王貴鴻 馬 容 康 波 姜冬梅 何 琿
(四川農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,雅安 625014)
多胺(如腐胺、亞精胺和精胺)是一類廣泛存在于動(dòng)物機(jī)體內(nèi)的脂肪族化合物,在細(xì)胞增殖、分化和凋亡過(guò)程中發(fā)揮重要作用。近年來(lái)研究發(fā)現(xiàn),多胺可參與調(diào)控動(dòng)物繁殖、胚胎發(fā)育以及癌癥發(fā)生發(fā)展等生物學(xué)過(guò)程[1-2]。因此,細(xì)胞內(nèi)多胺穩(wěn)態(tài)的維持就顯得尤為重要。生物體內(nèi)多胺主要來(lái)源于體內(nèi)生物合成、食物和腸道菌群等3條途徑,因而細(xì)胞內(nèi)多胺的濃度是通過(guò)多胺合成、分解和轉(zhuǎn)運(yùn)過(guò)程共同維持[3]。用抗生素抑制腸道微生物菌群的活性,或攝食多胺缺乏的食物可顯著增強(qiáng)二氟甲基鳥(niǎo)氨酸(difluoromethylornithine,DFMO,一種多胺生物合成酶抑制劑)誘導(dǎo)的多胺耗竭效應(yīng),說(shuō)明多胺轉(zhuǎn)運(yùn)對(duì)維持細(xì)胞內(nèi)多胺穩(wěn)態(tài)起著至關(guān)重要的作用[4]。因此,闡明多胺轉(zhuǎn)運(yùn)分子調(diào)控機(jī)制對(duì)動(dòng)物繁殖、胚胎發(fā)育以及癌癥發(fā)生發(fā)展等生物學(xué)過(guò)程的研究有著十分重要的理論和實(shí)踐意義。本文就多胺轉(zhuǎn)運(yùn)蛋白、多胺代謝相關(guān)基因和蛋白質(zhì)以及內(nèi)環(huán)境因素調(diào)控多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的研究作一綜述,旨在為闡明多胺轉(zhuǎn)運(yùn)調(diào)控機(jī)制的研究奠定理論基礎(chǔ)。
多胺轉(zhuǎn)運(yùn)蛋白是一種能特異性識(shí)別多胺及多胺類似物,并介導(dǎo)多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的蛋白質(zhì)[5]。盡管多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的分子機(jī)制仍不清楚,但有研究表明,一些膜轉(zhuǎn)運(yùn)蛋白能參與多胺的轉(zhuǎn)運(yùn)[6]。目前,在人體中已經(jīng)發(fā)現(xiàn)了超過(guò)400種屬于溶質(zhì)轉(zhuǎn)運(yùn)蛋白(solute-linked carrier,SLC)和ATP結(jié)合盒蛋白(ATP-binding cassette,ABC)的膜轉(zhuǎn)運(yùn)蛋白,而且SLC基因家族編碼的部分蛋白質(zhì)能介導(dǎo)多胺的轉(zhuǎn)運(yùn)。
SLC基因家族編碼的有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體(organic cation transporters,OCTs)能介導(dǎo)多胺轉(zhuǎn)運(yùn)。OCTs包括 OCT1、OCT2和 OCT3,其中 OCT1由SLC22A1基因編碼,在肝臟中表達(dá)量高[7];OCT2由SLC22A2基因編碼,相較于 OCT1,OCT2更具組織特異性,主要在人腎臟遠(yuǎn)端小管的管腔膜上表達(dá),另有研究表明OCT2在人腦部神經(jīng)細(xì)胞也有表達(dá)[8];OCT3由SLC22A3基因編碼,在大多數(shù)組織中均有表達(dá)[7]。在鼠體內(nèi)OCT1能介導(dǎo)陽(yáng)離子通過(guò)細(xì)胞膜,而這種介導(dǎo)過(guò)程不依賴于Na+,而且對(duì)pH也不敏感。進(jìn)一步的研究表明,OCT1能介導(dǎo)亞精胺和精胺的入胞過(guò)程[9]。Winter等[10]研究表明,HEK293細(xì)胞中的OCT2能介導(dǎo)腐胺的轉(zhuǎn)運(yùn),而且呈一定的濃度和pH依賴性。