鄭潔,王瑞輝,寇久社
(1.陜西中醫(yī)學(xué)院針灸推拿系,陜西 咸陽 712046;2.陜西中醫(yī)學(xué)院第二附屬醫(yī)院康復(fù)針灸科,陜西 咸陽 712046)
骨關(guān)節(jié)炎(osteoarthritis,OA)是由多種因素引起的復(fù)雜性關(guān)節(jié)退行性疾病。通常認(rèn)為,OA病理與軟骨下骨硬化密切相關(guān),軟骨下骨硬化可導(dǎo)致增齡性關(guān)節(jié)退行性變。近年的研究表明,OA早期常伴有骨重塑加快引起的骨量丟失,晚期可見骨轉(zhuǎn)換率降低并引起軟骨下骨板致密化及軟骨全部丟失。然而,OA晚期軟骨下骨致密化僅見于位于軟骨下骨板和鈣化軟骨,而位于軟骨下骨板下方的松質(zhì)骨骨量明顯減少。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),在不引起軟骨下骨重塑加快的同時(shí)誘導(dǎo)軟骨下骨硬化并不會(huì)使OA進(jìn)一步發(fā)展。因此,OA初期的骨重塑加快及骨丟失和晚期骨重塑減慢及軟骨下骨致密化均構(gòu)成導(dǎo)致OA病理發(fā)展的重要組成部分。本文將近年來骨重塑過程在OA發(fā)生發(fā)展中作用的相關(guān)研究做一綜述。
1.1 骨重塑加快 OA初期軟骨下骨重塑過程加快,軟骨下骨板變薄[1]。研究發(fā)現(xiàn),手術(shù)誘導(dǎo)OA犬模型20周后,關(guān)節(jié)軟骨下骨板厚度減低的同時(shí)還伴軟骨破壞和蛋白聚糖合成下降[2]。OA兔模型軟骨下骨也發(fā)生了類似變化,且在手術(shù)誘導(dǎo)OA之前人為造成軟骨下骨重塑加快和骨丟失可使OA兔的軟骨損傷更加嚴(yán)重[3]。OA初期未出現(xiàn)臨床癥狀時(shí),OA患者受累骨關(guān)節(jié)骨吸收標(biāo)志物含量明顯升高,提示OA軟骨下骨重塑加快早于軟骨受損的發(fā)生[4]。研究發(fā)現(xiàn),OA中軟骨下骨吸收和軟骨丟失發(fā)生在病變關(guān)節(jié)的同一區(qū)域,軟骨下骨磨損相應(yīng)區(qū)域的軟骨丟失風(fēng)險(xiǎn)遠(yuǎn)遠(yuǎn)高于無軟骨下骨磨損相應(yīng)區(qū)域的軟骨[5]。還有學(xué)者提出,OA中軟骨下骨鹽沉積減少及骨量丟失僅發(fā)生在受損軟骨下骨區(qū)域[6]??梢姡琌A初期骨重塑加快可導(dǎo)致關(guān)節(jié)形態(tài)和荷載傳導(dǎo)的改變,進(jìn)而增加進(jìn)行性軟骨丟失的風(fēng)險(xiǎn)。
1.2 骨重塑加快的原因 OA初期骨重塑加快的原因仍不明確,可能涉及多種機(jī)制,包括微損傷修復(fù)細(xì)胞信號(hào)、血管生成因子介導(dǎo)的血管入侵以及通過軟骨下孔隙的骨-軟骨交聯(lián)。
1.2.1 細(xì)胞信號(hào) OA軟骨中轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)、胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF)、白介素-1(interleukin-1,IL-1)、IL-6和前列腺素E2(prostaglandin E2,PGE2)等細(xì)胞因子水平明顯升高,這些因子不僅是OA病理產(chǎn)物,同時(shí)也是骨重塑刺激因子[7]。膝OA大鼠關(guān)節(jié)Wint信號(hào)呈高表達(dá)[8]。關(guān)節(jié)反復(fù)的負(fù)載可引起軟骨下骨板出現(xiàn)微裂隙,這些微裂隙成為骨重塑發(fā)生的起始部位,并刺激受損區(qū)骨細(xì)胞分泌核因子κB活化受體配體(receptor activator of nuclear factor κBligand,RANKL)并下調(diào)骨保護(hù)素(osteoprotegerin,OPG)表達(dá)水平,進(jìn)而誘導(dǎo)骨吸收過程[9,10]。OA動(dòng)物模型病變關(guān)節(jié)OPG:RANKL比值明顯減少,與觀察到的骨重塑加快相一致[3]。
