[22]。近期有研究從棉花中分離出一種新的蔗糖合酶亞基SUSC發(fā)現(xiàn),該亞基在棉纖維發(fā)育的后期階段對次生纖維素合成非常重要[23]。
纖維素合成受嚴(yán)格而又復(fù)雜的轉(zhuǎn)錄調(diào)控系統(tǒng)協(xié)同調(diào)控,雖然CesA家族之外還有CSL家族。眾多的纖維素合成相關(guān)基因中,每一個(gè)基因都有其特殊功能和意義,同一家族中不同的基因需要在不同的時(shí)間和空間表達(dá),從而使得植株健康生長。
植物激素在植物的生長發(fā)育過程中有重要的作用,生長素(Auxin、IAA和NAA),乙烯(Ethylene,ET),油菜素甾醇(Brassinosteroids,BRs)以及茉莉酸(Jasmonic acid,JA)在植物的不同生長階段作用不同。植物生長發(fā)育的過程伴隨著細(xì)胞的分裂與分化,細(xì)胞壁物質(zhì)組分和含量也隨之變化。在細(xì)胞壁形成過程中,纖維素、木聚糖和木質(zhì)素等壁物質(zhì)的合成需要多基因的協(xié)同表達(dá)[24]。
BRs在植物生長發(fā)育過程中有重要作用。用5 μmol的Brz(BR合成抑制劑)處理卷果澀芥40 d后,其形態(tài)學(xué)特征發(fā)生了顯著變化,處理的不同時(shí)期植株切片顯示,Brz使植物次生木質(zhì)部發(fā)育受到抑制,外源施加活性油菜素甾醇BL后,木質(zhì)部的發(fā)育和表型得到部分恢復(fù)[25]。在百日草導(dǎo)管元件分化的過程中BR的生物合成也被激活,說明BR的生物合成與木質(zhì)部的發(fā)育之間存在協(xié)同調(diào)控[26]。BR信號途徑的轉(zhuǎn)錄因子BZR1與纖維素和酶基因CesA6結(jié)合[27,28]。最新研究表明,擬南芥中BR信號途徑下游轉(zhuǎn)錄因子BES1能夠與除了CesA7以外的CesA基因上游啟動(dòng)子區(qū)結(jié)合,在外源BR的刺激下能夠誘導(dǎo)CesA基因的表達(dá),調(diào)控植物高度以及次生生長[29]。與BR合成相關(guān)的蛋白DIM1基因功能缺失造成擬南芥植株矮化,木質(zhì)素和纖維素含量分別下降38%和23%[30]。以上試驗(yàn)結(jié)果顯示,BR在植物的細(xì)胞壁合成過程中可以通過影響CesA基因的表達(dá)來控制次生壁的合成。
天然生長素IAA和人工合成生長素NAA對棉花纖維素的合成作用不同。取棉花開花后第1天的胚珠進(jìn)行懸浮培養(yǎng),檢測10-30 d中與纖維素合成相關(guān)的基因表達(dá)。與對照相比,無論IAA還是NAA處理,GhCesA3基因的表達(dá)量均沒有明顯差異。但I(xiàn)AA處理的種子纖維素單體長度較長,生長至25-28 d時(shí)每粒種子上纖維素含量較高,差異達(dá)到了顯著性水平,同時(shí),IAA還引起了纖維素合成相關(guān)基因GhCesA1、GhCesA2、GhKOR和GhCTL1表達(dá)的上調(diào),但I(xiàn)AA處理后棉花纖維素的品質(zhì)有所下降[31]。低濃度的生長素能夠促進(jìn)植物細(xì)胞的伸長生長,但未發(fā)現(xiàn)IAA與纖維素合成之間的直接關(guān)系。
植物沒有強(qiáng)大的免疫系統(tǒng),所以自身的防御機(jī)制就顯得尤為重要了。JAs是一類由亞麻酸合成的環(huán)戊酮類激素,JA會(huì)引起植物整體生長受抑制,但是它能夠誘發(fā)多種防御反應(yīng)[32]。JA引起擬南芥根的伸長受抑制[33]。在JA與細(xì)胞壁的關(guān)系研究中發(fā)現(xiàn),細(xì)胞壁損傷后,JA和ROS通過反饋調(diào)節(jié)來調(diào)控細(xì)胞壁損傷過程中木質(zhì)素的合成[34]。在CesA3基因突變體cev1中JA和ET的含量均高出野生型,根生長受到抑制,根部纖維素含量約為野生型的45%,而葉片組織中卻沒有明顯變化。另外,在擬南芥CesA1突變體rsw1-1和CesA6突變體prc1-1突變體中JA響應(yīng)基因的表達(dá)量上升。由此推測,細(xì)胞壁作為一種信號介導(dǎo)依賴JA和ET的脅迫和防御響應(yīng)[35]。木質(zhì)素為細(xì)胞壁的另一組分,與纖維素有不可分割的聯(lián)系,JA在細(xì)胞壁的合成調(diào)控中作為一種激發(fā)補(bǔ)救的激素而存在,而JA本身會(huì)對細(xì)胞壁的合成有抑制作用。