此外,腐胺和亞精胺的跨膜轉(zhuǎn)運(yùn)過(guò)程依賴于細(xì)胞膜的跨膜電位水平[11-12];而 OCT1和 OCT3介導(dǎo)陽(yáng)離子轉(zhuǎn)運(yùn)的過(guò)程也依賴于細(xì)胞膜的跨膜電位水平[7],據(jù)此推測(cè)OCT1和OCT3能介導(dǎo)腐胺和亞精胺的跨膜物質(zhì)轉(zhuǎn)運(yùn)。最近,Sala-Rabanal等[13]研究非洲爪蟾蜍OCTs(OCT1、OCT2和OCT3)介導(dǎo)多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的結(jié)果進(jìn)一步證實(shí),OCTs可作為多胺轉(zhuǎn)運(yùn)蛋白,并且在多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)過(guò)程中具有重要作用。
SLC7A1屬于陽(yáng)離子氨基酸轉(zhuǎn)運(yùn)體家族中的一員,在哺乳動(dòng)物的大部分組織中均有表達(dá)[14-15],其家族成員屬于氨基酸y+轉(zhuǎn)運(yùn)系統(tǒng),表現(xiàn)出轉(zhuǎn)運(yùn)體的活性[14,16],主要負(fù)責(zé) L-賴氨酸、精氨酸和鳥(niǎo)氨酸的轉(zhuǎn)運(yùn)。Sharpe等[17]研究表明,由于y+轉(zhuǎn)運(yùn)系統(tǒng)轉(zhuǎn)運(yùn)的氨基酸和多胺的結(jié)構(gòu)相似,而且轉(zhuǎn)運(yùn)都具有底物高親和力和非Na+依賴的特性,因而y+轉(zhuǎn)運(yùn)系統(tǒng)能接受多胺作為底物進(jìn)行轉(zhuǎn)運(yùn)??梢?jiàn),多胺的轉(zhuǎn)運(yùn)可能受到一個(gè)未知y+轉(zhuǎn)運(yùn)位點(diǎn)的介導(dǎo)。SLC3A2基因編碼的蛋白質(zhì)是細(xì)胞抗原4F2重鏈。研究表明,SLC3A2基因不僅能作為癌癥化學(xué)預(yù)防的靶點(diǎn)[18-19],還可作為Ⅱ型腎細(xì)胞癌的生物標(biāo)志[20]。在哺乳動(dòng)物細(xì)胞中,SLC3A2基因參與多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)[21]。在CHO細(xì)胞中,SLC3A2基因能促進(jìn)多胺的外排[22-23]。另外,在人直腸癌細(xì)胞中,SLC3A2基因能促進(jìn)腐胺的外排[23],然而在低水平多胺的組織中,SLC3A2基因能介導(dǎo)腐胺的攝入??梢?jiàn),SLC3A2介導(dǎo)腐胺跨膜物質(zhì)轉(zhuǎn)運(yùn)具有雙向性的特點(diǎn)[4]。另外,SLC22A16基因編碼的OCT6在人類組織中表達(dá)較低,但在睪丸組織中高表達(dá)[7]。有研究表明,OCT6不僅能介導(dǎo)多胺的轉(zhuǎn)運(yùn),還能介導(dǎo)多胺類似物的轉(zhuǎn)運(yùn)[24]。SLC12A8基因編碼的陽(yáng)離子-氯離子轉(zhuǎn)運(yùn)蛋白9可促進(jìn)哺乳動(dòng)物細(xì)胞多胺和氨基酸的轉(zhuǎn)運(yùn)[24-25]。若HEK293細(xì)胞表達(dá)SLC12A8A基因,那么細(xì)胞膜能夠接受多胺和氨基酸作為底物并促進(jìn)它們的轉(zhuǎn)運(yùn),與此同時(shí),隨著SLC12A8A基因在HEK293細(xì)胞內(nèi)表達(dá),細(xì)胞對(duì)多胺的攝入量增加[6]。
此外,非洲爪蟾蜍卵母細(xì)胞中表達(dá)的TcPAT12基因在亞精胺攝入過(guò)程中也發(fā)揮重要調(diào)控作用。Carrillo等[26]研究表明,TcPAT12基因不僅能參與調(diào)控亞精胺的轉(zhuǎn)運(yùn),而且還能參與腐胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的調(diào)節(jié)。另外,轉(zhuǎn)運(yùn)載體PotABCD也能參與調(diào)控細(xì)胞對(duì)亞精胺和精胺的跨膜物質(zhì)轉(zhuǎn)運(yùn)過(guò)程[27-28]。總之,一些膜轉(zhuǎn)運(yùn)蛋白,尤其是SLC基因家族編碼蛋白能以多胺和多胺類似物為底物,在介導(dǎo)多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的過(guò)程中發(fā)揮重要作用。