1.2.2 血管入侵 骨重塑過程的加快不可避免得伴隨著深層軟骨血管入侵。OA患者滑液中血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)(重要的促血管生成因子)含量顯著提高[11],軟骨[12]、滑膜[13]及半月板[14]均伴有血管生成。VEGF可誘導(dǎo)軟骨細(xì)胞合成并分泌基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs),加速軟骨細(xì)胞外基質(zhì)的降解[11]。關(guān)節(jié)軟骨血管浸潤(rùn)為分解代謝因子進(jìn)入并降解軟骨提供條件。
1.2.3 骨-軟骨交聯(lián) 正常軟骨下骨中存在很多孔隙,構(gòu)成骨-軟骨信號(hào)交聯(lián)的通路。OA關(guān)節(jié)軟骨下骨孔隙及骨吸收活動(dòng)增多,導(dǎo)致軟骨下骨板穿孔加劇[15]。礦化軟骨下組織與關(guān)節(jié)軟骨在生理上相互作用[16]。軟骨受損和血管入侵可使這些自然形成的通道數(shù)量增多、尺寸增大,小分子由這些通道擴(kuò)散,介導(dǎo)OA病理下的骨-軟骨相互作用[17,18]。
OA晚期病理變化主要涉及四個(gè)過程,即骨轉(zhuǎn)換率降低、軟骨下骨硬化、軟骨鈣化層增厚以及骨小梁變薄[19]。OA晚期,軟骨下骨侵蝕區(qū)域減少了近65%,而骨形成只減少了20%,骨形成相對(duì)增加[20]。盡管如此,如果骨礦化不完全,其機(jī)械硬度仍然低于正常骨。研究發(fā)現(xiàn),骨量和骨礦化程度存在負(fù)相關(guān)關(guān)系,二者相互適應(yīng),骨量增多時(shí)將導(dǎo)致骨礦化程度降低[6]。成骨細(xì)胞表型改變可破壞骨礦化功能,使骨重塑加快引發(fā)的骨礦化降低進(jìn)一步加劇。骨礦化改變與OA成骨細(xì)胞大量分泌TGF-β密切相關(guān),TGF-β可促進(jìn)骨礦化抑制因子Dkk相關(guān)蛋白-2(dickkopf-related protein 2,DKK2)的高表達(dá)[21]。OA患者病變關(guān)節(jié)成骨細(xì)胞可分泌含α1鏈的I型膠原同型三聚體,這不同于正常情況下由α1雙鏈和α2單鏈構(gòu)成的異源三聚體,這種異常膠原的形成可能不利于組織礦化[21,22]。
所有上述研究為認(rèn)識(shí)OA發(fā)生發(fā)展的必然環(huán)節(jié)提供了線索。OA初期反復(fù)的關(guān)節(jié)負(fù)載引起骨重塑過程加快,同時(shí)伴隨深層軟骨血管生成及入侵。這一過程產(chǎn)生一些系列繼發(fā)事件,如滑膜肥厚、滑膜炎癥及滑膜里襯層B細(xì)胞減少等。蛋白聚糖丟失破壞了軟骨的完整性,關(guān)節(jié)負(fù)載進(jìn)一步增加,關(guān)節(jié)軟骨下成骨過程加快以適應(yīng)以上改變。以上過程最終形成一個(gè)正反饋環(huán),使軟骨退變過程不斷加劇,OA進(jìn)程加快。
總之,OA軟骨下骨重塑過程是呈時(shí)空變化的。OA早期骨重塑增快,并伴隨軟骨下骨板變薄及骨模量降低。隨著疾病進(jìn)展,骨重塑率減慢,但骨吸收和骨形成過程的不平衡導(dǎo)致成骨增多。這一過程造成骨量增加,這與骨硬化及軟骨鈣化層增厚密切相關(guān)。但由于骨形成過程僅呈相對(duì)提高,加之成骨細(xì)胞的礦化調(diào)節(jié)能力受損,組織本身硬度并未增加。因此,早期骨重塑加快以及后期成骨與破骨平衡的變化(成骨大于破骨)這兩個(gè)過程構(gòu)成OA進(jìn)展的必要條件,而單獨(dú)骨硬化不足以構(gòu)成OA進(jìn)展的條件。
參考文獻(xiàn):
[1]Intema F,Sniekers YH,Weinans H,etal.Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis[J].J Bone Miner Res,2010,25(7):1650-1657.