一氧化氮(NO)作為信號分子,參與調(diào)控植物生長發(fā)育的許多進(jìn)程[36]。NO對番茄根部初生壁纖維素含量的影響具有劑量效應(yīng)。用活性一氧化氮硝普鈉(SNP)處理番茄幼苗根部,SNP的濃度為10-2μmol時(shí),根中纖維素的含量增加了20%,當(dāng)SNP濃度升高至200 μmol時(shí)根部纖維素含量則降低至野生型的65%。低濃度的SNP可以加快葡萄糖的結(jié)合速率,但沒有引起CesA基因表達(dá)的上調(diào),而高濃度的
SNP會(huì)抑制CesA基因的表達(dá)[37]。
外源施加某些化學(xué)物質(zhì)也會(huì)影響纖維素的合成。在棉花纖維的研究中,用除草劑CGA 325’615和同位素標(biāo)記[U-14C]Glc共孵育,利用[U-14C]Glc為底物合成結(jié)晶纖維素的除草劑CGA 325’615的半抑制濃度為5 nmol/L,該處理還引起細(xì)胞碎片中非結(jié)晶纖維素放射活性發(fā)生積累[38]。CGA325’615處理擬南芥會(huì)引起結(jié)晶纖維素含量的下降以及細(xì)胞各向同性擴(kuò)增,對GFP-CESA3慢速拍攝發(fā)現(xiàn)CGA325’615處理引起細(xì)胞內(nèi)化作用使CSC從質(zhì)膜上脫離[6],CGA325’615對纖維素合成的抑制是因?yàn)榻档土薈SC在質(zhì)膜上的密度。農(nóng)用除草劑2,6-二氯苯甲腈(2,6-dichlorobenzonitrile,DCB)對纖維素微纖絲合成的半抑制濃度為1 μmol[38]。對楊樹的研究表明,DCB結(jié)合微管相關(guān)蛋白PttMAP20,改變與次生壁合成相關(guān)的CESA蛋白功能,從而抑制纖維素的合成[39]。
NAC(NAM、ATAF1/2和CUC2)家族轉(zhuǎn)錄因子是次生壁生物合成的關(guān)鍵調(diào)控因子,NAC基因的過表達(dá)會(huì)引起次生壁異位沉積,而該基因表達(dá)受抑制后會(huì)引起次生壁厚度下降[40]。在擬南芥中,NAC SECONDARY WALL THICKENING PROMOTING FACTOR1(NST1)和NST3/SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1(SND1)控制著所有次生壁生物合成過程[41]。NST1和SND1基因表達(dá)受到抑制時(shí)會(huì)引起纖維相關(guān)轉(zhuǎn)錄因子基因表達(dá)下調(diào),包括兩個(gè)NAC基因(At4g28500和At1g-28470),3個(gè)MYB基因(At1g66230、At4g22680和At1g63910)和一個(gè)同源基因(KNAT7)[42]。有研究表明,KNAT7是次生壁合成過程中的負(fù)調(diào)控因子,但其具體作用方式還不清楚[43]。SND1,NST1基因在功能上冗余[42]。SND1的過表達(dá)能夠激活纖維素,木質(zhì)素及木聚糖生物合成基因的表達(dá),同時(shí)引起次生壁物質(zhì)的異位沉積[24]。MYB家族眾多轉(zhuǎn)錄因子參與調(diào)控次生壁合成[24,44]。NAC家族中ANAC012/SND1/NST3、NST1、VND6和VND7, 直接調(diào)控MYB46和MYB83的基因表達(dá),MYB46和MYB83是功能冗余蛋白,myb46myb83的雙突變體的維管束和纖維中的次生壁無法合成,并且在幼苗早期就表現(xiàn)出早衰現(xiàn)象繼而死亡[45]。由此可知,MYB46/MYB83轉(zhuǎn)錄因子是次生壁合成調(diào)控中的關(guān)鍵因子。已有試驗(yàn)表明,MYB46直接調(diào)控次生壁合成相關(guān)基因CesA4、CesA7和CesA8的表達(dá)[46],MYB46對恢復(fù)cesa突變體的表型也非常重要[47]。