多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)不僅受到多胺轉(zhuǎn)運(yùn)蛋白的調(diào)控,還受到多胺代謝相關(guān)基因的調(diào)控。研究表明,鳥(niǎo)氨酸脫羧酶(ornithine decarboxylase,ODC)與多胺轉(zhuǎn)運(yùn)密切相關(guān),ODC抑制劑二氟甲基鳥(niǎo)氨酸(difluoromethylornithine,DFMO)能顯著增強(qiáng)多胺的跨膜物質(zhì)轉(zhuǎn)運(yùn)[29]。鳥(niǎo)氨酸脫羧酶抗酶(ornithine decarboxylase antizyme,OAZ)作為多胺合成代謝過(guò)程第一限速酶ODC的特異性抑制劑,是多胺轉(zhuǎn)運(yùn)過(guò)程的關(guān)鍵調(diào)控因子之一。OAZ1廣泛存在于生物體中,Hoshino等[30-31]研究表明,在NIH3T3細(xì)胞中,OAZ不僅能顯著抑制精胺的攝取,而且還能抑制ODC的生物活性,進(jìn)而促進(jìn)ODC降解。另外,研究還證實(shí),OAZ2和OAZ3也能抑制細(xì)胞對(duì)外源多胺的攝?。?2]。在酵母的雙雜交試驗(yàn)中,OAZ1能與排序連接蛋白5(sorting nexin-5,SNX-5)結(jié)合,而SNX-5在囊泡運(yùn)輸中有重要作用[33-34],提示多胺轉(zhuǎn)運(yùn)可能與囊泡運(yùn)輸有關(guān)。綜上所述,OAZ能參與多胺轉(zhuǎn)運(yùn)的調(diào)節(jié),但其抑制多胺轉(zhuǎn)運(yùn)的具體機(jī)制仍有待進(jìn)一步研究闡明。鳥(niǎo)氨酸脫羧酶抗酶抑制劑(ornithine decarboxylase antizyme inhibitor,AZIN)作為 OAZ的抑制劑,能促進(jìn)OAZ-ODC復(fù)合物中ODC的解離,從而恢復(fù)ODC的生物活性。新近研究表明,AZIN在多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)過(guò)程中也具有重要調(diào)控作用[35]。Liao等[36]研究表明,在肺泡巨噬細(xì)胞中,肺孢子菌可誘導(dǎo)AZIN1基因過(guò)表達(dá),繼而顯著增加細(xì)胞內(nèi)多胺的生物合成和多胺的攝入。多胺代謝途徑是Myc和Ras等致癌基因的下游靶點(diǎn),而且在癌細(xì)胞中,多胺轉(zhuǎn)運(yùn)系統(tǒng)的活性顯著增強(qiáng)。Roy等[37]研究表明,在人結(jié)腸癌細(xì)胞中,激活K-ras蛋白將上調(diào)細(xì)胞對(duì)多胺的攝取。綜上所述,多胺代謝途徑的關(guān)鍵調(diào)控基因和蛋白質(zhì)在多胺轉(zhuǎn)運(yùn)過(guò)程中發(fā)揮重要作用,而致癌因子也可能在多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)過(guò)程中具有重要調(diào)控作用,然而其機(jī)制有待進(jìn)一步研究闡明。
細(xì)胞膜跨膜電位、金屬陽(yáng)離子和pH等內(nèi)環(huán)境因素可參與調(diào)節(jié)多胺轉(zhuǎn)運(yùn)。腐胺和亞精胺轉(zhuǎn)運(yùn)具有Na+依賴的特性,因此可利用內(nèi)源性的Na+濃度梯度作為多胺協(xié)同轉(zhuǎn)運(yùn)的驅(qū)動(dòng)力。Aziz等[38]研究表明,在低氧環(huán)境中,降低牛肺動(dòng)脈平滑肌細(xì)胞外液Na+濃度或增加Na+通透性可顯著抑制細(xì)胞的多胺跨膜轉(zhuǎn)運(yùn),提示低氧可誘導(dǎo)Na+依賴的多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)。