[2]Sniekers,YH,Intema F,Lafeber FP,etal.A role for subchondral bone changes in the process of osteoarthritis:a micro-CT study of two canine models[J].BMC Musculoskelet Disord,2008(9):20.
[3]Bellido M,Lugo L,Roman-Blas JA,etal.Subchondral bone microstructural damage by increased remodeling aggravates experimental osteoarthritis preceded by osteoporosis[J].Arth Res Ther,2010,12(4):R152.
[4]Bolbos RI,Zuo J,Banerjee S,etal.Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T[J].Osteoarthritis Cartilage,2008,16(10):1150-1159.
[5]Neogi T,F(xiàn)elson D,Niu J,etal.Cartilage loss occurs in the same subregions as subchondral bone attrition:a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study[J].Arthritis Rheum,2009,61(11):1539-1544.
[6]Cox LG,van Donkelaar CC,van Rietbergen B,etal.Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis[J].Bone,2012,50(5):1152-1161.
[7]Mansell,JP,Collins C,Bailey,AJ.Bone,not cartilage,should be the major focus in osteoarthritis[J].Nat Clin Pract Rheumatol,2007,3(6):306-307.
[8]Weng LH,Wang CJ,Ko JY,etal.Control of Dkk 1 ameliorates chondrocyte apoptosis,cartilage destruction,and subchondral bone deterioration in osteoarthritic knees[J].Arthritis Rheum,2010,62(5):1393-1402.
[9]Nakashima T,Hayashi M,F(xiàn)ukunaga T,etal.Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J].Nat Med,2011,17(10):1231-1234.
[10]Kennedy OD,Herman BC,Laudier DM,etal.Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte cell populations[J].Bone,2012,50(5):1115-1122.
[11]Kim KS,Choi HM,Lee YA,etal.Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis[J].Rheumatol Int,2011,31(4):543-547.
[12]Fransès RE,McWilliams DF,Mapp PI,etal.Osteochondral angiogenesis and increased protease inhibitor expression in OA[J].Osteoarthritis Cartilage,2010,18(4):563-571.
[13]Bonnet CS,Walsh DA.Osteoarthritis,angiogenesis and inflammation[J].Rheumatology (Oxford),2005,44(1):7-16.
[14]Ashraf S,Wibberley H,Mapp PI,etal.Increased vascular penetration and nerve growth in the meniscus:a potential source of pain in osteoarthritis[J].Ann Rheum Dis,2011,70(3):523-529.
[15]Botter SM,van Osch GJ,Clockaerts S,etal.Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice:an in vivo microfocal computed tomography study[J].Arthritis Rheum,2011,63(9):2690-2699.
[16]Pan J,Zhou X,Li W,etal.In situ measurement of transport between subchondral bone and articular cartilage[J].J Orthop Res,2009,27:1347-1352.
[17]Hwang J,Bae WC,Shieu W,etal.Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis[J].Arthritis Rheum,2008,58 (12):3831-3842.
[18]Pan J,Wang B,Li W,etal.Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints[J].Bone,2012,51(2):212-217.
[19]Karsdal MA,Leeming DJ,Dam EB,etal.Should subchondral bone turnover be targeted when treating osteoarthritis[J].Osteoarthritis Cartilage,2008,16(6):638-646.
[20]Kumarasinghe DD,Perilli E,Tsangari H,etal.Critical molecular regulators,histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis[J].Osteoarthritis Cartilage,2010,18(10):1337-1344.
[21]Chan TF,Couchourel D,Abed é,etal.Elevated Dickkopf 2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts[J].J Bone Miner Res,2011,26(7):1399-1410.
[22]Couchourel D,Aubry I,Delalandre A,etal.Altered mineralization of human osteoarthritic osteblasts is due to abnormal type 1 collagen production[J].Arthritis Rheum,2008,60(5):1438-1450.