除了上述因子,光照也影響纖維素的生物合成。纖維素的合成過程需要CSC在質(zhì)膜上的快速移動(dòng),方向與胞質(zhì)中微管的運(yùn)動(dòng)有關(guān)。黑暗條件下,擬南芥CesA6突變體中CSC在細(xì)胞膜上的移動(dòng)依賴微管;只有在光敏色素B(PHYB)存在時(shí),CesA6突變體中的CSC的移動(dòng)才恢復(fù)到野生型水平。在prc1-1中,光照下CesA2和CesA5基因的表達(dá)較黑暗條件下顯著增強(qiáng)[48]。可見,細(xì)胞壁中纖維素合成過程受到光的調(diào)節(jié)。肌動(dòng)蛋白和皮質(zhì)微管在調(diào)節(jié)CESA的運(yùn)輸,纖維素沉積以及細(xì)胞壁生物合成過程中的組織中發(fā)揮重要作用[49]。
CSL基因家族的表達(dá)也會(huì)影響到纖維素的合成,如CSLD家族中的基因CSLD1和CSLD4影響花粉管細(xì)胞壁的沉積。在csld1-1和csld4-3突變體中正常發(fā)育的花粉管的花粉數(shù)目明顯下降,且花粉管壁中纖維素含量顯著下降[50]。
除了CESA蛋白家族,CSL蛋白家族,還有一些蛋白在纖維素的合成過程中起作用,如KORRIGAN(KOR),CO-BRA(COB),KOBITO1(KOB1)。KOR基因推測編碼內(nèi)源β-(1,4)葡聚糖酶[51],KOR缺失突變體irx2初生壁和次生壁中纖維素的含量僅占野生型的30%左右[52,53]。COB蛋白定位于質(zhì)膜外表面,推測是一種糖基磷脂酰肌醇(GPI)蛋白,cob突變體中纖維素微纖絲的有序排列被打亂,且根部纖維素含量與野生型相比明顯下降;原位雜交結(jié)果顯示,COB基因在根伸長區(qū)域的表達(dá)量明顯增加,由此推斷COB主要在細(xì)胞快速延伸過程中影響微纖絲沉積[54];并且擬南芥中COB的同家族成員COBL4的突變體irx6中次生壁纖維素含量顯著下降[55]。KOB1基因產(chǎn)物也是一種膜結(jié)合蛋白,在纖維素合成中也有重要作用。kob1-1突變體與野生型相比纖維素含量下降33%[51]。棉花SuSy(蔗
糖合酶)基因在白楊中過表達(dá)會(huì)引起細(xì)胞中纖維素的增加,說明纖維素合成可能與SuSy有關(guān)[56]。另有研究發(fā)現(xiàn),類幾丁質(zhì)酶類似物(CTL),如CTL1/ POM1和CTL2,也會(huì)影響纖維素的合成,在纖維素和半纖維素的相互作用中發(fā)揮著重要作用[57]。
植物從幼苗到成株,從營養(yǎng)生長到生殖生長,經(jīng)歷了細(xì)胞數(shù)目增多,細(xì)胞長度的變長,新生壁物質(zhì)產(chǎn)生和細(xì)胞體積增大的過程。底物的合成與分解,纖維素的排列及方向,以及葡萄糖之間化學(xué)鍵的鏈接,這些因素都會(huì)影響到纖維素的合成以及合成的纖維素的質(zhì)量,不論是高等植物還是低等植物,細(xì)胞壁的發(fā)育及纖維素的合成都是在胞內(nèi)胞外信號的嚴(yán)密調(diào)控下協(xié)同進(jìn)行的。據(jù)最新的芯片數(shù)據(jù)推測,擬南芥基因組中有近10%的基因與細(xì)胞壁形成有關(guān)[58]。而在同一生長發(fā)育過程中,不同的激素通過調(diào)節(jié)不同的基因家族成員來共同完成同一生理過程[59]。盡管對于纖維素合成與調(diào)控方面的研究已取得了一定的進(jìn)展,但相關(guān)機(jī)制的研究仍不清楚,如生長素與纖維素合成之間的關(guān)系,在生長素的作用下細(xì)胞會(huì)伸長生長,必然要求纖維素合成量增加,其間是如何調(diào)控的,是間接調(diào)控還是直接調(diào)控,目前尚未獲得直接證據(jù)。纖維素的生物合成同時(shí)伴隨著其他主要壁物質(zhì)木質(zhì)素、果膠、半纖維素等的形成?,F(xiàn)在仍不清楚這些壁物質(zhì)的合成是如何協(xié)同進(jìn)行形成復(fù)雜細(xì)胞壁的,而面對外界信號刺激時(shí),它們之間的變化又是如何調(diào)控的。