然而,后繼研究發(fā)現(xiàn),用非電解質(zhì)溶液完全替換NaCl將促進(jìn)細(xì)胞攝取多胺,提示Na+本身也可作為一種多胺轉(zhuǎn)運(yùn)的抑制劑[39]。Kakinuma等[40]研究表明,牛淋巴細(xì)胞中多胺攝取依賴于細(xì)胞膜的跨膜電位水平,并且受細(xì)胞內(nèi)亞精胺和精胺水平的調(diào)節(jié)。隨后的研究證實(shí),細(xì)胞攝取多胺的過(guò)程依賴于細(xì)胞膜的跨膜電位水平[11,41],而且細(xì)胞對(duì)多胺的攝取對(duì)離子通道具有強(qiáng)烈的依賴性。另外有研究表明,二價(jià)陽(yáng)離子是腐胺和精胺轉(zhuǎn)運(yùn)蛋白激活的必需因子,這些二價(jià)陽(yáng)離子激活腐胺和精胺轉(zhuǎn)運(yùn)蛋白的效率為:Mn2+>Ca2+>Mg2+>Co2+[42-44],而且乙二胺四乙酸(EDTA)和乙二醇雙四乙酸(EGTA)螯合試驗(yàn)的結(jié)果表明,Mn2+和Mg2+是多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)所必需的二價(jià)陽(yáng)離子[39]。另外,多胺轉(zhuǎn)運(yùn)還與 pH有關(guān)。研究表明,在轉(zhuǎn)運(yùn)過(guò)程中,腐胺比精胺對(duì)pH更為敏感,其最適pH偏向于堿性[45]。因此,多胺的轉(zhuǎn)運(yùn)與細(xì)胞跨膜電位、金屬陽(yáng)離子和pH等因素有關(guān)。
多胺參與調(diào)控動(dòng)物繁殖、胚胎發(fā)育和癌癥發(fā)生發(fā)展等多種生物學(xué)過(guò)程,同時(shí)還具有調(diào)控細(xì)胞增殖、分化和凋亡的功能。多胺轉(zhuǎn)運(yùn)蛋白、多胺代謝關(guān)鍵基因和蛋白質(zhì)以及內(nèi)環(huán)境因素共同參與細(xì)胞多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)過(guò)程。然而,目前關(guān)于多胺轉(zhuǎn)運(yùn)蛋白介導(dǎo)多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)的機(jī)制尚不清楚,ODC、OAZ和AZIN等多胺代謝關(guān)鍵調(diào)控基因調(diào)控多胺轉(zhuǎn)運(yùn)活性的機(jī)制仍有待進(jìn)一步研究闡明。多胺跨膜物質(zhì)轉(zhuǎn)運(yùn)分子調(diào)控機(jī)制的研究將對(duì)闡明細(xì)胞內(nèi)多胺穩(wěn)態(tài)維持調(diào)控機(jī)制具有重要意義,同時(shí)也將為動(dòng)物繁殖、胚胎發(fā)育以及抗癌治療等方面的研究提供新的切入點(diǎn)。
[1] WALLACE H M,NIIRANEN K.Polyamine analogues-an up date[J].Amino Acids,2007,33(2):261-265.
[2] AGUDELO-ROMERO P,BORTOLLOTI C,PAIS M S,et al.Study of polyamines during grape ripening indicate an important role of polyamine catabolism[J].Plant Physiologyand Biochemistry2013,67:105-119.
[3] IGARASHI K,KASHIWAGI K.Polyamines:mysterious modulators of cellular functions[J].Biochemical and Biophysical Research Communications,2000,271(3):559-564.
[4] UEMURA T,STRINGER D E,BLOHM-MANGONE K A,et al.Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2010,299(2):G517-G522.