植物細(xì)胞壁的形成是一個(gè)極其復(fù)雜的生理過程,這一過程的調(diào)控及交互作用有待進(jìn)一步研究。全球陸地植物每年固定的凈CO2量約為5.6×1010t,其中70%是植物細(xì)胞壁物質(zhì),而人類僅能利用其中的2%[60]。纖維素是自然界最為豐富的生物多聚體,人們已經(jīng)開始通過大面積種植木材提高纖維素的利用率,而對于纖維素合成調(diào)控機(jī)制的研究將有利于對纖維素的開發(fā)利用。
[1] Wright WE, Leavitt SW. Needle cell elongation and maturation timing derived from pine needle cellulose delta18O[J]. Plant Cell Environ, 2006, 29:1-14.
[2] Saxena IM, Brown Jr RM. Cellulose biosynthesis:current views and evolving concepts[J]. Ann Bot, 2005, 96:9-21.
[3] Tajvidi K, Pupovac K, Kükrek M, et al. Copper-based catalysts for efficient valorization of cellulose[J]. Chem Sus Chem, 2012, 5:2139-2142.
[4] Lerouxel O, Cavalier DM, Liepman AH, et al. Biosynthesis of plant cell wall polysaccharides—a complex process[J]. Current Opinion in Plant Biology, 2006, 9:621-630.
[5] Taylor NG. Cellulose biosynthesis and deposition in higher plants[J]. New Phytologist, 2008, 178:239-252.
[6] Crowell EF, Bischoff V, Desprez T, et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis[J]. The Plant Cell Online, 2009, 21:1141-1154.
[7] Atanassov II, Pittman JK, Turner SR. Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls[J]. Journal of Biological Chemistry, 2009, 284:3833-3841.
[8] Wightman R, Turner S. Trafficking of the plant cellulose synthase complex[J]. Plant Physiology, 2010, 153:427-432.
[9] Doblin MS, Kurek I, Jacob-Wilk D, et al. Cellulose biosynthesis in plants:from genes to rosettes[J]. Plant and Cell Physiology, 2002, 43:1407-1420.
[10] Tanaka K, Murata K, Yamazaki M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J]. Plant Physiology, 2003, 133:73-83.
[11] Holland N, Holland D, Helentjaris T, et al. A comparative analysis of the plant cellulose synthase(CesA)gene family[J]. Plant Physiology, 2000, 123(4):1313-1324.
[12] Burton RA, Shirley NJ, King BJ, et al. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of coexpressed genes[J]. Plant Physiology, 2004, 134:224-236.
[13] Yin Y, Huang J, Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae[J]. BMC Plant Biology, 2009, 9(1):99.
[14] Richmond TA, Somerville CR. The cellulose synthase superfamily[J]. Plant Physiology, 2000, 124(2):495-498.
[15] Liepman AH, Cavalier DM. The CELLULOSE SYNTHASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families:recent advances and future perspectives[J]. Frontiers in Plant Science, 2012, 3:
109.
[16] Fagard M, Desnos T, Desprez T, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. The Plant Cell Online, 2000, 12:2409-2423.
[17] Stork J, Harris D, Griffiths J, et al. CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells[J]. Plant Physiology, 2010, 153:580-589.
[18] Taylor NG. Identification of cellulose synthase AtCesA7(IRX3)in vivo phosphorylation sites—a potential role in regulating protein degradation[J]. Plant Molecular Biology, 2007, 64:161-171.
[19] Ha MA, MacKinnon IM, ?turcová A, et al. Structure of cellulosedeficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana[J]. Phytochemistry, 2002, 61:7-14.
[20] Taylor NG, Laurie S, Turner SR. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. The Plant Cell Online, 2000, 12:2529-2539.
[21] Obembe OO, Jacobsen E, Vincken JP, et al. Differential expression of cellulose synthase(CesA)gene transcripts in potato as revealed by QRT-PCR[J]. Plant Physiology and Biochemistry, 2009, 47:1116-1118.
[22] Li S, Lei L, Gu Y. Functional analysis of complexes with mixed primary and secondary cellulose synthases[J]. Plant Signaling & Behavior, 2013, 8:e23179.
[23] Brill E, van Thournout M, White RG, et al. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber[J]. Plant Physiology, 2011, 157:40-54.
[24] Zhong R, Ye ZH. Regulation of cell wall biosynthesis[J]. Current Opinion in Plant Biology, 2007, 10:564-572.
[25] Nagata N, Asami T, Yoshida S. Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants(Lepidium sativum)[J]. Plant and Cell Physiology, 2001, 42:1006-1011.
[26] Yamamoto R, Fujioka S, Iwamoto K, et al. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation[J]. Plant and Cell Physiology, 2007, 48:74-83.
[27] Sun Y, Fan XY, Cao DM, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Developmental Cell, 2010, 19:765-777.
[28] Yu X, Li L, Zola J, et al. A brassinosteroid transcriptional network revealed by genome wide identification of BESI target genes in Arabidopsis thaliana[J]. The Plant Journal, 2011, 65:634-646.
[29] Xie L, Yang C, Wang X. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(13):4495-4506.
[30] Hossain Z, McGarvey B, Amyot L, et al. DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis[J]. Planta, 2012, 235:485-498.
[31] Singh B, Cheek HD, Haigler CH. A synthetic auxin(NAA)suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber[J]. Plant Cell Reports, 2009, 28:1023-1032.
[32] Ellis C, Turner JG. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens[J]. The Plant Cell Online, 2001, 13:1025-1033.
[33] Staswick PE, Su W, Howell SH. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant[J]. Proceedings of the National Academy of Sciences, 1992, 89:6837-6840.
[34] Denness L, McKenna JF, Segonzac C, et al. Cell wall damageinduced lignin biosynthesis is regulated by a reactive oxygen species-and jasmonic acid-dependent process in Arabidopsis[J]. Plant Physiology, 2011, 156:1364-1374.
[35] Ellis C, Karafyllidis I, Wasternack C, et al. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses[J]. The Plant Cell Online, 2002, 14:1557-1566.
[36] Beligni MV, Lamattina L. Nitric oxide:a non-traditional regulator of plant growth[J]. Trends in Plant Science, 2001, 6:508-509.
[37] Correa-Aragunde N, Lombardo C, Lamattina L. Nitric oxide:an active nitrogen molecule that modulates cellulose synthesis in tomato roots[J]. New Phytologist, 2008, 179:386-396.