[5] PHANSTIEL O Ⅳ,KAUR N,DELCROS J G.Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter[J].Amino Acids,2007,33(2):305-313.
[6] ABDULHUSSEIN A A,WALLACE H M.Polyamines and membrane transporters[J].Amino Acids,2014,46(3):655-660.
[7] KOEPSELL H,LIPSK,VOLK C.Polyspecific organic cation transporters:structure,function,physiological roles,and biopharmaceutical implications[J].Pharmaceutical Research,2007,24(7):1227-1251.
[8] KOEPSELL H.Organic cation transporters in intestine,kidney,liver,and brain[J].Annual Review of Physiology,1998,60(1):243-266.
[9] BUSCH A E,QUESTER S,ULZHEIMER J C,et al.Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1[J].The Journal of Biological Chemistry,1996,271(51):32599-32604.
[10] WINTER T N,ELMQUIST W F,F(xiàn)AIRBANKS C A.OCT2 and MATE1 provide bidirectional agmatine transport[J].Molecular Pharmaceutics,2011,8(1):133-142.
[11] POULIN R,ZHAO C,VERMA S,et al.Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential:identification of an amiloride binding site on the putrescine carrier[J].The Biochemical Journal,1998,330(Suppl.3):1283-1291.
[12] POULIN R,CASERO R A,SOULET D.Recent advances in the molecular biology of metazoan polyamine transport[J].Amino Acids,2012,42(2/3):711-723.
[13] SALA-RABANAL M,LI D C,DAKE G R,et al.Polyamine transport by the polyspecific organic cation transporters OCT1,OCT2,and OCT3[J].Molecular Pharmaceutics,2013,10(4):1450-1458.
[14] PALACíN M,ESTéVEZ R,BERTRAN J,et al.Molecular biology of mammalian plasma membrane amino acid transporters[J].Physiological Reviews,1998,78(4):969-1054.
[15] YANG Z,VENARDOSK,JONES E,et al.Identification of a novel polymorphism in the 3'UTR of the L-arginine transporter gene SLC7A1:contribution to hypertension and endothelial dysfunction[J].Circulation,2007,115(10):1269-1274.
[16] DEVéS R,BOYD C A.Transporters for cationic amino acids in animal cells:discovery,structure,and function[J].Physiological Reviews,1998,78(2):487-545.
[17] SHARPE J G,SEIDEL E R.Polyamines are absorbed through a y+amino acid carrier in rat intestinal epithelial cells[J].Amino Acids,2005,29(3):245-253.
[18] BABBAR N,GERNER E W.Targeting polyamines and inflammation for cancer prevention[J].Recent Results in Cancer Research.Fortschritte der Krebsforschung.Progres Dans Les Recherches Sur Le Cancer,2011,188:49-64.
[19] WOOD PL,KHAN M A,SMITH T,et al.Cellular diamine levels in cancer chemoprevention:modulation by ibuprofen and membrane plasmalogens[J].Lipids in Health and Disease,2011,10:214.
[20] PRAGER G W,POETTLER M,SCHMIDINGER M,et al.CD98hc(SLC3A2),a novel marker in renal cell cancer[J].European Journal of Clinical Investigation,2009,39(4):304-310.
[21] UEMURA T,GERNER E W.Polyamine transport systems in mammalian cells and tissues[J].Methods in Molecula Biology,2011,720:339-348.
[22] XIE X,GILLIES R J,GERNER E W.Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates[J].The Journal of Biological Chemistry,1997,272(33):20484-20489.
[23] UEMURA T,YERUSHALMI H F,TSAPRAILIS G,et al.Identification and characterization of a diamine exporter in colon epithelial cells[J].The Journal of Biological Chemistry,2008,283(39):26428-26435.
[24] AOUIDA M,POULIN R,RAMOTAR D.The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5[J].The Journal of Biological Chemistry,2010,285(9):6275-6284.
[25] FRIAUF E,RUST M B,SCHULENBORG T,et al.Chloride cotransporters,chloride homeostasis,and synaptic inhibition in the developing auditory system[J].Hearing Research,2011,279(1/2):96-110.