[38] Peng L, Xiang F, Roberts E, et al. The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline beta-1, 4-glucan associated with CesA protein[J]. Plant Physiol, 2001. 126:981-992.
[39] Rajangam AS, Kumar M, Aspeborg H, et al. MAP20, a microtubuleassociated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2, 6-dichlorobenzonitrile[J]. Plant Physiology, 2008, 148:1283-1294.
[40] Demura T, Ye ZH. Regulation of plant biomass production[J]. Current Opinion in Plant Biology, 2010, 13:298-303.
[41] Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell Online, 2006, 18:3158-3170.
[42] Zhong R, Richardson EA, Ye ZH. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta, 2007, 225:1603-1611.
[43] Li E, Bhargava A, Qiang W, et al. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus[J]. New Phytologist, 2012, 194:102-115.
[44] Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis[J]. Plant J, 2009, 60:649-665.
[45] Wang HZ, Dixon RA. On-off switches for secondary cell wall biosynthesis[J]. Molecular Plant, 2012, 5:297-303.
[46] Kim WC, Ko JH, Kim JY, et al. MYB46 directly regulates the gene expression of secondary wall associated cellulose synthases in Arabidopsis[J]. The Plant Journal, 2013, 73:26-36.
[47] Kim WC, Kim JY, Ko JH, et al. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2013, 170(15):1374-1378.
[48] Bischoff V, Desprez T, Mouille G, et al. Phytochrome regulation of cellulose synthesis in Arabidopsis[J]. Current Biology, 2011, 21:1822-1827.
[49] Sánchez-Rodríguez C, Bauer S, Hématy K, et al. CHITINASELIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis[J]. The Plant Cell Online, 2012, 24:589-607.
[50] Engel P, Hein L, Spiess AC. Derivatization-free gel permeation chromatography elucidates enzymatic cellulose hydrolysis[J]. Biotechnology for Biofuels, 2012, 5:77.
[51] Gavlighi HA, Meyer AS, Mikkelsen JD. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal[J]. Biotechnology Letters, 2013, 35:205-212.
[52] Lane DR, Wiedemeier A, Peng L, et al. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1, 4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis[J]. Plant Physiology, 2001, 126:278-288.
[53] Szyjanowicz PMJ, McKinnon I, Taylor NG, et al. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana[J]. The Plant Journal, 2004, 37:730-740.
[54] Roudier F, Fernandez AG, Fujita M, et al. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation[J]. The Plant Cell Online, 2005, 17:1749-1763.
[55] Brown DM, Zeef LAH, Ellis J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell Online, 2005, 17:2281-2295.
[56] Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure[J]. Proceedings of the National Academy of Sciences, 2009, 106:13118-13123.
[57] Sampathkumar A, Gutierrez R, McFarlane HE, et al. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells[J]. Plant Physiology, 2013, 162:675-688.
[58] McCann MC, Carpita NC. Designing the deconstruction of plant cell walls[J]. Current Opinion in Plant Biology, 2008, 11:314-320.
[59] Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006, 126:467-475.
[60] Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels[J]. Plant J, 2008, 54:559-568.
(責(zé)任編輯 狄艷紅)
Regulation of Cellulose Biosynthesis in Plant Cell Wall
Gao Yan Chen Guanghui Chen Xiujuan Xie Liqiong
(College of Life Science and technology,Xinjiang University,Urumqi 830046)
Cellulose is the most abundant biopolymer in the world, which is the major component of biomass energy sources. Family of cellulose synthase(CesA)gene is responsible for cellulose biosynthesis. Plant hormones, nitric oxide(NO), transcription factors, and some other none CESA proteins involved in cellulose biosynthesis. This paper summarized the latest progress of the cellulose biosynthesis regulation in higher plants.
Cellulose Biosynthesis Regulation
2013-08-30
國家自然科學(xué)基金項(xiàng)目(31160056/C020408),新疆自然科學(xué)基金資助項(xiàng)目(20112114A014)
高艷,女,碩士研究生,研究方向:植物生物技術(shù);E-mail:562179333@qq.com
謝麗瓊,女,副教授,研究方向:特殊植物資源;E-mail:xieliqiong@gmail.com