[26] CARRILLO C,CANEPA G E,ALGRANATI I D,et al.Molecular and functional characterization of a spermidine transporter(TcPAT12)from Trypanosoma cruzi[J].Biochemical and Biophysical Research Communications,2006,344(3):936-940.
[27] KASHIWAGI K,MIYAMOTO S,NUKUI E,et al.Functions of potA and potD proteins in spermidinepreferential uptake system in Escherichia coli[J].The Journal of Biological Chemistry,1993,268(26):19358-19363.
[28] YAO X,LU C D.Functional characterization of the potRABCD operon for spermine and spermidine uptake and regulation in staphylococcus aureus[J].Current Microbiology,2014,69(1):75-78.
[29] POULIN R,COWARD J K,LAKANEN J R,et al.Enhancement of the spermidine uptake system and lethal effects of spermidine overaccumulation in ornithine decarboxylase-overproducing L1210 cells under hyposmotic stress[J].The Journal of Biological Chemistry,1993,268(7):4690-4698.
[30] KHOMUTOV M A,WEISELL J,HYVONEN M,et al.Hydroxylamine derivatives for regulation of spermine and spermidine metabolism [J].Biochemistry,2013,78(13):1431-1446.
[31] HOSHINO K,MOMIYAMA E,YOSHIDA K,et al.Polyamine transport by mammalian cells and mitochondria:role of antizyme and glycosaminoglycans[J].The Journal of Biological Chemistry,2005,280(52):42801-42808.
[32] ZHU C,LANG D W,COFFINO P.Antizyme2 is a negative regulator of ornithine decarboxylase and polyamine transport[J].The Journal of Biological Chemistry,1999,274(37):26425-26430.
[33] WANG J T H,KERR M C,KARUNARATNE S,et al.The SNX-PX-BAR family in macropinocytosis:the regulation of macropinosome formation by SNX-PXBAR proteins[J].PLoS One,2010,5(10):e13763.
[34] WASSMER T,ATTAR N,HARTERINK M,et al.The retromer coat complex coordinates endosomal sorting and dynein-mediated transport,with carrier recognition by the trans-Golgi network[J].Developmental Cell,2009,17(1):110-122.
[35] KAHANA C.Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor[J].Essays in Biochemistry,2009,46:47-62.
[36] LIAO C P,LASBURY M E,WANG S H,et al.Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages[J].The Journal of Biological Chemistry,2009,284(12):8174-8184.
[37] ROY U K,RIAL N S,KACHEL K L,et al.Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis[J].Molecular Carcinogenesis,2008,47(7):538-553.
[38] AZIZ S M,LIPKE D W,OLSON J W,et al.Role of ATP and sodium in polyamine transport in bovine pulmonary artery smooth cells[J].Biochemical Pharmacology,1994,48(8):1611-1618.
[39] POULIN R,LESSARD M,ZHAO C Q.Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells[J].The Journal of Biological Chemistry,1995,270(4):1695-1704.
[40] KAKINUMA Y,HOSHINO K,IGARASHI K.Characterization of the inducible polyamine transporter in bovine lymphocytes[J].European Journal of Biochemistry,1988,176(2):409-414.
[41] DOT J,LLUCH M,BLANCO I,et al.Polyamine uptake in cultured astrocytes:characterization and modulation by protein kinases[J].Journal of Neurochemistry,2000,75(5):1917-1926.
[42] MINCHIN R F,MARTIN R L.Extracellular calcium stimulates Na(+)-dependent putrescine uptake in B16 melanoma cells[J].The International Journal of Biochemistry & Cell Biology,1997,29(3):447-454.
[43] GROBLEWSKI G E,HARGITTAI PT,SEIDEL E R.Ca2+/calmodulin regulation of putrescine uptake in cultured gastrointestinal epithelial cells[J].The American Journal of Physiology,1992,262(6 Pt 1):C1356-C1363.
[44] BRACHET P,TOME D.Putrescine uptake by rabbit intestinal brush-border membrane vesicles[J].Biochemistry International,1992,27(3):465-475.
[45] BRACHET P,DEBBABI H,TOME D.Transport and steady-state accumulation of putrescine in brush-border membrane vesicles of rabbit small intestine[J].The American Journal of Physiology,1995,269(5):G754-G762.